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 In this study, an intelligent grinding parameter selection assistance system (IGPSAS) that can 
be used by operators for grinding was designed. In the data collection stage, an ESG-1020 
surface grinder and aluminum were used for grinding experiments. The proposed IGPSAS 
consists of two parts: a Taguchi-based convolutional neural network (TCNN) and a differential 
evolution algorithm. First, the proposed TCNN was used to establish a surface roughness 
prediction model. Then, the proposed differential evolution algorithm was used to determine the 
best processing parameters. To achieve better surface smoothness prediction capabilities in the 
CNN model, the Taguchi method was used to optimize the parameters of the network model 
architecture. The effect of each factor was analyzed, and a network with stable parameters was 
selected for machine processing. The performance of the proposed TCNN was verified 
experimentally. The mean average percentage error (MAPE) of the proposed TCNN’s surface 
roughness prediction in the measurement of a NewView 8300 optical surface profile was 
15.65%. In addition, the differential evolution algorithm was used to select the best processing 
parameters and perform actual processing. The MAPE of the surface roughness prediction of the 
proposed IGPSAS was experimentally determined to be 10.97%, demonstrating that the system 
effectively provides the user with the ability to operate the machine with the parameters set 
according to the desired processing quality.

1. Introduction

 Driven by Industry 4.0, Internet of Things and artificial intelligence applications are being 
widely employed in industrial manufacturing, and intelligent processing has become vital.(1,2) 
Surface roughness, which can directly affect product life, is frequently used as a quality 
evaluation standard. Many scholars have conducted experiments on optimizing process 
parameters to improve surface roughness, and many manufacturers now provide a user-friendly 
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interface to assist operators. However, process parameter setting still relies on the experience of 
the operator. An unsuitable process parameter can result in low product quality and long 
postprocessing time. With the development of precision machining technology, establishing a 
stable and highly accurate model has become vital. A model for optimizing target parameters 
can be established through several approaches, such as mathematical models, evolutionary 
algorithms, artificial neural networks (ANNs), and convolutional neural networks (CNNs). Wei 
et al.(3) used the fractal root mean square deviation parameter to establish a mathematical model 
for surface roughness and proposed a relationship between this factor and fractal root mean 
square deviation. Kumar et al.(4) used regression modeling to analyze the correlation between 
process parameters and surface roughness to determine the optimal process parameters. Baskar 
et al.(5) applied multiobjective functions to establish mathematical models and adopted the ant 
colony algorithm to optimize model parameters. Knowledge of the machines being modeled is 
required when using mathematical models, and ANNs can be an alternative method for 
establishing such modeling.
 Mitra and Ghivari(6) used an ANN model with various numbers of hidden-layer neurons and 
learning rates to develop an improved model architecture for grinding operations in a lead–zinc 
ore beneficiation plant. Sizemore et al.(7) established a surface roughness prediction model by 
adopting machine learning (ML) methods and ANN modeling.(7) The experimental results 
showed that the ANN model yielded smaller errors. Chen et al.(8) used an ANN model and linear 
regression models for their experiments. The ANN model was trained by inputs such as 
processing parameters, cutting force direction, and vibration force, and the output was surface 
roughness. The experimental results revealed that the ANN model fit the results better than 
linear regression models. The results of the aforementioned methods show that data-driven 
methods combined with ML can be employed to build models effectively. Moreover, many 
scholars(9-11) have proposed evolutionary algorithms to optimize their self-designed models, such 
as improved particle swarm optimization, the ant colony optimization algorithm, and the 
differential evolution (DE) algorithm. However, evolutionary algorithms require more iterations 
and longer computing times to adjust neural networks with many parameters. By contrast, 
backpropagation methods can adjust model parameters effectively and offer advantages of high 
learning accuracy, simple implementation, highly fitting nonlinear functions, and relatively 
stable training results.
 In industrial manufacturing, expert or decision-making systems(12) can provide suitable 
processing parameters and effectively improve processing quality and time. Lim and Chang(13) 

designed a predictive model that used an ML method to enable operators to evaluate the effects 
of processing parameters on surface roughness, thereby stabilizing product quality. However, 
these methods rely on high-precision predictive models; if the accuracy of the prediction model 
used is poor, the processing quality will be less than expected. In this study, to design a highly 
stable model structure, the design of experiment (DoE) method has been introduced.(14–18) 
Compared with relying on experience and trial and error for network architecture design, the 
DoE method provides improved stability and accuracy, and assists the operator to quickly and 
conveniently set the processing parameters.(19,20) In the present study, an intelligent grinding 
parameter assistance system (IGPSAS) was designed to provide suitable processing parameters 
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according to quality requirements. The IGPSAS mainly consists of two parts: (1) a Taguchi-
based CNN (TCNN) for surface roughness prediction and (2) a process parameter optimization 
system based on the DE algorithm. Through the IGPSAS, suitable processing parameters 
according to the surface roughness required by the operator can be attained.
 The rest of this article is organized as follows. In Sect. 2, the experimental equipment and 
arrangement are discussed. In Sect. 3, the developed IGPSAS is presented. The experimental 
results and discussion are detailed in Sect. 4. Finally, conclusions are presented in Sect. 5.

2. Experimental Arrangement

 The proposed IGPSAS was applied to a high-precision surface grinder, and a 3D optical 
profiler was used to measure surface roughness. The data acquired during grinding were used as 
the training data for the TCNN.

2.1 Surface grinder

 An ESG-1020 surface grinder (EQUIPTOP, Taiwan), which comprises a Syntec MA11 
controller, was used for the grinding experiments (Fig. 1 and Table 1). Details of the grinding 
wheel and cutting fluid are presented in Table 2.

2.2 Surface roughness measurement

 After performing the grinding experiments, the surface roughness of the workpieces was 
measured using a 3D optical profiler (NewView 8300, Zygo, UK; Fig. 2). This optical profiler 
has a wide measurement range, enabling the accurate measurement of the surface roughness. 
The profiler specifications are presented in Table 3.

Fig. 1. (Color online) ESG-1020 surface grinder 
used in the study.

Table 1
ESG-1020	surface	grinder	specifications.
Controller Syntec MA11
Workbench area (mm) 500 × 270
Workbench speed (M/
min) 5 to 25

Highest speed (mm/min) 1100/550
Wheel size (mm2) 250 × 31.75
Wheel speed (RPM) 12000



822 Sensors and Materials, Vol. 34, No. 2 (2022)

2.3 Experimental data acquisition

 To establish a high-precision predictive model, data corresponding to different grinding 
conditions were collected. Five cases, each corresponding to a different number of grinding 
wheels, were included for data collection. Eight hundred and eighty data were captured in total, 
including the processing parameters such as feed rate, grinding wheel speed, the cutting depth of 
rough machining, the cutting depth of finish machining, and cutting pitch. For model prediction, 
70 and 30% of the data were used as training and testing data, respectively.

3. IGPSAS

 The IGPSAS provides suitable process parameters according to the operator requirements. 
The IGPSAS process block diagram is shown in Fig. 3. The operator only needs to input 
information regarding the material, wheel type, and desired surface roughness (Ra), then the 
optimized processing parameters are generated by the IGPSAS. After grinding is completed, a 
3D optical profiler is used to verify the surface roughness.

Table 2
Specifications	of	consumables	used	in	processing.

Workpiece
Material Medium-carbon steel plate (S45C)

Size (mm2) 235 × 60
Manufacturing company China Steel Corporation

Wheel

Material Aluminum oxide
Model WA46, WA60, WA80, WA100, WA120

Size (mm3) 205 × 13 × 31.75
Manufacturing company KINIK

Cutting	fluid
Model B-Cool 9665

pH 9.5
Manufacturing company Blaser Swisslube

Fig.	2.	 (Color	online)	3D	optical	profiler	used	in	the	
study.

Table 3
3D	optical	profiler	specifications.
Model NewView™ 8300
Travel X/Y (mm) 150/150
Measurement array 
(pixel) 1024 × 1024

Field of view (mm) 0.04 to 16
Optical zoom 1.0×
Environment temperature 
(°C) 15–30
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 The architecture of the IGPSAS can be divided into two parts (Fig. 4): (1) the TCNN 
prediction model proposed in this study and (2) the DE algorithm for parameter optimization. In 
the prediction model, the feature extraction ability of the convolution operation was introduced 
to further improve the accuracy of the model. The Taguchi optimization technique was then 
applied to adjust a variety of model architectures, such as the number of convolution kernels, 
pooling methods, and the number of hidden-layer neurons. The effect of each factor was 
analyzed to select the most stable factor and establish the most robust TCNN architecture. After 
the model was established, a DE algorithm was employed to determine the optimal process 
parameters. Each process parameter was evaluated using the trained TCNN during evolution. 
Generally, when the predicted RA value meets an operator’s setting, the TCNN outputs the 
optimal process parameters. The TCNN prediction model and the DE algorithm are described in 
this section.

Fig. 3. (Color online) IGPSAS process block diagram.

Fig. 4. (Color online) Architecture of IGPSAS.
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3.1 TCNN

 CNNs(20–23) are widely used in various fields, such as image classification and sensor signal 
analysis. A CNN typically includes a convolutional layer, a pooling layer, and a fully connected 
layer. Feature extraction is performed in the convolutional layer, and feature extraction and 
parameter selection assistance are performed in the pooling layer. The fully connected layer 
comprises numerous neurons and simulates nonlinear functions. However, designing a good 
network architecture involves extensive experimentation and high time costs. By using the 
Taguchi experimental design method, the number of experiments can be reduced and the factors 
that affect the results of the experiment can be determined. The Taguchi method includes four 
steps: 1) defining the objective function, 2) selecting the orthogonal array based on the factors 
and levels, 3) conducting the experiments, and 4) analyzing the experimental results. The 
Taguchi method uses the signal-to-noise (S/N) ratio to determine the optimal parameters by 
observing the interactions between various factors. In this study, the convolution kernels, 
pooling methods, and the number of hidden-layer neurons were considered influential factors. 
Each factor was divided into four levels, as listed in Table 4. The L16(45) orthogonal array given 
in Table 5 was selected for setting the parameters. The Taguchi method reduced the number of 
experiments from 256 (44) to 16 (42) times.

3.2 Process parameter optimization using DE algorithm

 Evolutionary algorithms emulate the survival and competition strategies of animals to solve 
scientific and engineering problems optimally. Among them, the DE algorithm offers advantages 
of a simple structure, relatively few parameters, and good performance in various applications. 

Table 4
List of factors and levels used in the Taguchi method.

Factor Level
1 2 3 4

A A1 A2 A3 A4
B B1 B2 B3 B4
C C1 C2 C3 C4
D D1 D2 D3 D4

Table 5
L16(45) orthogonal array.

Experiment Factor
1 2 3 4

1 1 1 1 1
2 1 2 2 2
3 1 3 3 3
4 1 4 4 4
5 2 1 2 3
6 2 2 1 4
7 2 3 4 1
8 2 4 3 2
9 3 1 3 4

10 3 2 4 3
11 3 3 1 2
12 3 4 2 1
13 4 1 4 2
14 4 2 3 1
15 4 3 2 4
16 4 4 1 3
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Therefore, the DE algorithm was implemented in the IGPSAS to optimize the process 
parameters. The steps of the DE algorithm are detailed as follows.
• Initialization
 The parameters of the DE algorithm were set and the target vector (T) of its solution space 
was initialized randomly. The equation is presented as

 ,1 ,2 ,, , , ,  1,2, , ,i i i i DT T T T i NP = … = …   (1)

where NP denotes the population size and D is the input dimension.
• Mutation
 Three target vectors were randomly selected from the solution space, namely, ( )
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where ( )0,1rand  is a random variable in the range of 0–1. ( ) ( ) ( ) ( )1 1 1 1
,,1 ,2 , , , G G G G

i i Di iN N N N+ + + + =   
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• Selection
 The prediction model was evaluated using the fitness function. T and N were input into the 
model; if the fitness value of N was better than that of T, then T was replaced by N; otherwise, T 
was retained until the next iteration. The selection equation and fitness function are presented as 
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 ( )    ( ) ,Fit X SetSR Model X= −  (5)
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where SetSR represents the target surface roughness predefined by the operator and Model(X) 
stands for the surface roughness predicted by the TCNN. The fitness function retains the 
minimal result of two differences.

4. Experimental Results and Discussion

4.1 TCNN architecture analysis of variance

 Tables 6 and 7 respectively show the parameter setting and the results obtained upon inserting 
the influential factors of the CNN based on Tables 4 and 5. Different CNN architectures were 
trained; four evaluation functions, namely, mean squared error (MSE), root mean squared error 
(RMSE), mean absolute error (MAE), and MAPE were applied in the study. These evaluation 
functions are defined in Eqs. (6)–(9). The experimental results are shown in Table 8. In addition, 
the analysis of variance was performed. The goal of the model is to predict the surface roughness 
closest to the operator’s setting; therefore, the smaller the S/N ratio, the better the prediction. 
The S/N ratio equation is shown as Eq. (10).

Table 6
Model parameters and their levels.

Influential	factor Level
1 2 3 4

Convolution Number	of	filters	(A) 16 24 32 40
Kernel size (B) 2 3 4 5

Pooling Pooling type (C) Average Max Average
(Channel)

Max 
(Channel)

Hidden layer Number of neurons (D) 20 25 30 35

Table 7
L16(45) orthogonal array.

Experiment Factor
1 2 3 4

1 16 2 Average 20
2 16 3 Max 25
3 16 4 Average (Channel) 30
4 16 5 Max (Channel) 35
5 24 2 Max 30
6 24 3 Average 35
7 24 4 Max (Channel) 20
8 24 5 Average (Channel) 25
9 32 2 Average (Channel) 35

10 32 3 Max (Channel) 30
11 32 4 Average 25
12 32 5 Max 20
13 40 2 Max (Channel) 25
14 40 3 Average (Channel) 20
15 40 4 Max 35
16 40 5 Average 30
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 As shown in Table 9 and Fig. 5, the most significant factor affecting the accuracy of the 
model was the size of the convolution kernel, followed by the pooling method, the number of 
hidden-layer neurons, and the number of convolution kernels. The best performance of the 
TCNN was achieved using 16 convolution kernels with a size of 5, 25 hidden layers and average 

Table 8
Error and S/N ratios of TCNN.

Experiment
Evaluation functions

MSE RMSE MAE S/N ratio Standard  
deviation Mean

1 0.006111 0.078174 0.043420 25.722036 0.036039 0.042568
2 0.001197 0.034488 0.018890 32.874371 0.016657 0.018192
3 0.000518 0.022663 0.012621 36.490011 0.011088 0.011934
4 0.000500 0.022362 0.012279 36.634964 0.010942 0.011714
5 0.005500 0.074162 0.041771 26.152873 0.034349 0.040478
6 0.004756 0.068963 0.037079 26.880113 0.032104 0.036933
7 0.000539 0.023098 0.013114 36.284488 0.011304 0.012251
8 0.000421 0.020477 0.011406 37.370717 0.010043 0.010768
9 0.005897 0.076787 0.044329 25.797082 0.035487 0.042338

10 0.004739 0.068839 0.037599 26.864878 0.032053 0.037059
11 0.000483 0.021960 0.012419 36.731651 0.010761 0.011621
12 0.000552 0.023422 0.013272 36.167501 0.011459 0.012416
13 0.006097 0.078085 0.045798 25.616193 0.036057 0.043327
14 0.004719 0.068691 0.036207 26.952472 0.031987 0.036539
15 0.000501 0.022238 0.012205 36.683965 0.010879 0.011648
16 0.000382 0.019464 0.011266 37.730323 0.009573 0.010371
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pooling (Fig. 5). The performance of the model is shown in Table 10 and Fig. 6, and the details of 
the TCNN architecture are presented in Table 11. As shown in Table 10, the experimental results 
of the ANN and DNN methods without a convolution operation have an MAPE higher than 
25%, which means that the accuracy of the established prediction model is insufficient. The 
MAPE of 1DCNN with the convolution operation is 18.97%. This means that the convolution 
operation can effectively perform feature extraction and improve the accuracy of the model. On 
the other hand, the proposed TCNN using the Taguchi method can effectively decrease the 
MAPE from 18.97 to 15.65%, showing that the Taguchi method optimized the model 
architecture.

Table 10
Original and robust model error comparison.
Model architecture MSE RMSE MAE MAPE (%)
ANN(7) 0.009723 0.098609 0.052348 33.02
DNN(8) 0.008232 0.090732 0.045764 28.28
1DCNN 0.001213 0.034825 0.025672 18.97
TCNN 0.000590 0.024298 0.018698 15.65

Table 9
Response table for S/N ratios.
Level A B C D
1 32.93 25.82 31.77 31.28
2 31.67 28.39 32.97 33.15
3 31.39 36.55 31.65 31.81
4 31.75 36.98 31.35 31.5
Delta 1.54 11.15 1.62 1.87
Rank 4 1 3 2

Fig. 5. (Color online) Plot of S/N ratios.
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Fig. 6. (Color online) Performance of testing data. (a) ANN, (b) DNN, (c) 1DCNN, (d) TCNN, (e) error of ANN, 
(f) error of DNN, (g) error of 1DCNN, and (h) error of TCNN.
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4.2 Process parameter optimization

 In this study, the DE algorithm was used to select the appropriate processing parameters for 
the operators. Table 12 shows the parameters of the DE algorithm, namely, population size (NP), 
mutation factor (F), crossover rate (CR), and the number of generations. The ranges of the 
process parameters, which are based on the physical limitations of the grinding machine and 
material properties, are listed in Table 13. The DE algorithm evolved within the ranges shown in 
Table 13 to generate the optimal process parameters.
 Twelve surface roughness values between 0.2 and 0.5 µm were set by the operator for model 
verification. The IGPSAS generated the suggested processing parameters and a grinding 
machine was used to conduct the experiments. The experimental results are shown in Fig. 7 and 
Table 14; the MSE, RMSE, MAE, and MAPE were used to evaluate the performance of the 
model. The experimental results also confirmed that the IGPSAS can effectively provide the 
correct processing parameters to operators, and the MAPE was 10.97%, indicating that the 
TCNN proposed in this study achieves high accuracy in surface roughness prediction.

Table 12
Initial parameters of DE.

Population size (NP) Mutation factor (F) Crossover rate (CR) Number of generations
20 0.5 0.5 300

Table 13
Processing parameter limits.
Suggested limits Lower Upper
Rotation speed (RPM) 2000 3500
Feed rate (M/min) 2 18
Roughing process depth (µm) 10 20
Finishing process depth (µm) 1 10
Cutting pitch (µm) 1 4

Table 11
Final TCNN architecture.
Layer Size
Input 1 × 6
Conv1 (Size, Channel) 1 × 5, 24
Conv2 (Size, Channel) 1 × 5, 24
Average pooling 1 × 2
Fully connected 1 × 25
Output 1
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(a) (b)

Fig. 7. (Color online) Experimental results of processing: (a) prediction and actual (b) error.

Table 14
Prediction results of proposed IGPSAS.
No. Target Ra Actual Ra MSE RMSE MAE MAPE (%)

1 0.211 0.152

0.001881 0.043374 0.0345 10.97

2 0.223 0.249
3 0.242 0.220
4 0.273 0.282
5 0.298 0.368
6 0.329 0.324
7 0.342 0.365
8 0.360 0.370
9 0.371 0.321

10 0.408 0.368
11 0.453 0.363
12 0.502 0.492

5. Conclusions

 In this study, we found that the processing parameters affect the product quality during 
grinding. The conventional processing parameter setting method relies on either the operator’s 
experience or the machine manufacturer’s default settings and may result in low-quality 
products. Therefore, the IGPSAS described herein was proposed to improve the product quality 
and achieve operational flexibility, thereby decreasing the operational difficulties associated 
with grinding. The IGPSAS, which provides the process parameters as per the needs of the 
operator, employed the TCNN to establish the corresponding model of processing parameters 
and surface smoothness. The TCNN was optimized using the Taguchi method through 
experiments to establish a better model architecture. Moreover, a DE algorithm was introduced 
to determine the best process parameters to provide operators with well-defined process 
parameters. To verify the performance of the proposed IGPSAS, a practical grinding process 
was performed and validation data were acquired using an optical profiler. The experimental 
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results achieved a 10.97% MAPE for surface roughness, thus confirming that the proposed 
system can effectively assist operators in obtaining process parameters according to the desired 
surface roughness. 
 Only 880 data were captured in this study, which is insufficient. Therefore, to establish a 
high-precision predictive model, we will collect more data corresponding to different grinding 
conditions in future work. In addition, to apply the proposed IGPSAS to different machines 
without spending too much training time for processing modeling, we will apply the transfer 
learning technology to the proposed IGPSAS in future work.
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