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 Under variable operation conditions, the fault diagnosis of rolling-element bearings 
encounters the problems of ambiguous characteristic frequencies and inconsistent disturbance 
features. Conventional diagnosis methods have adopted extra hardware or signal preprocessing 
to overcome these problems, which usually resulted in difficulties in implementation and 
incorrect diagnosis. Here, we propose a novel approach based on the strategy of extracting 
features that are insensitive to changes in operation conditions. This may have the advantages of 
preventing interference from signal resampling and preprocessing. First, we derive the bispectral  
expressions of vibration signals for rolling-element bearings in use. Next, we use simulated and 
measured experimental data detected by numerous fluid and vibration sensors to identify the 
proposed model. Finally, experiments on the fault diagnosis of bearings are performed to 
validate our proposed approach. Results show that the proposed bispectral distribution method 
has the advantage of insensitivity to the operation conditions. In experiments involving three 
levels of fault severity, our proposed diagnosis model always correctly identified the fault type of 
rolling-element bearings under different operating conditions. With the advantages of directly 
extracting the insensitive bispectral features without the requirement of additional hardware and 
signal preprocessing, our proposed approach is simple and easy to implement, giving it good 
application prospects in engineering practice. 

1. Introduction

 Rolling-element bearings are a crucial component in rotating machinery but are also prone to 
fail in use. Therefore, their fault diagnosis plays a significant role in the study of reliability and 
safety for rotating machinery.(1) Under fixed operation conditions, a traditional way to determine 
the bearing status is fault detection via the comparison of characteristic frequencies. However, 
when the operation conditions change, the performance of the fault detection method deteriorates 
owing to the feature inconsistency caused by rotation fluctuation.(2,3) Such a fault detection 
method is obviously no longer suitable under variable operation conditions. In rotating 
machinery, variable operation conditions are common. For example, for wind turbines and 
mining equipment, the operating speed constantly changes during working.(4) As indicated 
above, it is essential to find a suitable fault diagnosis method for bearings under variable 
operating conditions.
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 In the past, order tracking (OT) was a widely used method for bearing diagnosis in the case of 
a time-varying rotational speed.(5) OT acquires phase information using extra hardware and by 
resampling vibration signals in the angle domain. Through signal resampling, non-stationary 
signals with equal time intervals can be transformed into stationary signals with equal angular 
intervals. Hence, the variable fault frequencies that occur at different rotational speeds can also 
be transformed into constant fault frequencies, thereby overcoming spectrum smearing.(6) On 
the other hand, for rotating machinery, it is difficult and uneconomic to mount an auxiliary 
speed measurement device owing to the deterioration of the fluid working conditions and the 
complex mechanical structure.(7) To overcome this problem, the methodology of tacholess order 
tracking (TOT) was proposed, which can be used to obtain a rotating machine’s information 
from vibration signals while avoiding the difficulties in installing hardware.(8) 
 In the aforementioned OT and TOT methods, the accuracy of analysis results was 
significantly affected by speed variations and the use of interpolation techniques that were not 
easy to handle.(9,10) To avoid these problems, some researchers proposed specific methods, 
without considering signal resampling, to directly deal with fluctuations in rotational speed. One 
of these proposed methods that adopted signal resampling was to apply generalized demodulation 
to map the instantaneous frequency trajectory to a straight line parallel to the time axis, from 
which a frequency spectrum was obtained without resampling.(11) Another approach was to 
focus on methods of suppressing the speed fluctuation or rescaling the frequency axis because of 
the independence of the fault of a running bearing of its rotational speed.(12,13)

 Recently, some intelligent methods for the fault diagnosis of roller bearings under variable 
operation conditions have been developed to overcome the problems of disturbance inconsistency 
for characteristic frequencies, such as the diagnosis methods of OT, transfer learning (TL), and 
feature selection (FS).(14–18) In the OT diagnosis method, vibration signals are first resampled in 
the angle domain, and then the frequency-domain(14) or time-domain(15) features are extracted to 
train the diagnosis model. The TL diagnosis method utilizes techniques such as domain 
adaption,(16) fine-tuning modeling,(17) or deep learning (18) to transform information between 
different operating conditions, thus improving the model adaptability to various operation 
conditions. The FS diagnosis method employs the disturbance attribute projection(19) and 
singular value decomposition(20) to select important feature vectors to improve the model 
recognition ability.  
 To investigate the effects of variable operation conditions on the fault diagnosis of bearings, 
an additional signal preprocessing procedure is usually adopted to overcome the problems of 
frequency smearing and disturbance inconsistency. This procedure makes fault diagnosis 
devices difficult to mount and introduces the problems of limited accuracy,(9) improper 
parameters,(21) and reduced reliability of data transfer.(22) Therefore, in this study, to avoid extra 
data preprocessing, we propose a novel diagnosis method that can directly extract features that 
are insensitive to the variability of operation conditions. This should simplify the diagnosis 
method and allow a device to be easily mounted.
 Generally, the fault diagnosis of running bearings adopts a technique that extracts features 
from the time, frequency, or time-frequency domain. The time-domain features include 
dimensional and dimensionless ones. Dimensional features include mean value, standard 
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deviation, root mean square, and peak value, which are affected by the operation conditions. 
Dimensionless features include kurtosis, skewness, crest indicator, and clearance indicator. 
Many problems remain unsolved for time-domain features, such as how to optimally design an 
appropriate band-pass filter or select highly sensitive feature parameters.(23) Time-frequency-
domain features are normally viewed as non-stationary characteristic data and are not suitable 
for the diagnosis problems considered in this study because of their unsolved problems similar to 
those in the time domain. Therefore, in this study, we adopt frequency-domain features to 
analyze the status of running bearings, which can be used to filter Gaussian noise and understand 
a system’s nonlinear behavior.(24) 

 In the research field of fault diagnosis involving vibrations, the bispectral method is 
commonly used to analyze amplitude as well as frequency-modulated signals.(25) The bispectral 
method includes the frequency-shift bispectrum,(26) cyclic bispectral slice,(27) and bispectral 
distribution (BSD).(28) Among them, the BSD has outstanding fault identification performance. 
Previous studies revealed that the BSD method can eliminate Gaussian noise and extract feature 
parameters more effectively by combining it with autoregression(29) and singular value 
decomposition.(30) For these reasons, we propose a novel fault diagnosis method based on the 
BSD to extract the vibration as well as system-invariant characteristics of rolling-element 
bearings under variable operation conditions.(31)  

2. Derivation of Bispectrum for Rolling-element Bearing

2.1 Signal model of rolling-element bearing

 A rolling-element bearing consists of rolling elements between inner and outer metal rings. 
As the bearing rotates, a defect on the surface of a certain roller element will periodically strike 
the surfaces of other roller elements that it comes in contact with. This undesired striking will 
produce an impulse that excites resonance in the whole bearing system. The resultant output of 
the vibration signal, x(t), can be written as(32)

 0( ) ( ) ( )i i
i

x t A s t iT n tτ= − − +∑ , (1)

where Ai is the amplitude of the modulating factor, s(t) is the decaying oscillating component, 
n(t) is the additive background noise from other vibration effects, T0 is the repeated shock 
period, and τi is the minor random fluctuation time. 
 For simplification, it is assumed that the bearing vibration signal is expressed in the form of 
an oscillation wave related to the system decaying frequency.(32) As a result, the decaying 
vibration signal s(t) can be expressed as

 ( ) cos(2 )t
ns t e f tβ−= π , (2)
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where β and fn are the decay rate of the periodic shock and the resonance frequency of the 
bearing system, respectively.
 The amplitude modulating factor Ai can be written as

 0 cos(2 )i m nA A A f t ψ= + π + , (3)

where ψ is the angle of the load zone, fn is the bearing rotation frequency, and A0 and Am are the 
determining and alternating loads, respectively.
 By examining the dynamic behavior resulting from the structure of the rolling-element 
bearing during working, it can be intuitively assumed that the known β and fn are both related to 
the shock excitation locations. The fault diagnosis results can be expressed in terms of s(t), and 
the amplitude of the modulating factor Ai indicates the effect of the operation conditions. 

2.2 Bispectral expression of bearing vibration signal

 Let x(t) be a one-dimensional signal whose bispectrum is defined as(33)

 1 1 2 2
2 2 2

1 2 3 1 2 1 22
1( , ) lim ( , , )

w j f j f
xww

B f f c t e e d d dt
w

τ ττ τ τ τ
∞ ∞ − π − π

− −∞ −∞→∞
= ∫ ∫ ∫ , (4)

where c3x(t, τ1, τ2) is the third-order cumulant of x(t), expressed as
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Here, [ ]E   is the expectation operator. 
 For simplicity, we suppose that Ai in Eq. (3) is a periodic and delta-correlated point function, 
τi in Eq. (4) is a zero-mean delta-correlated point parameter, pτ(t) is a probability density 
function, and n(t) in Eq. (1) is a zero-mean stationary random function. We now substitute Eq. (1) 
into Eq. (5), then the third-order cumulant c3x(t, τ1, τ2) can be obtained as
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where iA  is the mathematical average of Ai and ( ) ( ) ( )s t s t p tτ= ∗  is the mathematical 
expectation of s(t). 
 Substituting Eq. (6) into Eq. (4), we can acquire the formula of the bispectrum for vibration 
signal x(t). The final form of B is derived as
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where A is the summation of iA . ( )S f , ( )S f , and ( )P fτ  are the Fourier transforms of ( )s t , ( )s t , 
and ( )p tτ , respectively. 
 Equation (7) shows that the BSD significantly depends on the properties of ( )S f , ( )S f , and 

( )P fτ , and the amplitude of the bispectrum depends on iA  and its mathematical expectation. 
From the above equations, it can be seen that the bispectra of vibration signals for bearings have 
the following features: The bispectra of different fault signals under different operating 
conditions are similar. In the above proposed signal models, the parameters β and fn are identical, 
and the probability density functions  of pτ(t) are similar for the same type of fault signal. When 
the operation conditions change, the oscillating decay component s(t), the mathematical average 
function ( )s t , and the probability density function pτ(t) do not apparently change with time. 
Similarly, the parameters ( )S f , ( )S f , and Pτ( f ) do not significantly change. In contrast, the 

amplitude parameters A , 2A , 3A , and 3
A  significantly change with the operation conditions. As 

a result, under different operation conditions, the BSDs of fault signals are reasonably similar, 
but their bispectral amplitudes change.
 The BSDs of the different fault signals are significantly different. In the aforementioned 
vibration signal model, the parameters β and fn change with the fault type; thus, the oscillating 
decay component s(t), the mathematical expectation ( )s t , and the corresponding Fourier 
transforms ( )S f  and ( )S f  also change, therefore resulting in different BSDs.



770 Sensors and Materials, Vol. 34, No. 2 (2022)

3. Fault Diagnosis of Running Rolling-element Bearings Under Different 
Operation Conditions 

3.1 Bispectra of simulated vibration signals

 To examine our proposed model, we design a series of specific simulation experiments that 
include two types of fault signals and two operation conditions. The related experimental 
parameters are listed in Table 1. Moreover, a white Gaussian noise with a signal-to-noise ratio 
(SNR) of −13 dB is added to represent the vibration disturbance from other components. The 
sampling frequency of the simulation signals is 500 Hz.
 In the bispectral analysis, we adopt a fragment of 1024 data points, which is divided into four 
sub-fragments. Each sub-fragment has 256 data points, and a total of 192 data points are set in 
every overlap region between two adjacent sub-fragments. To smooth the obtained data in the 
frequency domain, we use the Rao–Gabr window with a width of 5. The obtained bispectra of 
fault I under operation conditions I and II are respectively shown in Figs. 1(a) and 1(b), and the 
bispectrum of fault II under condition I is shown in Fig. 2.
 Here, the obtained bispectra for various fault cases correspond to the resonance characteristics 
of the roller-element bearings in use during the same fault. For fault I signals, a dual-frequency 
distribution of f1 = 90 Hz and f2 = 90 Hz clearly appears under both conditions I and II. Similarly, 
Fig. 2 shows that a dual-frequency distribution of f1 = 120 Hz and f2 = 120 Hz also appears for 

Table 1
Experimental parameters of simulated signals.

Bearing status Model parameters
A0 Am fr fn β

Condition I, fault I 1 1 1.5 90 1
Condition II, fault I 0.8 1.1 2 90 1
Condition I, fault II 1 1 1.5 120 3

Fig. 1. (Color online) Bispectra of simulated signals for fault I under operation conditions (a) I and (b) II.

(a) (b)
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fault II signals under condition I. These dual-frequency distributions for signals of faults I and II 
coincide with their corresponding resonance frequencies.
 Moreover, on one hand, it can be seen from Fig. 1 that the BSDs of operation conditions I and 
II are very similar. On the other hand, the BSD shown in Fig. 2 shows significant differences, not 
only in magnitude but also in pattern, from those in Figs. 1(a) and 1(b). This implies that, for the 
same fault signal, different operation conditions have little effect on the BSD. However, for 
different fault signals, the BSDs under different operation conditions have large differences.

3.2 Bispectra of measured vibration signals

 The experimental data of vibration signals for running rolling-element bearings were adopted 
from Case Western Reserve University Bearing Data Center. The experimental setup is shown 
in Fig. 3(a). The experimental test stand consists of an electric motor, several fluid sensors 
(including torque transducers and dynamometers), and a control unit. A 6205-2RS test bearing 
[Fig. 3(b)] is mounted on the drive end. To simulate the fault signals of a roller-element bearing, 
some corrosion pits with different diameters on the bearing surface are made via electro-
discharge machining and used to generate fault signals of vibration. An accelerometer is used as 
a vibration sensor, which is attached to the motor housing via a magnetic base. The vibration 
signals are collected via sensors at a sampling rate of 12000 per second via a 16-channel data 
recorder. The experiment involves four operation conditions, and the rotational speed and load of 
each condition are shown in Table 2.
 Figure 4 shows the bispectra of a defective bearing with a 0.007 inch corrosion pit under the 
action of four different applied loads. Figure 4(a) shows the BSD of a normal roller-element 
bearing without any surface defect or applied load (operation condition I), which exhibits an 
apparent dual-frequency distribution at about 1 kHz. This implies that the rolling-element 
bearing does not induce any oscillation and the detected vibration mainly originates from the 
resonance of the whole machine body. Figure 4(b) shows the BSD of a defective roller-element 
bearing with a corrosion pit on the ball surface without any applied load (operation condition I), 

Fig. 2. (Color online) Bispectrum of simulated signals for fault II under operation condition I.
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which is more complicated than that of a normal rolling-element bearing. This is because the 
defective rolling ball of the bearing scrapes its raceway while running, inducing resonance in the 
whole bearing system. When the defect is on the surface of the inner race, the effect of periodic 
scrapes seems to be larger than in the previous two cases. The resultant BSD is shown in Fig. 
4(c), which is the most complex among the four operation conditions. When the defect is on the 
surface of the outer race, it is found from Fig. 4(d) that the peak value of the bispectrum is also 

Table 2
Parameters of operation conditions.
Operation condition Load (hp) Rotational speed (r/min)
I 0 (0 W) 1797
II 1 (735 W) 1772
III 2 (1470 W) 1750
IV 3 (2205 W) 1730

Fig. 3. (Color online) Experiment setup. (a) Overall test rig. (b) Test bearing.(33) 

(a)

(b)
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the largest among all cases under consideration. This is because the defect is close to the sensor 
and may induce a larger mechanical oscillation.
 Figure 5 shows the BSDs of the bearing with the inner race defect under operation conditions 
II, III, and IV. Although the overall distribution patterns are very similar, they are slightly 
different in details including the position as well as the magnitude. In other words, once the 
defect type is fixed, applying different loads may only induce local variations of the BSDs of 
bearings while their overall patterns remain almost the same.
 In summary, for running rolling-element bearings, if their defect types are the same, then 
their BSDs of vibration are very similar for various operation conditions. In contrast, if their 
defect types are different, then their BSDs of vibration are markedly different, regardless of the 
operation condition. Therefore, we may conclude that BSDs can effectively reflect the vibration 
characteristics of running rolling-element bearings with or without defects. Thus, for the 
diagnosis of vibration problems of running rolling-element bearings, bispectral analysis exhibits  
the advantage of being insensitive to changes in operation conditions. This finding is a 

Fig. 4. (Color online) BSDs for four different defective rolling-element bearings under operation condition I. (a) 
Normal bearing without defect (normal state); (b) defective bearing with a 0.007 inch corrosion pit on the surface of 
a roller ball (ball fault); (c) defective bearing with a 0.007 inch corrosion pit on the surface of the inner race (inner 
race fault); (d) defective bearing with a 0.007 inch corrosion pit on the surface of the outer race (outer race fault).
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significant contribution toward applying bispectral analysis to the vibration diagnosis of 
problems of running rolling-element bearings under variable operation conditions.

4.	 Fault	 Diagnosis	 of	 Running	 Rolling-element	 Bearings	 for	 Different	 Fault	
Severities 

 To evaluate our proposed BSD analysis method in diagnosing the vibration of running 
rolling-element bearings, we design three groups of experiments based on the level of fault 
severity as follows. Group I: the defective bearing has a surface defect pit with a diameter of 
0.007 inch, Group II: the defective bearing has a surface defect pit with a diameter of 0.014 inch, 
and Group III: the defective bearing has a surface defect pit with a diameter of 0.021 inch. The 
bispectra are calculated from experimental data via Eqs. (1)–(7) in Sect. 2. Moreover, to 
optimally handle the obtained experimental data, we use the decision tree method(18) to classify 
the measured data and apply the fivefold cross-validation method(19) to validate the diagnosis 
results. 
 The results of the three groups of experiments show that (1) for Group I, the diagnostic results 
obtained using our proposed BSD method have an identification accuracy of 100% for the four 
different operation conditions; (2) for Groups II and III, the accuracy of identification results and 

Fig. 5. (Color online) BSDs of inner race fault under operation conditions (a) II, (b) III, and (c) IV.
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the standard deviations for the four operation conditions are satisfactory, as illustrated in Figs. 6 
and 7, respectively. In both figures, the notation Lt → Li indicates how the data are handled from 
training to testing, where Lt and Li represent the operation condition numbers of the training and 
testing data, respectively. 
 The above diagnosis results with high identification accuracy indicate that our proposed BSD 
method can effectively identify the fault types of rolling-element bearings under different 
operation conditions. The diagnosis results also indicate that the identification accuracy of 
bearings for Group I (0.007 inch corrosion pit) is higher than those for Group II (0.014 inch 
corrosion pit) and Group III (0.021 inch corrosion pit). The reason is that the impact energy 
appearing in a running rolling-element bearing with a slight defect for Group I is smaller than 

Fig. 6. (Color online) Identification accuracy of fault diagnosis for Group II under different operation conditions.

Fig. 7. (Color online) Identification accuracy of fault diagnosis for Group III under different operation conditions.



776 Sensors and Materials, Vol. 34, No. 2 (2022)

those for the other two groups (Groups II and III), whose bearings have larger defects, and thus 
the disturbance occurring in the signals with high impact energy reduces the diagnosis accuracy. 
On the basis of the above discussion, it is confirmed that, for running rolling-element bearings, 
our proposed BSD analysis method can extract optimal and simple vibration features from 
signals and therefore has good recognition accuracy.
 To further demonstrate the superiority of our proposed BSD analysis, we introduce five other 
commonly used methods for signal identification: the K-nearest neighbor (KNN) method,(30) 
linear discriminant analysis (LDA) method,(30) support vector machine (SVM) method,(34) 
random forest (RF) method,(35) and naive Bayes (NB) method.(36) Figure 8 shows the results of 
diagnosis using the above five identification methods for Group II (0.014 inch corrosion pit), 
1 4→ .  It can be seen that these five identification schemes all show good overall reliability and 
high recognition ability with an identification accuracy of nearly 100% for the normal state, ball 
fault, and outer race fault conditions. However, for the fault diagnosis of the inner race state, the 
identification accuracies of the KNN, LDA, SVM, RF, and NB methods are 90.7, 86.3, 90.6, 
94.1, and 90.6%, respectively, whereas our proposed BS method has an identification accuracy 
of 100%, about 1.11 times as accurate as the average of the other five schemes (90.46%). 

5. Conclusion 

 Regarding the fault diagnosis problem of running rolling-element bearings, previous 
frequently used methods cannot accurately recognize faults owing to the ambiguity originating 
from data sampling and processing procedures as well as the difficulty in dealing with time-
domain signals of vibration. However, our proposed BSD analysis method can effectively extract 
the inherent and invariant characteristics of running rolling-element bearings while avoiding the 

 Fig. 8. (Color online) Identification accuracy of fault diagnosis using KNN, LDA, SVM, RF, and NB methods for 
Group III under different operation conditions.
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interference occurring in the above situations. Through testing via a series of experiments, it has 
been demonstrated that the BSD of rolling-element bearings in use is negligibly affected by the 
variations in operation conditions, making it particularly suitable as a diagnosis method for 
determining the fault type of rolling-element bearings in use. Comparisons with the commonly 
used KNN, LDA, SVM, RF, and NB methods show that our proposed BSD method has the 
highest recognition ability. Furthermore, our proposed BSD method does not require any extra 
hardware or signal preprocessing procedure, and is simple and easy to implement. Overall, the 
proposed BSD method has excellent application potential in practical engineering diagnosis 
problems involving rolling-element bearings. 
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