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 Self-driving vehicles have become increasingly popular in recent years. Because of this, the 
information fusion sensing method using radar and cameras has been widely adopted in vehicles. 
We use the vehicle camera sensor and robust image segmentation technology to solve its inherent 
shortcomings. The images used for image segmentation are obtained under adverse weather 
conditions, or the image object’s color and texture resemble the background. For such images, 
using the convolutional layer model for image segmentation as a feature extraction method 
usually leads to error. Any highly robust algorithms for image enhancement for self-driving 
operation will help alleviate problems related to driving safety. To ensure that the final image 
segmentation achieves the desired effect and reduces the error rate, we propose a new 
segmentation-twice method, which correctly classifies the object’s label. The test results of the 
simulation described in this paper show that this experiment correctly classifies the object’s 
label. It can provide accurate environmental perception information for autonomous vehicles, 
improve the segmentation effect of similar fusion background images, and reduce the error rate.

1. Introduction

 With the rapid development of technology, self-driving vehicles are undoubtedly one of the 
most significant technological inventions in recent years.(1) Self-driving cars rely on various 
sensors to perceive their environment. The environment perception technology of cars is mainly 
based on sensors for obtaining obstacle movement information. However, these sensors may 
significantly impact the safety of the control system of autonomous vehicles because of 
insufficient sensing information and low accuracy. This feature also restricts the popularity of 
self-driving vehicles.
 Sensors are necessary hardware in autonomous vehicles and each sensor has its specific 
characteristics. The architecture of the self-driving platform is shown in Fig. 1. For example, the 
advantage of automotive radar is that it has good weather adaptability. Its performance does not 
degenerate at night and it can accurately obtain the position and speed of the target. However, 
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there is difficulty achieving target classification for distinguishing stationary vehicles and road 
traffic signs.
 Light detection and ranging (LiDAR) is an optical remote sensing technology that measures 
parameters,(2) such as the distance to the target, by irradiating a beam of light, usually a pulsed 
laser, onto the target. The advantage of such a sensor is that it can accurately obtain the three-
dimensional information of the object through long-distance detection. However, its disadvantage 
is that it will be affected by small particles in air.
 Low cost, a large amount of data, and easy perception classification are the advantages of car 
cameras. The disadvantages are poor adaptability to the lighting condition and low accuracy. 
Therefore, the purpose of this study is to improve the inherent shortcomings of the vehicle 
camera sensor, particularly for the image segmentation processing of image capture, in order to 
improve the adaptability and accuracy of object discrimination.
 We use the NVIDIA GTX 1070 GPU, and the sampling system is equipped with a Mako 
G-319 digital camera. Experimental results show that this architecture can achieve a high frame 
rate of 33.45 fps. The processing speed of such an image is sufficient for real-time segmentation 
operation.
 The technology used by the self-driving system to identify objects on the road is inseparable 
from semantic image segmentation.(3) For deep learning, image processing technology has been 
widely utilized in modern machine vision and image classification and recognition. It is also one 
of the essential application technologies. The convolutional neural network (CNN) has achieved 
great success in various computer vision tasks.(4) The semantic segmentation task(5) system in 
self-driving consideration is essential for recognizing object detection and classification 
images.(6)

 The traditional image segmentation mainly involves feature extraction and classification. 
These features and corresponding classification labels train a classification model commonly 
found in support vector machines (SVMs) and random forests (RFs). This feature extraction uses 

Fig. 1. (Color online) Architecture of the self-driving platform. 
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an unsupervised learning method. The image classification labels are unused in the extraction 
process after the feature extraction. The feature extraction method mentioned above is unable to 
adjust in accordance with the label of the image. If the feature selection is not representative of 
various categories, the model’s accuracy will inevitably deteriorate. During training, CNN can 
avoid such problems and is able to understand the relationship between learning features and 
various classification labels from large-scale image datasets. The performance of the 
convolutional layer in feature extraction is both accurate and fast. Therefore, CNN has gradually 
replaced the traditional image classification method to become the mainstream algorithm for 
image processing and also often for intelligent image recognition.(7)

 In recent years, self-driving car systems have become increasingly popular. The technology 
used to recognize objects on the road is also changing with each passing day.(8) Object 
recognition technology and semantic image segmentation are inseparable. Google’s open-source 
DeepLab is the premier deep learning model for semantic image segmentation. It has four 
stages: DeepLabv1, DeepLabv2, DeepLabv3, and DeepLabv3+. The introduction of commonly 
used encoder decoders for semantic segmentation under these architectures is efficient and 
straightforward, leading to the improvement of the segmentation result.(9)

 There are also shortcomings in DeepLab’s use of semantic image segmentation. When the 
color and texture of the object in the image and the background are similar, it will significantly 
impact the cut-out of the mask and recognition results, and the overall effect will become poor. 
 To improve the image segmentation issues of objects in a similar fusion background, we 
design a new preprocessing method to segment the image. The image is preprocessed and then 
sent to the image segmentation process. Therefore, our method can be applied to any image 
segmentation method to fundamentally solve object fusion in the background and we apply the 
preprocessing system to DeepLab for inspection.
 We propose an image segmentation method based on similar fusion backgrounds in order to 
study images that are likely to cause errors in models that use convolutional layers for feature 
extraction. The main algorithm uses two CNN models for image processing. The PyNET model 
is utilized to separately enhance the features of the object and background in the image and 
overlap the enhanced image with the original image in accordance with a certain overlap weight. 
 The features of the original image and those of the enhanced images are handled 
simultaneously by overlapping the image. The convolutional layer allows an easy extraction of 
different features from the object and background. Therefore, the object will not be fused into 
the background and hence will not be ignored.
 To ensure that the final image segmentation will yield the best results, in this study, the 
image is segmented twice, that is, the approximate object shape is first cut out and then 
subdivided, and the object label is correctly classified. From the experimental results, the IoU 
score is determined and used as an indicator to evaluate the performance of the U-Net, DeepLab, 
and fully convolutional network (FCN) image segmentation models.
 Intersection over union (IoU) is a standard measure of the accuracy of the detection of 
corresponding objects in a specific dataset. It is a simple measurement standard as long as the 
task obtains a bounding box in the output that can be used for measurement.
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 The IoU value will be between 0 and 1. The value 0 means that the predicted position deviates 
entirely from the standard answer and does not even touch one edge. The value 1 means that the 
predicted position exactly matches the standard answer.
 Generally, the benchmark for the judgment of the recognition rate is an IOU value greater 
than or equal to 0.5.
 The research process and contributions are as follows.
• Use the architecture of the CNN model to enhance the features of the original image:
 Since the main reason for the object fusion background is that the object’s attributes are too 

similar to the background features, there is a severe cutting problem in the image 
segmentation.

• Evaluate the weights suitable for image segmentation: 
 The enhanced image will be overlapped with the original image. This overlapping image will 

have a different intensity depending on the weights of the two images. The adjustment of this 
weight is an essential factor in the success of image segmentation.

• Use the architecture of another CNN model to implement a mask to reduce the background 
influence: 

 Overlap the original with the enhanced feature image to produce a new image. This new 
image retains the original features but has enhanced features of the object and weaker 
features of the background. This overlapped image is fed into the model to generate a mask. 
The purpose of the mask is to delineate the overall shape of the object to reduce the influence 
of the background and then improve the result of the segmentation.

 The remainder of this paper is organized as follows. In Sect. 2, the research and methods for 
describing the research background and related algorithms are presented. In Sect. 3, the 
experiment results are analyzed, and image segmentation and recognition are discussed. Finally, 
the conclusions are presented in Sect. 4.

2. Research and Methods

 To better improve the perception accuracy and reliability of the self-driving vehicle, our 
method uses the image data obtained by the camera on the vehicle. It uses the trained vision 
algorithm to obtain the complete information of the target, such as a better identified dynamic 
target type, a more accurate judgement of the static interference target (e.g., guardrail and traffic 
sign), and enhanced perceived target recognition. This research is aimed primarily at 
discriminating similar fusion background images, and machine vision is one of the indispensable 
technologies for such a purpose.
 This work focuses on improving the performance of the existing CNN algorithm for images 
with similar fusion backgrounds. Such a framework should be effective in enhancing the 
attention model mechanism at different layers. It is expected that machine vision will approach 
or even exceed human vision capabilities. The workflow of related research is shown in Fig. 2.
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2.1 Related algorithms research 

 In Fig. 3, the development of image recognition is presented from left to right. In the 
beginning, the image was only classified, and the probability of identifying a single object in the 
image was relatively high. Next, the position of the object in the image was determined and 
isolated. Finally, each complex pixel corresponded to its relevant part. With a correct 
classification, the boundary of the object can be determined more accurately. As object 
recognition becomes increasingly accurate, the improvement of the recognition speed and the 
reduction in the number of hardware requirements become the goals of subsequent research. In 
this section, we briefly describe the mechanism and related algorithms, and explain image 
enhancement, segmentation, and test datasets.
 The You Only Look Once (YOLO) model developed by Redmon et al.(10) uses the entire 
image directly as the neural network input at each position of the image. The use of the regression 
method to identify the target’s boundary at this location and the category to which the target 
belongs markedly improves the overall recognition speed.
 Simonyan and Zisserman(11) improved the Visual Geometry Group (VGG) by using AlexNet. 
The algorithm utilizes continuous small, instead of large, convolution kernels. The advantage of 
small convolution kernels is that they can increase the depth of the neural network, thereby 
enhancing the learning effect while reducing the parameters, and the error rate in Top-5 
decreases to 7.3% (Top-N is described in the footnote under Table 1). Small convolution kernels 
also reduce problems such as vanishing gradient problems. However, the VGG architecture 
requires much memory and is time-consuming because of the excessive number of NN 
parameters. 
 The ResNet method skips the connection of the convolutional layer and calls it the residual.(12) 
Some of the input data do not go through the neural network and jump directly to the output. 
This method can prevent the vanishing gradient problem during backpropagation while retaining 
part of the original information. Therefore, the neural network can be made deeper without 
causing a decrease in accuracy. The depth of the neural network can reach 152 layers.
 In the Xception architecture, each channel performs completely independently using a 
separate spatial convolution kernel.(13) This approach reduces the coupling between different 
operations and can effectively utilize the existing computing performance.
 ResNeXt is based on the ResNet architecture, with each unit expanded horizontally.(14) 
Simultaneously, different convolution kernel structures extract different features and finally 
merge them. The ResNeXt structure can achieve a lighter-weight convolution kernel without 

Fig. 2. (Color online) Research workflow.
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increasing the complexity of the parameters and the same amount of calculation yields an 
improved prediction accuracy. The performance characteristics of the CNN algorithms 
mentioned above are compared. The main items to be compared are accuracy and calculation 
volume, as shown in Table 1.
 As seen from Table 1, the earliest VGG16 architecture is the largest and has the lowest 
accuracy. While reducing the parameters, the Inception v3 architecture also significantly 
increases the neural network depth and improves the accuracy.(15) ResNet50 is also a deep 
structure, and its accuracy is not reduced owing to the design of the residual network but is 
increased compared with the VGG16 architecture.(16) Xception is superior to the Inception 
architecture, showing improved overall accuracy with reduced neural network depth and 
parameters. InceptionResNet v2 is composed of Inception and ResNet architectures and exhibits 
the highest accuracy among the above architectures. Simultaneously, its neural network is the 
largest in terms of parameters, size, and depth. ResNeXt50 is composed of ResNet and Inception 
architectures. The overall performance is not outstanding, but it is better than that of the ResNet 
infrastructure.
 In this experiment, a vehicle-mounted camera with a GPU computing architecture is used to 
intercept and segment image data. The aim is to segment the unusual images observed from the 
vehicle. It is difficult to obtain the large number of unusual scene images needed to meet the 
required test image dataset quantity from the image data captured in the experiment. Hence, in 

Fig. 3. (Color online) Development and evolution of object recognition.

Table 1 
Performance characteristics of various CNN architectures. 
Model Top-1 accuracy Top-5 accuracy Parameters Size (MB) Depth
VGG16 0.713 0.901 138357544 528 23
Inception v3 0.779 0.937 23851784 92 159
ResNet50 0.749 0.921 25636712 98 —
Xception 0.790 0.945 22910480 88 126
InceptionResNet v2 0.803 0.953 55873736 215 572
ResNeXt50 0.777 0.938 25097128 96 —
Top-1 accuracy is the conventional accuracy: the model result (the one with the highest probability) must be exactly the 
expected answer.
Top-5 accuracy means that any of the five highest probability results of the model must match the expected answer.



Sensors and Materials, Vol. 34, No. 2 (2022) 473

this experiment, Oxford IIIT is used as the test dataset. It has more than 7000 pictures and 
contains various objects and similar background images. This dataset is sufficient for training.

2.2 Image enhancement 

 It is difficult to use image segmentation to separate images with similar fusion backgrounds. 
The image semantic segmentation often ignores the object as part of the background or combines 
it with the background, classifying it as an incorrect object label.(17) In this work, we expect to 
start from the original image to solve this problem of a fusion background at a fundamental 
level. Suppose we preprocess the original image. There is a specific gap feature between the 
object in the image and the background. That is, the object and background cannot be easily 
distinguished. If the convolutional layer can distinguish both when extracting features, the 
fusion background problem can be solved. In this section, we introduce image enhancement by 
calculation and image overlap.

2.2.1 PyNET

 The typical purpose of image signal processing (ISP) is to avoid low pixel values and blur. 
PyNET was developed to solve blurred images(14) by utilizing the pyramid-shaped CNN 
architecture designed for fine-grained image restoration. It includes ISP strategies such as 
demosaicing, denoising, white balance, color contrast correction, and color gray adjustment.
 The PyNET model is trained sequentially from the lowest fifth level to improve reconstruction 
at a lower image resolution.(18) The trained model can directly improve the image resolution. The 
overall PyNET model architecture is shown in Fig. 4.
 Levels 4 and 5 deal with images reduced by 8 and 16 times, respectively. Therefore, the two 
models correct global color and brightness, contrast, and gamma. Because these perceptual 
losses are not particularly obvious at this scale, the loss function used to train the model depends 
on the number of corresponding levels of the generated images divided by the level-to-scale 
proportion. The goal of this training is to minimize the mean square error (MSE).
 Levels 2 and 3 deal with images reduced by 2 and 4 times, respectively. They mainly deal 
with global contextual information. These two-layer models need to consider a variety of 
semantic information on the image to improve the image quality of the objects by considering 
various colors, shapes, and attributes. The perception of VGG and the MSE loss function are 
incorporated into combined training at a ratio of 4 to 1.
 The image processed at Level 1 gives the original ratio. After training, local image correction 
can enhance the object’s texture, noise, and local processing color. Each layer model will be 
trained simultaneously with the lower-level model to ensure a deeper connection between them.
 PyNET requires a long learning rate training time, especially at high-resolution levels. In this 
experiment, the model of each level is trained for 16 epochs. With the dataset of more than 7000 
real pictures, the learning rate of each layer starts from 5.0 × 10−5. The maximum learning rate 
at the beginning of training using 1500 real pictures is 3.0 × 10−4. It gradually decays to 1.0 × 
10−6 until the end of the training, as shown in Fig. 5.
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2.2.2 Image overlap

 We use the Level 1 PyNET model to generate images with enhanced features. If PNG files 
are enhanced by PyNET, the enhanced images will be biased, which is unsuitable for direct 
image segmentation. Therefore, here, we carry out extra processing on the enhanced image.
 As shown in Fig. 6, the enhanced image is not the actual target result, but the generation of 
enhanced images by the PyNET model cannot be definitively denied. The image is indeed 
enhanced.
 In this case, both the original image color and the enhanced image are combined, and the 
convolutional layer is used to extract the features of the overlapping image. Such images with 
similar fusion degrees of the background can be enhanced to a certain extent.

Fig. 5. (Color online) Learning rate for training PyNET. 

 Fig. 4. (Color online) PyNET architecture.(18)
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 The algorithm for the overlap of the original and enhanced images is shown as 

 overlapping (xi, yj) = saturated (Image1(xi, yj) · α + Image2(xi, yj) · β + γ). (2)

Here, α is the overlap weight of the original image, β is the overlap weight of the enhanced 
image, and γ is the pixel bias.
 The pixel (xi, yj)th of Image1 is multiplied by the overlap weight α, then the addition pixel (xi, yj)th 
of Image2 is multiplied by the overlap weight β.
 Since the sizes of the two images are the same, (xi, yj)th, the pixel coordinates of the object 
position will be the same, to which an offset value γ (bias) is finally added.
 It is found through experiments that γ will affect the brightness of the overall image. In order 
to avoid destroying the semantic meaning in the image, we set γ to 0. After the saturated function 
is calculated, this value may exceed 255 or be less than 0, so this function may need to be 
adjusted. The formulation is similar to that of the activation function used in the general CNN, 
as shown below. 

 ( )
255 if  255  

  if  0 255
0 if  0

pixel
saturated pixel pixel pixel

pixel

<
= < <
 <

 (3)

a. Limit pixel to between 0 and 255 to avoid the difficulty of the subsequent image 
segmentation.

b. Overlap the images and adjust the overlap weights α and β to produce many pixels with 
similar colors but without losing the goal of semantic image segmentation.

 The algorithm proposed in this paper is aimed at enabling image segmentation in similar 
fusion background images.

Fig. 6. (Color online) Comparison of the original and enhanced images.
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2.3 Image segmentation

 Perform the previous procedure, that is, image enhancement and image overlap, and then 
perform image segmentation. Produce a large number of overlapping images with both original 
colors and enhanced features. Process the original image using the PyNET model to obtain an 
enhanced image. Overlap the original and enhanced images in accordance with Eq. (2). After 
overlapping the images, use the image segmentation model to segment the images and observe 
whether the image enhancement method can improve similar fusion degree background images. 
The image segmentation models used in this research are FCN, U-Net, and DeepLab.(19)

2.3.1 Fully convolutional network

 We compare the segmentation mask performance, so the experiment is performed using the 
FCN architecture.(20) In the past, the classified network usually utilized a fully connected layer 
to convert the original two-dimensional feature map into a one-dimensional fixed-length feature 
vector. It loses spatial information and finally outputs a specific length vector representing the 
probability that the input image belongs to each category and uses this as the classification label. 
This process is called convolutionalization. Since each unit can perform input and output, the 
whole image is calculated layer by layer instead of batch by batch. Both the forward-propagation 
and back-propagation calculations are efficient, as shown in Fig. 7.

Fig. 7. (Color online) FCN architecture.
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2.3.2 U-Net

 The construction concept of the U-Net architecture is similar to that of the FCN architecture, 
as shown in Fig. 8.(17,21) Since the output result is an image, there is no fully connected layer. 
This algorithm uses a small amount of data for training to obtain accurate segmentation results. 
The first half of U-Net performs convolution and pooling down-sampling, and the excitation 
function uses the ReLu function. This process is the extraction of features in the image, while 
the second half of U-Net performs convolution and up-sampling. The up-sampling method uses 
deconvolution. The result will be much better than that of the bilinear interpolation method used 
by the FCN model mentioned above. This improved method solves the dilemma that the original 
FCN must sacrifice some resolution to obtain more spatial information. U-Net’s up-sampling 
still retains many feature channels, but the disadvantage is that its consumption of computational 
resources is high. The image segmentation model adopted in this research is constructed on the 
basis of the U-Net model architectural concept. The selection of the U-Net model architecture 
can lead to good results with training using only a few datasets. With this model, the Oxford IIIT 
Pet dataset was used. For all images, the region of interest (ROI) and the entire image 
segmentation result are considered. This means that images of not only pets can be segmented 
and that this U-Net architecture can be applied to different types of images. The parameters of 
the U-Net model formed for this study are presented in Table 2.
 After the overlapped image segmentation by this U-Net model, the generated prediction 
segmentation mask contains two labels: object border and object content. One purpose of this 
study is to process this segmentation image. First, the two types of labels and the background are 

Fig. 8. (Color online) U-Net down-sampling and up-sampling architecture.(21)
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binarized, leaving only the object’s overall shape. Then, the mask appearance is fine-tuned by 
corrosion and expansion to remove some misjudgments caused by noise. In this way, the 
processed mask can be placed in the original image to complete the background removal 
process. Next, the background interference is reduced and the objects in the image are more 
clearly highlighted. This process cleverly eliminates images with similar fusion backgrounds.

2.3.3 DeepLab

 Among the image segmentation models, the semantic segmentation results often have some 
problems. There are two main reasons. The first half of the model is for feature extraction where 
extensive pooling is continuously performed. This process inevitably leads to the loss of a large 
amount of spatial information. The second reason is that the label is not sensitive to space, and 
the predicted pixel label is not processed further.
 For DeepLab (from DeepLabv1 to DeepLav2, DeepLabv3, and DeepLabv3+), targeted 
improvements have been proposed for these two points.(22)

 DeepLabv3+ is the latest architecture of the DeepLab series.(23) It is the commonly used 
encoder/decoder architecture for semantic segmentation. When using DeepLabv3+ as an 
encoder, adding a simple and effective decoder module can improve the segmentation effect at 
the object’s edge. The overall architecture is shown in Fig. 9.

2.3.4 Test dataset

  It is impossible to obtain many image sets that meet the background type of similar fusion 
degree from the images obtained from a regular driving vehicle. The images in this study are 
mainly based on the Oxford IIIT Pet dataset. They are suitable for the segmentation of images 
with similar fusion background images. The test dataset used in this study contains three 
categories, and each category may cause similar fusion background problems.

Table 2
U-Net model parameter settings.
Input Kernel Stride Operation Output
128 × 128 × 3 3 × 3 2 × 2 Convolution 64 × 64 × 96
64 × 64 × 96 3 × 3 2 × 2 Convolution 32 × 32 × 144
32 × 32 × 144 3 × 3 2 × 2 Convolution 16 × 16 × 192
16 × 16 × 192 3 × 3 2 × 2 Convolution 8 × 88576
8 × 8 × 576 3 × 3 2 × 2 Convolution 4 × 4 × 420
4 × 4 × 320 3 × 3 2 × 2 Up-sampling 8 × 8 × 512
8 × 8 × 512, 8 × 8 × 8576 — — Concatenation 8 × 8 × 1088
8 × 8 × 108 3 × 3 2 × 2 Up-sampling 16 × 16 × 256
16 × 16 × 256, 16 × 16 × 192 — — Concatenation 16 × 16 × 448
16 × 16 × 448 3 × 3 2 × 2 Up-sampling 32 × 32 × 128
32 × 32 × 128, 32 × 32 × 144 — — Concatenation 32 × 32272
32 × 32 × 272 3 × 3 2 × 2 Up-sampling 64 × 64 × 64
64 × 64 × 64, 64 × 64 × 96 — — Concatenation 64 × 64 × 160
64 × 64 × 160 3 × 3 2 × 2 Up-sampling 128 × 128 × 3
Concatenation: An essential operation of U-Net is concatenation to combine the downward path with the upward path. In 
this way, the net can learn classification and positioning by an end-to-end training method.
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i. Crypsis
 Crypsis refers to the color and texture of the object in the image being similar to those of the 
background. In traditional image segmentation models, such objects in the image are usually 
merged with the background during the convolution process, resulting in an incorrect final 
segmentation result. Even the subsequent semantic labels will be erroneous. 
 As shown in Fig. 10, the DeepLab model ignores the cat in the image, merges the cat and the 
background together, and identifies the object as a cow.
ii.	 Camouflage
 Since camouflage will blur the border between the object and the background, we also make 
images with similar fusion backgrounds one of our research targets.
iii. Mimicry
 Mimicry refers to the characteristic that a particular species acquires similar characteristics 
to another species through evolution. There are many strategies for organisms to have hidden 
effects, such as a body color identical to the background color of the habitat. Images with such 
specious effects can also cause image segmentation errors. For example, the appearance of a 
stick insect is just like a branch. In image segmentation, it is difficult to separate the stick insect 
from the category of its vicinity. It may also lead to the misclassification of semantic labels. 

Fig. 9. (Color online) DeepLabv3+ architecture. 

Fig. 10. (Color online) Segmentation of image with similar fusion degree background.
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Figure 11 shows the test dataset images of the above three categories.
 We used the image overlap method mentioned in Sect. 2.2.2. Refer to Eq. (2). for its 
operational method. By adjusting the original image overlap weight α and the enhanced image 
overlap weight β, the first image of the protective color can be expanded to 1000 images. For 
other images, only the enhanced image overlap weight β is adjusted and expanded to 100 images. 
There are 1500 images in the total dataset for the image segmentation test. Each test image will 
be cut manually to obtain the object’s actual shape as reference. After the model segmentation of 
the original image, the IoU scores of the prediction and reference results will be calculated as the 
evaluation standards. In addition, these α and β values are not fixed and can depend on the test 
dataset and the time available for calculation.

3. Experiments and Analysis

 In this section, we introduce the experimental design and the expected results of image 
segmentation and segmentation recognition experiments. Then, we analyze and discuss the 
experimental results.

3.1 Experimental method

3.1.1 Image segmentation

 The first step is to generate an enhanced image, as shown in Fig. 12. The original image uses 
PyNET to enhance its features. Then, the original and enhanced images are overlapped, as 
shown in Fig. 13. A large number of background images with similar fusion degrees are 
generated using different overlap weights. Finally, these images are input to the U-Net, DeepLab, 
and FCN models and segmented. The scores obtained from the images with different overlapping 
weights are compared.(24,25)

Fig. 11. (Color online) Test dataset.
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3.1.2 Segmentation and recognition

 The mask generated by the algorithm designed in this study is applied to the original image. 
DeepLab is then used for image segmentation to test whether the results obtained with the 
algorithm can be expected to improve the segmentation and classification results of similar 
fusion background images.
 The features of the original image are enhanced by PyNET and then the original image is 
overlapped with the enhanced image. A large number of plausible background images with 
similar fusion degrees are generated using different overlapping weights. The difference from 
the segmentation image experiment is that the result generated by U-Net is trimmed and overlaid 
on the original image. The purpose is to cut out the necessary background to reduce the impact 
of noise on image segmentation. Finally, the DeepLab image segmentation result is obtained.

Fig. 12. (Color online) Flow of experiment 1.

Fig. 13. (Color online) Flow of experimental 2.
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3.2 Results of experiments

3.2.1 Image segmentation 

 Below we present the results of the image segmentation comparison experiment. The 
following three image segmentation models are used: U-Net, DeepLab, and FCN. These 
segmentation images are generated by adjusting the overlap weights of the original and enhanced 
images. The resulting image has a fixed overlap weight of the original image and only the 
overlap weight of the enhanced image is adjusted. The results are plotted in Figs. 14–18, with the 
overlapping weight on the horizontal axis and the IoU score on the vertical axis. 
 We used six original images of similar fusion backgrounds in the experiment, two each for 
crypsis, camouflage, and mimicry. The results are explained as follows. An image with a similar 
fusion degree background, crypsis image 1, is shown in Fig. 19.
 The results of experiment 1 in Figs. 14–18 show that the image segmentation results of U-Net 
are significantly better than those of DeepLab and FCN. From the experimental results in Fig. 

Fig. 14. (Color online) Experiment 1:  IoU scores of overlapped image when original image overlapping weights (α) 
were (a) 1 and (b) 0.9.

(a) (b)

Fig. 15. (Color online) Experiment 1: IoU scores of overlapped image when original image overlapping weights (α) 
were (a) 0.8 and (b) 0.7.

(a) (b)
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(a) (b)
Fig. 16. (Color online) Experiment 1: IoU scores of overlapped image when original image overlapping weights (α) 
were (a) 0.6 and (b) 0.5.

(a) (b)
Fig. 17. (Color online) Experiment 1: IoU scores of overlapped image when original image overlapping weights (α) 
were (a) 0.4 and (b) 0.3.

(a) (b)
Fig. 18. (Color online) Experiment 1: IoU scores of overlapped image when original image overlapping weights (α) 
were (a) 0.2 and (b) 0.1.

18(b), it is seen that with the original image overlap weight of 0.1, the IoU score curves of U-Net, 
DeepLab, and FCN cross. Both DeepLab and FCN scores are the lowest. This result indicates 
that the all-image segmentation effect of this image is poor. FCN limits the size of the sensing 
area to that of the pixel block. In this way, only some local features can be extracted, which 
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limits the performance of classification. DeepLab needs a more extensive and more profound 
deep CNN to achieve good segmentation performance.
 From Table 3, we see that when the original image overlap weight (original weight) is 1, the 
U-Net enhanced image overlap weight is 0.6 and the obtained IoU score of 0.6696 is the highest. 
When retaining many original image features, the IoU score will be higher when the enhanced 
image overlap weight is between 0.5 and 0.8. As the original image overlap weight decreases, the 
IoU score will also become lower. We conclude that it is preferable to retain the color 
characteristics of the original image for overlapping images to yield a better segmentation result. 
 Another image with a similar fusion degree background, crypsis image 2, is shown in Fig. 
20(a). The original image overlap weight is constant at 1, and only the enhanced image overlap 
weight is adjusted. The IoU score after image segmentation model cutting is shown in Fig. 20(b). 
As the overlap weight of the original image decreases, the IoU score becomes lower. The result 
shows that the color characteristics of the original image are preserved in the overlapped image. 
This will lead to better segmentation results. From the results of using different original overlap 
weights, the U-Net model is found to have the highest IoU score, which is much higher than 
those of the DeepLab and FCN models.
 Figure 21(a) shows camouflage image 1. The original image overlap weight is constant at 1, 
and only the enhanced image overlap weight is adjusted. The IoU scores obtained after image 
segmentation model cutting are shown in Fig. 21(b). The experimental results show that in terms 
of IoU score, the performance of the U-Net model far exceeds that of the DeepLab model.

Fig. 19. (Color online) Crypsis image 1 used in experiment 1.

Table 3
Performance of image segmentation models as indicated by IoU score.
Original 
weight IoU U-Net 

overlapping IoU DeepLab 
overlapping IoU FCN 

overlapping
1 0.6696 0.60 0.4566 0.24 0.4391 0.08
0.9 0.6647 0.49 0.4674 0.31 0.4115 0.07
0.8 0.6607 0.64 0.4197 0.06 0.4800 0.07
0.7 0.6545 0.79 0.4768 0.06 0.3586 0.43
0.6 0.6496 0.74 0.4911 0.05 0.4122 0.06
0.5 0.5873 0.12 0.4451 0.04 0.3037 0.29
0.4 0.5920 0.08 0.4681 0.04 0.4579 0.05
0.3 0.5974 0.04 0.4517 0.01 0.3796 0.01
0.2 0.5308 0.09 0.2882 0.00 0.1832 0.00
0.1 0.1796 0.05 0.0726 0.01 0.0385 0.02
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 Figure 22(a) shows camouflage image 2. The original image overlap weight is constant at 1, 
and only the enhanced image overlap weight is adjusted. IoU scores after image segmentation 
model cutting are shown in Fig. 22(b). It can be seen that when the enhanced images do not 
overlap in the initial stage, the DeepLab and FCN models perform better than the U-Net model. 

(a) (b)

Fig. 20. (Color online) (a) Crypsis image 2 used in experiment 1. (b) IoU scores for crypsis image 2 in experiment 1.

(a) (b)

 Fig. 21. (Color online) (a) Camouflage image 1 used in experiment 1. (b) IoU scores for camouflage image 1 in 
experiment 1

(a) (b)

Fig. 22. (Color online) (a) Camouflage image 2 used in experiment 1. (b) IoU scores for camouflage image 2 in 
experiment 1.
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However, as the overlap weight of the enhanced image increases, the IoU score of the U-Net 
model is generally higher than those of the DeepLab and FCN models.
 Figure 23(a) shows mimicry image 1. The original image overlap weight is constant at 1, and 
only the enhanced image overlap weight is adjusted. The IoU scores obtained after image 
segmentation model cutting are shown in Fig. 23(b). It can be seen that the IoU scores of the 
U-Net model exceed those of the DeepLab and FCN models. The difficulty in the segmentation 
of this image is that the lizard’s tail is easily overlooked, causing the score to decrease rapidly.
 Figure 24(a) shows mimicry image 2. The original image overlap weight is constant at 1, and 
only the enhanced image overlap weight is adjusted. The IoU scores obtained after image 
segmentation model cutting are shown in Fig. 24(b). It can be seen that the score curves cross 
each other multiple times. Therefore, the overlap weight of the enhanced image affects the result 
of the complete image segmentation.
 For the DeepLab model, the IoU score–enhanced image overlap weight curve crosses those 
of the other models multiple times. The U-Net model obtains the highest IoU score of 0.5579 
when the enhanced image overlap weight is 0.74, similar to the case of a weight of 0.77. It may be 
that the two images have a high degree of similarity.

(a) (b)

Fig. 23. (Color online) (a) Mimicry image 1 used in experiment 1. (b) IoU scores for mimicry image 1 in experiment 
1.

(a) (b)

Fig. 24. (a) (Color online) Mimicry image 2 used in experiment 1. (b) IoU scores for mimicry image 2 in experiment 
1.
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 Unlike mimicry image 1, this lizard’s head is awkward to process because of the light and 
shadow effect and is easily lost when distinguishing the boundary. Another difficulty in 
segmentation is that the lizard’s tail is easily overlooked, resulting in a rapid decline in score.
 Table 4 shows the best IoU scores of each model for each type of image, where only the 
enhanced image overlap weight was adjusted while keeping the original image overlap weight 
constant at 1.

3.2.2 Segmentation and recognition

 The test results of the image segmentation model presented in Sect. 3.2.1 are used to train the 
U-Net model to process the enhanced overlapping images to obtain the highest IoU score. 
Therefore, in this experiment 2, we continue to use the best segmentation result of the U-Net 
model obtained from experiment 1, then overlay the mask predicted by the model on the original 
image and perform image segmentation and recognition again with DeepLab. We use 
segmentation-twice methods to significantly reduce background interference in images with 
similar fusion backgrounds, improving the image segmentation results.
 In our work, the image segmentation results are divided into four parts.
• Input image: The input image is obtained by superposing the U-Net prediction mask onto the 

original image.
• Segmentation map: The segmentation map is the prediction mask used by DeepLab to 

segment the input image.
• Segmentation overlay: This is the result of overlaying the segmentation map on the input 

image and is used to evaluate the segmentation effect.
• Semantic label classified by DeepLab, shown on the far right of Figs. 25–30. 
 The image segmentation results for crypsis images 1 and 2 are shown in Figs. 25 and 26, 
respectively. As seen in Figs. 25 and 26, after the segmentation process using the U-Net model, 
the background interference in the image is reduced. The enhanced image method can indeed 
improve the segmentation of images with similar fusion backgrounds.
 The image segmentation results for camouflage images 1 and 2 are shown in Figs. 27 and 28, 
respectively. As seen in Figs. 27 and 28, the U-Net model cuts out the rough outline of a person. 
However, the DeepLab model cannot perform image segmentation for camouflage images 
because the object pixels are still too complex.

Table 4
Best IoU scores of each model for each type of image.

Original IoU U-Net 
overlapping IoU DeepLab 

overlapping IoU FCN 
overlapping

Crypsis-1 0.6696 0.60 0.4566 0.24 0.4391 0.08
Crypsis-2 0.6762 0.59 0.2768 0.92 0.3586 0.51
Camouflage-1 0.7650 0.60 0.4253 0.03 0.3443 0.02
Camouflage-2 0.5464 0.55 0.4615 0.00 0.4023 0.00
Mimicry-1 0.6537 0.77 0.5043 0.09 0.2323 0.20
Mimicry-2 0.5579 0.74 0.5564 0.31 0.3923 0.23
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Fig. 27. (Color online) Results of experiment 2 using camouflage image 1.

Fig. 28. (Color online) Results of experiment 2 using camouflage image 2.

Fig. 25. (Color online) Results of experiment 2 using crypsis image 1.

Fig. 26. (Color online) Results of experiment 2 using crypsis image 2.

 The image segmentation results for mimicry images 1 and 2 are shown in Figs. 29 and 30, 
respectively. As seen in Figs. 29 and 30, although the DeepLab model has segmented rough 
object outlines, the semantic label classifications are incorrect.
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4. Conclusions

 Self-driving vehicles have become a manifestation of the development of modern science and 
technology. We used lens-related sensors commonly utilized in automobiles to perceive the road 
environment. Then, path planning and object image segmentation decisions were performed, 
which are essential to improving autonomous driving safety and reliability.
 The primary purpose of our work is to achieve the segmentation of images with similar 
fusion backgrounds using a CNN hybrid model. Although most of the experiments are based on 
simulation, we have successfully strengthened the segmentation and classification of objects and 
backgrounds using mainstream image segmentation models. We utilized a multivariate method 
to verify the result. Therefore, our proposed method is not limited to the most commonly used 
data for autonomous driving and can be applied to improve the similarity and fusion of 
background images. 
• Strengthen the similarity and fusion degree of background image features and reduce 

background interference on object features.
• In mainstream image segmentation models, feature extraction is implemented using a 

convolutional layer. The convolutional layer design is unable to handle images with objects 
that are similar to background features. In maximum pooling, the object will be ignored 
because the object and background appear the same, which leads to an error in image 
segmentation. Therefore, if the features of the original image are enhanced so that the object 
and background features are significantly different, the convolutional layer can extract 
different features. To this end, adjust the overlap weights of the original and enhanced 
images.

Fig. 30. (Color online) Results of experiment 2 using mimicry image 2.

Fig. 29. (Color online) Results of experiment 2 using mimicry image 1.
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 The enhanced image may not be suitable for direct image segmentation because essential 
features such as the color and texture of the original image may have been destroyed. In order to 
avoid this problem, we overlap the original and enhanced images so that the overlapped image 
retains the characteristics of both the original and enhanced images at the same time. In this 
way, the problem of similar fusion backgrounds is alleviated. Moreover, by adjusting the overlap 
weight, it is also possible to amplify a sparse number of background images with similar fusion 
degrees and test the model more extensively. We found that when the original image overlap 
weight is maintained at 1 and the enhanced image overlap weight is set between 0.5 and 0.8, 
improved image segmentation results can be obtained.
• Use the U-Net model for the segmentation of overlapping images.
 As mentioned above, mainstream image segmentation models are unsuitable for the 
segmentation of images with similar fusion backgrounds. The same may be said of the 
segmentation of enhanced overlapping images. The experimental results showed that the U-Net 
model trained in this research has good IoU score in the segmentation of enhanced images. In 
order to obtain more scale features, the DeepLab model uses atrous convolution, which is not 
suitable for the segmentation of overlapping images. As a result, the overall IoU score of the 
DeepLab model is lower than that of the U-Net architecture. Image segmentation by the FCN 
model is still relatively rough and the overall performance is poor.
• The segmentation results re-do image segmentation.
 The accuracy of image segmentation results can be improved by overlaying the segmentation 
results of the U-Net model on the original image to greatly reduce the interference caused by the 
background. Since the effect is equivalent to the preprocessing of the original image, it can be 
applied to all image segmentation models. 
• Improved segmentation results of crypsis color images
 The method proposed in this study can better process the similarity and fusion of the 
background image of the crypsis color type, improving the image segmentation effect. The 
experimental results show that the DeepLab model can correctly segment the contours and 
classify the semantic labels of images with objects having protective coloring.
 Despite there being many image segmentation methods that can yield better results when 
processing experimental data, when dealing with complex and dynamic images, there are still 
some difficulties. In this section, we have summarized the existing challenges and future 
development trends in the field of vehicle image segmentation. 
 Although the U-Net model used in this study has achieved good results in segmenting 
overlapping images, the safety requirements for self-driving car applications are endless. 
Relevant research on improving the safety of self-driving cars must be continued.

References

 1 B. W. Abegaz and N. Shah: 2020 11th IEEE Annu. Ubiquitous Computing, Electronics & Mobile 
Communication Conf. (UEMCON) (2020) 0486. https://doi.org/10.1109/UEMCON51285.2020.9298141

 2 R. Battrawy, R. Schuster, O. Wasenmüller, Q. Rao, and D. Stricker: 2019 IEEE/RSJ IEEE Int. Conf. Intell. 
Robots Syst. (IROS) (2019) 7762. https://doi.org/10.1109/IROS40897.2019.8967739

 3 Y. Ping, J. Xinwei, and M. Yichao: 2008 IEEE Int. Conf. Serv. Oper. Logist. Inform. SOLI (2008) 1915. https://
doi.org/10.1109/SOLI.2008.4682844

https://doi.org/10.1109/UEMCON51285.2020.9298141
https://doi.org/10.1109/IROS40897.2019.8967739
https://doi.org/10.1109/SOLI.2008.4682844
https://doi.org/10.1109/SOLI.2008.4682844


Sensors and Materials, Vol. 34, No. 2 (2022) 491

 4 G. Sun and F. Zhang: IEEE Access 8 (2020) 117080. https://doi.org/10.1109/ACCESS.2020.3004860
 5 D. Kenjic, F. Baba, D. Samardzija, and Z. Kaprocki: 2019 IEEE 9th Int. Conf. Consum. Electron. (ICCE-

Berlin) (2019) 420. https://doi.org/10.1109/ICCE-Berlin47944.2019.8966136
 6 Y. Liu, M. Cheng, X. Hu, J. Bian, L. Zhang, X. Bai, and J. Tang: IEEE Trans. Pattern Anal. Mach. Intell. 41 

(2019) 1939. https://doi.org/10.1109/TPAMI.2018.2878849
 7 L. Khelifi and M. Mignotte: 2017 IEEE Int. Conf. Image Processing (ICIP) (2017) 3080. https://doi.org/10.1109/

ICIP.2017.8296849
 8 G. Muslu and B. Bolat: 2019 Scientific Meeting on Electrical-Electronics & Biomedical Engineering and 

Computer Science (EBBT) (2019) 1. https://doi.org/10.1109/EBBT.2019.8741541
 9 W. T. Chiu, C. H. Lin, C. L. Jhu, C. Lin, Y. C. Chen, M. J. Huang, and W. M. Liu: 2020 Int. Computer Symp. 

(ICS) (2020) 535. https://doi.org/10.1109/ICS51289.2020.00110
 10 J. Redmon, S. Divvala, R. Girshick, and A. Farhadi: 2016 IEEE Conf. Computer Vision and Pattern 

Recognition (CVPR) (2016) 779. https://doi.org/10.1109/CVPR.2016.91
 11 K. Simonyan and A. Zisserman: arXiv preprint arXiv:1409.1556 (2014). https://arxiv.org/abs/1409.1556
 12 K. He, X. Zhang, S. Ren, and J. Sun: Proc. IEEE Conf. Computer Vision and Pattern Recognition (2016) 770. 

https://arxiv.org/abs/1512.03385
 13 F. Chollet: 2017 IEEE Conf. Computer Vision and Pattern Recognition (CVPR) (2017) 1800. https://doi.

org/10.1109/CVPR.2017.195
 14 X. Yu, Z. Yu, and S. Ramalingam: 2018 IEEE/CVF Conf. Computer Vision and Pattern Recognition (2018) 

4432. https://doi.org/10.1109/CVPR.2018.00466
 15 A. Demir, F. Yilmaz, and O. Kose: 2019 Medical Technologies Congr. (TIPTEKNO) (2019) 1. https://doi.

org/10.1109/TIPTEKNO47231.2019.8972045
 16 X. Tian and C. Chen: 2019 IEEE 2nd Int. Conf. Information Communication and Signal Processing (ICICSP) 

(2019) 34. https://doi.org/10.1109/ICICSP48821.2019.8958555
 17 S. K. Panguluri and L. Mohan: 2021 Int. Conf. Computer Communication and Informatics (ICCCI) (2021) 1. 

https://doi.org/10.1109/ICCCI50826.2021.9402531
 18 A. Ignatov, L. V. Gool, and R. Timofte: 2020 IEEE/CVF Conf. Computer Vision and Pattern Recognition 

Workshops (CVPRW) (2020) 2275. https://doi.org/10.1109/CVPRW50498.2020.00276
 19 T. Carneiro, R. V. M. D. NóBrega, T. Nepomuceno, G. Bian, V. H. C. D. Albuquerque, and P. P. R. Filho: IEEE 

Access 6 (2018) 61677. https://doi.org/10.1109/ACCESS.2018.2874767
 20 C. Peng, Y. Li, L. Jiao, Y. Chen, and R. Shang: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 12 (2019) 2612. 

https://doi.org/10.1109/JSTARS.2019.2906387
 21 X. Gao and L. Fang: 2020 39th Chinese Control Conf. (CCC) (2020) 7090. https://doi.org/10.23919/

CCC50068.2020.9188804
 22 W. Xiao, L. Chang, and W. Liu: 2018 IEEE Int. Conf. Consumer Electronics-Taiwan (ICCE-TW) (2018) 1. 

https://doi.org/10.1109/ICCE-China.2018.8448568
 23 S. C. Yurtkulu, Y. H. Şahin, and G. Unal: 2019 27th Signal Processing and Communications Applications 

Conf. (SIU) (2019) 1. https://doi.org/10.1109/SIU.2019.8806244
 24 P. Isola, J. Zhu, T. Zhou, and A. A. Efros: 2017 IEEE Conf. Computer Vision and Pattern Recognition (CVPR) 

(2017) 5967. https://doi.org/10.1109/CVPR.2017.632
 25 G. Huang, Z. Liu, L. V. D. Maaten, and K. Q. Weinberger: 2017 IEEE Conf. Computer Vision and Pattern 

Recognition (CVPR) (2017) 2261. https://doi.org/10.1109/CVPR.2017.243

https://doi.org/10.1109/ACCESS.2020.3004860
https://doi.org/10.1109/ICCE-Berlin47944.2019.8966136
https://doi.org/10.1109/TPAMI.2018.2878849
https://doi.org/10.1109/ICIP.2017.8296849
https://doi.org/10.1109/ICIP.2017.8296849
https://doi.org/10.1109/EBBT.2019.8741541
https://doi.org/10.1109/ICS51289.2020.00110
https://doi.org/10.1109/CVPR.2016.91
https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1512.03385
https://doi.org/10.1109/CVPR.2017.195
https://doi.org/10.1109/CVPR.2017.195
https://doi.org/10.1109/CVPR.2018.00466
https://doi.org/10.1109/TIPTEKNO47231.2019.8972045
https://doi.org/10.1109/TIPTEKNO47231.2019.8972045
https://doi.org/10.1109/ICICSP48821.2019.8958555
https://doi.org/10.1109/ICCCI50826.2021.9402531
https://doi.org/10.1109/CVPRW50498.2020.00276
https://doi.org/10.1109/ACCESS.2018.2874767
https://doi.org/10.1109/JSTARS.2019.2906387
https://doi.org/10.23919/CCC50068.2020.9188804
https://doi.org/10.23919/CCC50068.2020.9188804
https://doi.org/10.1109/ICCE-China.2018.8448568
https://doi.org/10.1109/SIU.2019.8806244
https://doi.org/10.1109/CVPR.2017.632
https://doi.org/10.1109/CVPR.2017.243

