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 Aiming at the rapid recognition of human motion modes required in the intelligent control 
algorithm of exoskeleton robots, in this paper, on the basis of the characteristics of inertial data 
and pressure data collected by smart terminals carried by pedestrians, a dynamic block matching 
algorithm based on kinematics (DBMK) using motion mode recognition is proposed. This 
algorithm involves signal extraction and motion feature matching discrimination. More 
specifically, it first uses the method of periodic signal capture in adaptive motion mode to 
capture the heel touch event from the signal collected by a flexible pressure sensor mounted on 
the heel, and extracts the corresponding periodic signal. Finally, the DBMK algorithm uses a 
self-made lower limb motion information acquisition system to obtain human motion angle data. 
After kinematics preprocessing, the distance correlation coefficient based on Pearson weight 
proposed in this paper is used to identify the current human motion model category. The DBMK 
algorithm was used to identify five common human motion modes from the output data of 
inertial module units and flexible pressure sensors, and experimental results show that the 
proposed DBMK algorithm has an accuracy of 90.86% for the recognition of the five common 
motion modes.

1. Introduction

 Exoskeleton robots for assistance of lower limbs can increase the convenience of human daily 
life. Exoskeletons of lower limbs have extremely important applications in the industrial,(1,2) 

military,(3,4) and medical(5,6) fields. The core problem of the exoskeleton robots used for 
assistance is predicting the position of the exoskeleton joint by recognizing the wearer’s intended 
motion. The fusion of related sensor information, such as from inertial sensors, pressure sensors, 
and encoders, can predict the intended motion with high accuracy and has been widely used. 
With the large-scale popularity of smart terminals, sensors are used to improve the estimation of 
lower limb motion modes based on multi-sensing device fusion. An exoskeleton hybrid control 
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assistance system has four main parts: gait detection, motion mode estimation, motion intention 
recognition, and control strategy. The accurate estimation of motion modes is a prerequisite for 
the human–computer interactive control of exoskeletons.
 Through the use of a wearable intelligent terminal to determine the current motion mode of 
the wearer and select the correct model parameters, the accuracy of exoskeleton joint movement 
can be improved. Therefore, motion mode recognition algorithms based on mobile smart 
terminal equipment have attracted research attention.(7–9) Ogata et al. proposed an effective 
technology for human motion recognition based on motion history images and feature space 
technology, and conducted experiments on the recognition of six human motion modes, which 
achieved satisfactory results.(10) However, the method of using images to detect motion modes is 
easily restricted by the test site, is expensive, and is not suitable for use in exoskeleton control 
strategies. Wang et al. proposed a method based on multiple sources and a general recurrent 
neural network (GRNN) to identify lower limb motion modes, using principal component 
analysis to extract features from plantar pressure information and surface electromyography 
(EMG), then the GRNN was used to recognize the actions of ascending stairs, descending stairs, 
and walking on flat ground, and the recognition rate reached 89.7%.(11) Song et al. studied the 
impact of surface electromyography (sEMG) signals on the accuracy of human motion pattern 
recognition, and used their designed multilayer perceptron and long short-term memory (LSTM) 
neural network to identify seven common human motion modes in daily life.(12) The use of EMG 
can overcome the space limitation problem caused by image technology. However, the 
installation of commercial EMG equipment and the attachment of the equipment are complicated, 
and the user is susceptible to sweat.(13) Moreover, the collected signal contains noise, which will 
affect the application of EMG equipment in exoskeleton robots. Khan et al. used a single three-
axis accelerometer sensor to collect data as the input of an artificial neural network, and 
enhanced the features detected from the activity signal, achieving a recognition rate of above 
99% for the four activities of lying, standing, walking, and running.(14) Song et al. used a 
multilayer BP neural network to identify 15 common motion modes based on the characteristics 
of multisource human lower limb acceleration and plantar pressure.(15)

 Traditional motion mode recognition methods mostly use machine learning or deep learning 
algorithms,(16,17) which are unable to give a reasonable explanation based on the principle of the 
model. Also, the deep learning model is too complex and the model parameters are too 
numerous, increasing the amount of calculation and causing the model to run slowly. Therefore, 
deep learning algorithms with high complexity entail higher computing requirements for 
portable mobile devices.(18) The DBMK algorithm first establishes a mathematical model of the 
human body from the perspective of kinematics, and then uses the distance correlation 
coefficient based on Pearson’s weight (PWD) to dynamically match the motion model in the 
database. The DBMK algorithm has few parameters and low computing power requirements. It 
can be processed in real time on an ordinary advanced RISC machine (ARM) processor, 
avoiding the high computational complexity of traditional deep learning algorithms. 
Experimental results show that the dynamic matching algorithm based on kinematics can 
effectively detect the wearer’s motion pattern, and it is expected to be applied as a strategy for 
exoskeleton open hybrid control.
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2. Materials and Methods

 In the process of pedestrian motion, the angle data collected by an inertial sensor of a smart 
terminal change periodically. Although the stride length, stride height, and stride frequency 
produced by each pedestrian in the walking process are different, the inertial data generated by 
each pedestrian in the same motion mode have certain similarities in the waveform. In addition, 
the distance between the center of gravity of the two feet and the center of gravity of the human 
when a heel touch event occurs is different in different motion modes, which lays a solid 
foundation for the DBMK algorithm to realize motion mode recognition. A flow chart of the 
DBMK algorithm is shown in Fig. 1.
 In the periodic signal extraction phase, the algorithm first obtains inertial data and foot 
pressure data in different motion modes through the inertial module unit (IMU). Then, a single-
cycle segmented operation is performed after preprocessing the obtained foot pressure data and 
inertial data using the heel-to-ground event to generate sample data of the motion mode.
 In the motion mode recognition stage, the inertial data collected by the IMU are preprocessed 
and single-period segmented, and then recognized by the human motion mode classifier 
generated by the DBMK algorithm. Specifically, the current motion mode is divided into three 
categories through the human kinematics model, then the sampled data are processed, and 
finally the sampled data are matched to the template data in the database using the PWD 
coefficients proposed in this paper, and the current motion mode is finally identified. The 
specific steps are as follows:
 Step 1: First, the collected original inertial data and foot pressure data are preprocessed, and 
then the heel touch event is detected from the foot pressure data using the dynamic threshold 
method. The heel touch event detection method is used to continuously collect the motion data of 
two adjacent steps for single-cycle segmentation.

Fig. 1. Flow chart of motion mode recognition algorithm based on DBMK.



1020 Sensors and Materials, Vol. 34, No. 3 (2022)

 Owing to the interference of equipment and the environment, the data collected by inertial 
sensors and flexible pressure sensors are disturbed by noise with high probability, so a filter is 
required to preprocess the noise of the original data. Considering the real-time needs of the 
system and the characteristics of signal noise, the foot pressure data are processed as follows. 
When the amplitude of the foot pressure data is less than 40, the amplitude is set to zero to avoid 
misjudgment of heel contact events caused by noise signals; in this study, we use a second-order 
Butterworth filter to filter the inertial angle data.
 As shown in Fig. 2, there are continuous gait cycles with foot pressure data and angle data. 
The foot pressure signal exhibits the characteristics of a pulse signal, so it is feasible to detect the 
rising edge signal of two adjacent steps and perform single-cycle segmentation in each motion 
mode.
 The heel-to-ground phase detection method used in this paper is based on the dynamic 
threshold detection method. The processing flow of this method is shown in Table 1. The 
effective rising edges of the foot pressure signal must be satisfied: the current point is an upward 
trend, and the average value and the number of zero points in the sliding window S are less than 

Fig. 2. (Color online) Filtered angle data and foot pressure data. (a) Foot pressure data and (b) angle data.

(a) (b)

Table 1
Processing	flow	of	the	heel-to-ground	phase	detection	method.
Initialize α = 0.6 and β = 10
For T iterations do:
P(k) = {ST(k−m), ST(k−m+1), ST(k−m+2), …, ST(k−1), ST(k)}
S(k) = {ST(k−n), ST(k−n+1), ST(k−n+2), …, ST(k−1), ST(k)}
O(k) =  ST(k−v), ST(k−v+1), ST(k−v+2), …, ST(k−1), ST(k)}
M = Min(S(k)) + α × [Max(S(k))	− Min(S(k))] + β
Av = Sum(S(k)) / n
Max_ p = Max(P(k)) / 10
If (ST(k) > M and ST(k−1)	< M and Av < Max_ p and N0(S(k))>0.5*n):
If (v > 40):
Output(O(k))
O(k).clear() 
k++
end
Here, α is	 the	proportionality	coefficient	and	β is the bias term. n is the length of sliding window S. m is the length of 
sliding window P. N0(S(k)) represents the number of zeros in sliding window S. v represents the number of sampling points 
between two heel touch events.
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1/10 of the peak value in the sliding window P and more than half of the total number of 
sampling points in the sliding window S, respectively, and the sampling point interval between 
two consecutive rising edges must exceed 40. Note that to ensure that the maximum value over a 
week is obtained, m must be greater than or equal to the sampling frequency.
 Step 2: In this paper, human lower limb kinematic modeling is established from human 
sagittal plane kinematics, and a schematic diagram of the joint angle definition is shown in Fig. 
3. When the end point of the thigh or calf is on the left (right) side of the frontal plane, the angle 
of the sensor is positive (negative). The angle between the knee joint and the hip joint can be 
derived from the IMU fixed on the thigh and calf. The principle of measuring the hip and knee 
angles is shown in Fig. 3, and the angles are expressed by Eqs. (1) and (2). The changes in the 
height of the lower extremities are mainly the result of the joint action of θhip and θs. When the 
dynamic threshold algorithm detects the right heel contact event, the height H of the right foot 
relative to the left foot can be obtained from Eqs. (3)–(9). When H is greater than the set 
threshold, the current motion mode is judged to be upstairs or uphill motion; when H is less than 
the set threshold, it is judged to be downstairs or downhill motion; when H is near zero, the 
current motion mode is judged to be walking straight.

 orknee rt ltθ θ θ=  (1)

 knee hip sθ θ θ= − +  (2)

 1 0 1 sin( )hipX X L θ= + ⋅  (3)

 1 0 1 cos( )hipY Y L θ= + ⋅  (4)

 2 1 2 sin( )sX X L θ= + ⋅  (5)

 2 1 2 cos( )sY Y L θ= + ⋅  (6)

 0 1 2cos( ) cos( )left lt lsY Y L Lθ θ= + ⋅ + ⋅  (7)

 0 1 2cos( ) cos( )right rt rsY Y L Lθ θ= + ⋅ + ⋅  (8)

 left rightH Y Y= −  (9)

Here, (X0,Y0), (X1,Y1), and (X2,Y2) are the coordinates of the human hip joint, knee joint, and 
ankle joint, respectively. L1 is the length of the thigh and L2 is the length of the calf. θrt and θlt 
represent the right and left knee angles respectively. Yleft and Yright represent the Y2 coordinates 
of the left and right legs, respectively. H is the distance between the left-leg Y2 and the right-leg 
Y2. The knee angle θknee, hip angle θhip, and θs are shown in Fig. 3.
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 Step 3: Step 1 is repeated multiple times to obtain the sampled knee joint angle sequence and 
template knee angle sequence T of one gait cycle in different human motion modes. Step 1 can 
be combined with Step 2 to calculate the height difference H between the centers of gravity of 
the left and right feet when the heel touch event occurs.
 Step 4: After Step 3, Lagrange-LR processing is performed on the sampling sequence S[i]. 
Lagrange-LR is an interpolation operation. When the number of elements in sampling time 
sequence S is greater than that in template time sequence T in the database, the linear reduction 
method is used, for example, when T = [1, 3, 5] and S = [0.8, 1.4, 3.2, 3.9, 5.1], then S becomes 
[0.8, 3.2, 5.1] after being processed by the linear reduction method; when the number of elements 
in the sampling sequence S is less than the number of elements in the template sequence T in the 
database, the Lagrangian linear interpolation method is used to expand the sampling sequence, 
as shown in Eqs. (10)–(12). The performance of processing with the Lagrange-LR algorithm is 
shown in Fig. 4.

 1 2 1( ) ( ) / ( )l x x x x x= − −  (10)

 2 1 2 1( ) ( ) / ( )l x x x x x= − −  (11)

 1 1 2 2( ) ( ) ( )L x y l x y l x= ⋅ + ⋅  (12)

Here, y1 and y2 are the knee angle data collection point values at sampling times x1 and x2, 
respectively.
 To improve the accuracy of upstairs/uphill and downstairs/downhill motion modes, the PWD 
correlation coefficient is proposed. Assume that the lengths of time series S and T are m and n, 
respectively, where m and n are not necessarily equal. The two time series must be aligned by 

Fig.	3.	 (Color	online)	Joint	angle	definition.
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Step 4, and the length of the processed time series S is changed to n. In matrix L(n) in Eq. (13), 
each element represents the distance between S[i] and T[i], where the smaller the distance, the 
greater the similarity between two points. At the same time, it is necessary to consider the 
situation that the amplitudes of time series S and T maintain a certain distance, but the amplitude 
waveforms of the two time series are similar. In other words, S[i]/T[i] is approximately constant 
over a continuous period of time. The correlation between the two time series will result in a 
large estimation error if only according to the distance matrix L(n) in this case.
 To better represent the correlation between two time series, in this paper, we propose a PWD 
correlation coefficient that divides matrix L(n) into t parts. Then, the Pearson correlation 
coefficient is used to obtain the weight wi of each matrix Li(n), as shown in Eq. (16), and finally, 
the distance coefficient of the two time series is obtained using Eq. (17). The motion mode of the 
sample is determined as that corresponding to the template knee angle sequence with the 
smallest difference.
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Fig. 4. (Color online) Diagrams showing sampling sequence, template sequence, and interpolation processing. (a) 
Linear reduction. (b) Second-order Lagrangian interpolation. In the legend, “Signal” represents the sampling 
sequence, “Model” represents the template sequence in the database, “Lagrange” represents the data sequence 
obtained by second-order Lagrangian interpolation of the sampling sequence, and “Linear-Reduction” represents the 
sampling sequence obtained by linear reduction.
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Here, S is the collected sampling time series, T is the template time sequence in the database, 
and Pear(S,T) is the Pearson correlation coefficient between time series S and T.
 Step 5: First, the raw sample is segmented by Step 1 to obtain the sample sequence S to be 
identified, then the relevant height difference H is calculated by Step 2. S and H are continuously 
updated after Step 3, and finally, the sample sequence S is matched to the template sequence T in 
the database after the processing in Step 4 using the proposed PWD correlation coefficient, so as 
to recognize the motion mode.

3. Results

 In this paper, a motion information collection system for the lower limbs is designed as a 
smart terminal device for users (wearers). This system can collect inertial signals and foot 
pressure signals of the wearer’s lower limbs at the same time. An MD30-60 (China Shenzhen 
Jinke Electronic Technology Co., Ltd.) flexible pressure sensor with a range of 20 kg is used in 
this collection system. The IMU in the experiment adopts a JY901 nine-axis inertial sensor with 
a built-in Kalman filtering algorithm (China Gansu Youxin Electronics Co., Ltd.), where the 
return frequency is set to 200 Hz and the dynamic angle accuracy is 0.1°. The IMU module is 
fixed in the sagittal plane of each leg with a magic strap, and the flexible pressure sensor is 
installed in the wearer’s insole.
 In the same experimental environment, three wearers (male, height: 173 ± 5 cm, weight: 65 ± 
6 kg) performed downstairs, upstairs, downhill, uphill, and straight walking experiments in 
sequence. The walking experiment was repeated three times in each motion mode. The number 
of steps in each experiment was 42 steps, the length of the slope was 17 m, and the length of the 
level road was 27 m. To prevent the participants from continuing to exercise after each 
experiment, affecting their subsequent motion gait, all participants were required to rest for 5 
min after completing each walking experiment to reduce the possible impact of exercise fatigue 
on the walking gait. In the experiment, the width and height of the steps were 400 and 100 mm, 
respectively, and the inclination angle of the slope was 15.5°.
 To verify the single-cycle segmentation performance of the dynamic threshold method in 
each motion mode, the subjects were required to perform experiments involving walking on flat 
ground, experiments ascending and descending ladders, and experiments walking up and down 
slopes. Figure 5 shows the segmentation results in the downstairs motion mode, which indicates 
that even if the signal amplitude changes significantly, the dynamic threshold algorithm still 
performs well in the detection of heel touch events. Then about 100 periodic signals in each 
motion mode were randomly chosen for analysis, and the experimental results shown in Table 2 
were obtained. From these results, we can see that the accuracy of the dynamic threshold 
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algorithm for heel contact detection in all motion modes is above 98%, and the probability of 
misjudgment and recognition failure is extremely small.
 The dynamic threshold algorithm was used to detect heel touch events with good results. 
Next, kinematic modeling was used to identify the motion modes of walking straight, upstairs/
uphill, and downstairs/downhill. Kinematic modeling was used to build a human body model, 
and the height of the right foot relative to the left foot when the heel touches the right foot was 
calculated using Eqs. (1)–(9). From Fig. 6, it can be seen that in the downstairs experiment, 75% 
of	the	sampling	points	were	concentrated	between	−97	and	−72	mm,	and	two	abnormal	sampling	
points appeared during the whole performance. In the downhill experiment, except for one 
abnormal	sampling	point,	all	sampling	points	were	concentrated	between	−58	and	−40	mm.	In	
the upstairs experiment, all sampling points were concentrated between 70 and 100 mm, and no 
abnormal points were found. In the uphill experiment, 75% of the sampling points were above 65 
mm and one abnormal point appeared. In the straight walking experiment, 75% of the sampling 
points	 were	 distributed	 between	 −10	 and	 40	 mm	 and	 one	 abnormal	 point	 appeared.	 Next,	
thresholds were determined to identify the motion mode of walking straight, upstairs/uphill, and 
downstairs/downhill. Through the analysis of Fig. 6, we set the following threshold: when the 
output	result	of	the	kinematic	modeling	was	between	−10	and	40,	the	output	result	was	evaluated	
as the walking straight mode; when the output result of the kinematic modeling was greater than 
40, the output result was evaluated as the upstairs/uphill mode; when the output result of the 

Table 2
Recognition results of dynamic threshold method.
Classification Walking straight Upstairs Uphill Downstairs Downhill
Number of true heel touches 117 103 100 107 106
Number of successful recognitions 117 103 100 107 105
Number of misjudgments 0 0 0 0 1
Number	of	unidentified	modes 0 0 0 0 1
Recognition success rate 100% 100% 100% 100% 98.13%

Fig. 5. (Color online) Schematic diagram of single-loop segmentation in downstairs motion mode.
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kinematic	 modeling	 was	 less	 than	 −20,	 the	 output	 result	 was	 evaluated	 as	 the	 downstairs/
downhill mode.
 In this study, the experimental conditions were limited to a step height of 100 mm and a slope 
angle of 15.5°. If the slope angle is less than 15.5° or the step height is less than 100 mm, the 
identification accuracy of the DBMK algorithm may decrease markedly. It is still necessary to 
perform further experiments to evaluate the influence of the experimental conditions on the 
accuracy of the DBMK algorithm.
 After evaluating the pattern recognition of walking straight, upstairs/uphill and downstairs/
downhill, the task of recognizing the upstairs, uphill, downstairs, and downhill modes was 
addressed. For this purpose, we propose the PWD correlation coefficient [Eq. (17)]. Note that the 
Pearson correlation coefficients between the knee angles for the uphill and upstairs modes and 
between the knee angles for the downhill and downstairs modes are relatively high; thus, the 
Pearson correlation coefficient alone cannot solve the problem of motion pattern recognition. To 

Fig.	6.	 (Color	online)	Box	and	whisker	diagrams	showing	distributions	of	the	relative	height	difference	between	
the two feet when the heel touch event occurred. (a) Downstairs/downhill. (b) Upstairs/uphill. (c) Flat ground.

(a) (b)

(c)
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verify the effectiveness of the PWD correlation coefficient, we carried out upstairs, uphill, 
downstairs, and downhill experiments.
 From Fig. 7, it can be seen that the average recognition rate of the DBMK algorithm for the 
five motion modes is 87.55%. Among them, the average accuracy of the PWD correlation 
coefficient matching is 90.86%, and the average accuracy of the dynamic threshold algorithm for 
detecting heel touch events is 95.99%. It can also be seen from Fig. 7 that the DBMK algorithm 
has the lowest performance for the uphill motion mode, with a recognition accuracy of only 
66.13%, which is mainly caused by the low matching accuracy of the PWD correlation 
coefficient. Table 3 shows the confusion matrix of the DBMK algorithm. The DBMK algorithm 
misjudged 15.32 and 7.26% of cases of the uphill motion mode as upstairs and straight walking 
motion modes, respectively, and the dynamic threshold method failed to detect 11.29% of the 
heel touch events. In general, the DBMK algorithm can accurately identify the five most 
common daily activities of the human body, especially those of walking straight, upstairs, 
downstairs, and downhill.

Fig.	7.	 (Color	online)	Recognition	accuracy	rate	in	different	motion	modes.	“AMC”	denotes	the	success	rate	of	the	
dynamic threshold algorithm for detecting the heel touch event.

Table 3
Confusion matrix of experimental results.

0 1 2 3 4 Χ

Tr
ue

 la
be

l

0 100% 0 0 0 0 0
1 0 94.06% 0.99% 2.97% 0.99% 0.99%
2 1.02% 0 90.82% 0 7.14% 1.02%
3 7.26% 15.32% 0 66.13% 0 11.29%
4 3.0% 0 4.0% 0 93.0% 0
Χ 0 0 2.0% 0 4.76%

Predicted label
0: Walking straight; 1: Upstairs; 2: Downstairs; 3: Uphill; 4: Downhill; X: No heel touch event occurred.
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4. Discussion

 The dynamic matching algorithm model based on kinematics mainly includes two parts: 
periodic signal extraction and sample template matching. In periodic signal extraction, two heel 
touch events are mainly used to extract a period of knee angle data. The higher the detection 
speed of the heel touch event, the more accurate the detection position, which is beneficial for 
the subsequent recognition performance. The dynamic threshold algorithm has three important 
parameters: α, β, and the number of elements n in the time series S(k) in Table 1. We carried out 
experiments to explore the influence of the coefficients on the algorithm, and the results 
obtained are shown in Table 4. It can be seen that α should be set between 0 and 1.0, and when α 
is set to 0.6, the dynamic threshold algorithm achieves the best results. From Table 5, it can be 
seen that β has little effect on the recognition performance of the algorithm, although when β is 
set to 10, the recognition performance is highest. Table 6 shows that the dynamic threshold 
algorithm is more sensitive to the coefficient n than to the other two parameters, and when n = 7, 
set in the experiment in this paper, is replaced with n = 11, the detection performance of the 
algorithm is improved. We utilized the dynamic threshold algorithm (DT) to obtain a heel touch 
event accuracy rate of up to 95.19% in the five modes, verifying its effectiveness.
 In recent years, the rapid development of deep learning technology has also encouraged many 
researchers to use it for motion pattern recognition.(19,20) Although deep learning has achieved 

Table 4
Influence	of	coefficient	α on DT performance.
α Straight walking Upstairs Downstairs Uphill Downhill
0.2 100.0% 99.01% 97.05% 88.71% 90.83%
0.4 100.0% 99.01% 97.05% 88.71% 91.67%
0.6 100.0% 99.01% 97.05% 88.71% 94.28%
0.8 100.0% 99.01% 96.08% 87.70% 94.28%
1.0 0 0 0 0 0

Table 5
Influence	of	coefficient	β on DT performance.
β Straight walking Upstairs Downstairs Uphill Downhill

0 100.0% 100.0% 99.01% 97.00% 88.71%
5 100.0% 100.0% 99.01% 97.00% 88.71%

10 100.0% 100.0% 99.01% 97.00% 88.71%
15 100.0% 100.0% 99.01% 97.00% 87.71%
20 100.0% 100.0% 99.01% 96.00% 86.29%

Table 6
Influence	of	coefficient	n on DT performance.
n Straight walking Upstairs Downstairs Uphill Downhill

3 100.0% 99.01% 89.11% 62.90% 90.00%
7 100.0% 99.01% 97.0% 88.71% 94.29%

11 100.0% 100.0% 100.0% 100.0% 95.19%
15 100.0% 100.0% 98.99% 100.0% 93.4%

3 100.0% 99.01% 89.11% 62.90% 90.00%
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very good results in motion pattern recognition, it is difficult to apply it to exoskeleton hybrid 
control models due to the complexity and ambiguity of the deep learning framework. In this 
paper, we propose the DBMK algorithm, an important part of which is the PWD correlation 
coefficient. The performance of this coefficient directly determines the final recognition 
performance of the motion model, where the coefficient m has a great impact on the matching 
result of the PWD correlation coefficient. In the above experiment, m was set to 70%. To explore 
the influence of m on the recognition performance of the DBMK algorithm, we performed six 
sets of control experiments with m set to 10, 30, 50, 70, 90, and 100%. The experimental results 
are shown in Table 7, from which it can be seen that the straight walking motion mode is not 
sensitive to m, whereas the other four motion modes are more sensitive to m, especially the 
downhill motion mode. On the whole, the DBMK algorithm has the lowest performance for 
uphill pattern recognition, for which the highest recognition accuracy rate is only 78.18%, 
indicating that further research is required. In combination with Table 3, it can be seen that the 
DBMK algorithm misjudges the uphill motion mode as the upstairs motion mode. It can be seen 
from Fig. 4 that the knee angle waveform in the uphill motion mode is very similar to that in the 
upstairs motion mode. This may also be the reason why the DBMK algorithm is not sensitive to 
the uphill motion mode. In addition, it can be seen from Table 4 that when m is 70%, the DBMK 
algorithm has the best comprehensive recognition performance for the five motion modes, and 
the average recognition accuracy reaches 90.86%.
	 Elhoushi et al. designed a decision tree model to recognize eight different motion modes with 
recognition accuracy of up to 87.94%.(21) Li et al. used a variety of algorithm models to identify 
five different motion modes,(22) and their recognition results are shown in Table 8. The DBMK 
algorithm proposed in this paper has an average recognition accuracy of up to 90.86% for the 
five motion modes, suggesting that it can be applied to motion pattern recognition.

5. Conclusion

 In this paper, a dynamic matching algorithm based on kinematics was proposed to solve the 
problems of the poor interpretability and computational complexity of motion mode recognition 

Table 7
Performance	of	DBMK	algorithm	for	different	values	of	coefficient	m.
 m 10% 30% 50% 70% 90% 100%
Go straight 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
Upstairs 74.0% 97.0% 98.0% 95.0% 95.0% 98.0%
Downstairs 86.60% 51.55% 89.69% 91.75% 83.51% 98.97%
Uphill 78.18% 75.45% 68.18% 74.55% 72.73% 0.0%
Downhill 80.00% 92.00% 89.00% 93.00% 63.00% 0.0%

Table 8
Accuracy	of	motion	pattern	recognition	of	different	models.
Classifier KNN SVM MLP DTW
Accuracy rate 69.2% 76.8% 80% 85.6%
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methods based on traditional machine learning and deep learning; the DBMK algorithm was 
used to recognize motion modes through a kinematic model and template matching. The 
algorithm consists of two main parts: heel touch event detection and motion pattern recognition. 
First, the dynamic threshold algorithm is used to detect heel touch events from a pressure signal 
collected by a plantar membrane pressure sensor, and the accuracy of the DT algorithm for 
detecting heel touch events in the five motion modes was as high as 95.19% after modifying the 
parameters α, β, and n. The DBMK algorithm combines kinematic modeling and the PWD 
correlation coefficient to identify the upstairs, uphill, downstairs, and downhill motion modes, 
wherein the coefficient m has a great impact on the final recognition performance of the PWD 
algorithm. For example, when m was set to 100%, the DBMK algorithm did not identify any 
uphill and downhill motion modes, whereas when m was set to 70%, the DBMK algorithm 
performed well and the average recognition accuracy of the five dynamic motion modes was as 
high as 90.86%. Experimental results show that the dynamic matching algorithm based on 
kinematics can effectively identify five common motion modes.
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