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 The aim of this study is to help individuals easily reach their destinations independently 
whenever they are situated in an unfamiliar environment. After performing pre-processing 
optimization, a map constructed by simultaneous localization and mapping (SLAM) is inputted 
to a route planning algorithm to find the most suitable path. The proposed method utilizes a 
stereo camera sensor to take images of the environment, after which it conducts  2D/3D mapping 
through the SLAM framework before converting the constructed map into images. Then, 
obstacles are identified using an image segmentation method, and pseudo-obstacles are filtered 
out through optimization. Finally, route planning is conducted using the D*Lite algorithm. 
Experimental results revealed that most of the pseudo-obstacles can be filtered out through 
image optimization, thereby increasing the accuracy of the 2D map.

1. Introduction

 For the planning of ideal routes, route planning is conducted through the analysis of a map 
that is constructed using simultaneous localization and mapping (SLAM).(1) Casarrubias-Vargas 
described the integration of information obtained in extended Kalman filter SLAM (EKF-
SLAM) through machine learning.(2) Although the SLAM algorithm has been continuously 
updated and optimized, there is always the possibility of obtaining inaccurate information. For 
example, obstacles incorrectly generated by SLAM may not actually exist, and these pseudo-
obstacles can lead to poor route planning and increased computation. Therefore, in this study, we 
apply some optimization methods and conduct pre-processing on a map constructed by SLAM 
and use the pre-processed map as an input of a route planning algorithm. The commonly used 
route planning methods include the probabilistic roadmap (PRM),(3) rapidly exploring random 
trees (RRT),(4) Dijkstra’s algorithm,(5) and the A* search algorithm.(6)

 The PRM, which is a method based on an image search, randomly labels nodes (the number 
of nodes is self-defined) in a given image. Then, it uses a search algorithm, such as Dijkstra’s 
algorithm, to find the route on a road map. Although it has the advantage of using only a small 
number of nodes to search for the path, it yields poor results if there are too few nodes or if their 
distribution is not rational. Meanwhile, RRT uses an initial node as the root node and generates a 
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random tree through random sampling to produce leaf nodes. When the leaf nodes of the random 
tree enter the target area or contain the target node, a route from the initial node to the target 
node can be found in the random tree. Its advantage is that it can efficiently and rapidly search a 
high-dimensional space in which the search is directed to a blank area through the randomly 
sampled nodes in the state space. However, it has the same disadvantages as the PRM. In 
comparison, Dijkstra’s algorithm takes a certain node as the starting node and calculates the 
shortest route from that node to all other nodes. Its advantage is that it can obtain the best 
solution, i.e., the shortest route. However, the shortest distance for all nodes must be calculated, 
thereby requiring a large amount of computation, which results in low efficiency.
 The A* search algorithm is a heuristic search algorithm that is an improvement of Dijkstra’s 
algorithm. It increases the search speed and searches for the best route by calculating the 
minimum cost of each node to the target node. On the one hand, it can avoid the unnecessary 
calculation of the cost to irrelevant nodes. On the other hand, it cannot identify the best route 
when there are multiple minimum costs. The D*Lite algorithm is similar to the A* algorithm, 
and the most significant feature of the former is that it starts from the target node and searches 
reversely to the starting node.(7) Its advantage is that it has a very effective route search process 
within a dynamic environment. Thus, in this study, we adopt the D*Lite algorithm for route 
planning.
 We aim to optimize a map constructed by SLAM, so that route planning can be used to 
obtain the ideal route more accurately. We identify the obstacles through image segmentation 
and effectively filter out the pseudo-obstacles to reduce the calculation time for path planning. In 
this way, we can also reduce the error rate of path planning. In this paper, we discuss SLAM, 
map optimization, and route planning. Furthermore, the ideal route is achieved using the 2D 
map generated by SLAM, which is then inputted to the route planning algorithm through 
optimization.

2. Hardware and System Environment

 In this study, we designed an optimized SLAM and applied it to route planning using the 
hardware structure shown in Fig. 1. It includes two parts, the SLAM end and the route planning 
end. The structure of the system is shown in Fig. 2.

Fig. 1. (Color online) Structure of the hardware.
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 The images of the stereo camera and the data from the visual odometer are inputted to the 
RTAB-Map algorithm to obtain a 3D point cloud and a 2D map,(8) after which the 2D map is sent 
to the route planning end. The route planning end first optimizes the 2D map and then plans the 
route through the D*Lite algorithm.

3. Map Construction by SLAM

 In SLAM, a visual odometer is used to determine the direction and position of camera 
movement. The feature points are extracted and matched through the speeded up robust features 
(SURF) characteristic algorithm, after which the moving direction can be calculated from these 
matched points, as shown in Fig. 3.(9)

3.1 Feature extraction

 The process of feature extraction includes three main parts: feature extraction, feature 
description, and feature matching. In feature extraction, the Hessian matrix in Eq. (1) is used to 
generate the key points.(10)
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 In SURF, a box filter is used to replace the Gaussian filter, which can greatly improve the 
computational speed. The equation for determining the generated key points is given by

 det(H) = Dxx × Dyy − 0.9 × Dxy − Dxy . (2)

 The reason for multiplying by 0.9 is that the box filter assumes σ = 1.2 and a template size of 
9 × 9 as the smallest scale space, where σ = 1.2 is selected from the authors’ experience when 
inventing the box filter. In addition, (Lxx/Dxx)(Lyy/Dyy) is a constant and does not affect the 

Fig. 2. (Color online) Structure of the system.
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comparison of the extreme points. Thus, we calculated 
| (1.2) | | (9) |
| (9) | | (1.2) |

xy xx

xy xx

L D
D L

 to be 0.912 ≈ 0.9. 

Finally, we used non-maximum suppression to compare all key points with the surrounding 26 
points, and the one with the largest value is determined as a feature point.
 The Haar wavelet transformation is adopted in the feature description.(11) With the feature 
point as the center, we can thus calculate the area within a radius of 6s (where s is the scale value 
of the feature point). The sum of all points within the 60° sector for the Haar wavelet response in 
the x and y directions is calculated, and the values obtained after Gaussian weighting are the 
horizontal and vertical components, respectively, as shown in Fig. 4. The blue arrow in Fig. 4(c) 
shows the main direction.
 After finding the main direction, the feature point is surrounded by a square frame with a 
subarea of size 4 × 4. The sum of the Haar features of 25 pixels in the horizontal and vertical 
directions is calculated for each subarea, thereby yielding a 4 × 4 × 4 = 64-dimensional vector as 
the feature description, as shown in Fig. 5.
 Finally, the matching degree is determined by the Euclidean distance through the two feature 
points in the feature matching, wherein a shorter distance represents a better matching degree. 
Furthermore, SURF includes an additional determination. If the signs of the Hessian matrices of 
the two feature points are the same, this signifies that the two features have the same direction. 
In contrast, different signs indicate that the directions are opposite and can thus be directly 
excluded.

3.2 Optimization

 In visual SLAM, image optimization is used as the main method. Here, we adopt the random 
sample consensus (RANSAC) algorithm for optimization, after which we estimate the 
parameters of the mathematical model from the observed data by iteration. Firstly, we assume 
that some of the data are internal points and then we use these points to design a model. Next, we 
input all of the data and apply this model to determine whether the number of internal points is 
sufficient. The model is adjusted through the internal points if their number is sufficient; 
otherwise, the original model is discarded, and a new one is redefined. The process of the 
RANSAC algorithm is shown in Fig. 6.(12)

Fig. 3. (Color online) Structure of the visual odometer.
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 When estimating the model parameters, p represents the probability that all internal points 
are real internal points and w represents the probability that a real internal point is chosen by 
random selection. This is expressed by

 Number of internal points
Total number of points

w = . (3)

Fig. 4. (Color online) Main direction of the feature.

Fig. 5. (Color online) Feature description.

Fig. 6. (Color online) Flowchart of the RANSAC algorithm.
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 In addition, k is the number of iterations, n is the number of points required for the model 
estimation, and wn is the probability that all n points are internal points. Hence, the following 
equation is satisfied:

 1 − p = (1 − wn)k (4)

 The advantage of RANSAC is that it can stably estimate the model parameters and the 
parameters in big data with high precision. However, because it adopts an iterative method, the 
results may not be the optimal solution, especially if the number of iterations is insufficient. At 
the same time, it requires a large amount of computation if the number of iterations is too high.
 The RANSAC parameter matrix is defined as
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where (x, y) is the position of the target image, (x′, y′) is the position of the scene image, s is the 
scale, and h33 = 1. These variables are used to calculate the homography matrix, after which the 
model can be used to test all data, compute the number of data points that satisfy this model, and 
determine the projection error e, where
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Here, a smaller e value indicates a better model.

3.3 Closed-loop detection

 The objective of closed-loop detection is to correct errors through a closed loop. In calculating 
each frame, some errors inevitably occur, and these will increase with the consecutive 
computations of several frames. Therefore, a closed loop is used to determine and correct any 
error when returning to places that were visited previously. The flowchart of the detection 
process is shown in Fig. 7. As can be seen, the detection process uses the bag-of-words model 
(BoW) to preliminarily determine whether this frame of the places is a closed loop and whether 
the closed loop is achieved using Bayesian filtering.(13,14)

 The BoW is a type of document representation in the field of information retrieval. It creates 
a dictionary and uses it to generate a model with a high degree of differences. After inputting an 
image, the number of feature points within each word is calculated through the dictionary, as a 
result of which the feature histogram of an image is obtained and stored. Finally, the new feature 
histogram is compared with all the old feature histograms, and if their similarity is greater than 
a threshold, then the closed-loop detection is considered to be successful.
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 After determining the success of closed-loop detection, Bayesian filtering (which applies 
Bayes’ theorem) is performed for further closed-loop detection. On the basis of probabilistic 
statistics, we can determine whether a closed loop is formed by observation and prediction. 
Bayes’ theorem is expressed as

 ( | ) ( )( | ) .
( )

P B A P AP A B
P B

=  (7)

The Bayesian filtering equation can be expressed as

 bel(xt) = p(xt|u1:t, z1:t), (8)

where xt is the location at time t, u1:t represents all controls from time 1 to time t, and z1:t 
represents all observations from time 1 to time t. Substituting Eq. (8) into Eq. (7) results in the 
following:
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which can be simplified to

 1 1 1( ) | | , .( ) ( ) ( )t t t t t t t tbel x p z x p x u x bel x dxη − − −= × ∫  (10)

 The first part, ∫p(xt|z1:t−1, u1:t, xt−1)bel(xt−1)dxt−1, involves xt−1 and ut and is used to predict the 
state of xt. The second part, ηp(zt|xt), is used to update the state of xt by observing zt.
 In addition, the RTAB-Map algorithm can enhance the computational speed without losing 
its precision by using a retrieval and transfer method. During the closed-loop detection, we 
compare this frame of the feature histogram with that of each frame in the working memory 

Fig. 7. (Color online) Closed-loop detection process.
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(WM). When the closed-loop detection ends, if the feature histogram of the frame surrounding 
the location with the highest closed-loop probability is not in the WM, then it is retrieved from 
the long-term memory (LTM) and transferred to the WM. If the time for image computation is 
too long, closed-loop detection is used to find the feature histogram with the lowest weight and 
transfer it from the WM to the LTM.

4. Route Planning 

 There are two main types of route planning: global planning and regional planning. Global 
planning identifies a static mapping route, whereas regional planning finds a dynamic mapping 
route, wherein some of the maps are re-planned to avoid collisions when encountering sudden 
obstacles. Once the 2D map is constructed by SLAM, binarization is conducted on the output 2D 
map(15) to determine the positions of the obstacles. Then, the image is cut, and the pixel value of 
each block is summed. If the sum is greater than a threshold, then it is assumed that there is no 
obstacle in the block; otherwise, the block remains unchanged. This reduces the number of 
pseudo-obstacles generated by changes in light or fast movement during mapping.

4.1 D*Lite algorithm

 As mentioned previously, the D*Lite algorithm divides a map into several nodes and searches 
for the best route through the evaluation of nodes. The key principle of the algorithm is that it 
assumes all of the unknown areas to be free spaces and conducts route planning on this basis. 
The shortest distance can be found by searching for the smallest value of rhs(s), which is a 
provisional value based on g(s). This provisional value is used to find the distances from s to all 
its surrounding nodes and the corresponding g values. The smallest value is used as the rhs value 
of the current node s, which is defined below.(7)

 The D*Lite algorithm is derived from the LPA* algorithm, and it initially finds the optimum 
route from the starting node to the target node using the environment information provided by 
SLAM.(16) In this algorithm, each node has an initial g(s) value that is infinite and is defined as 
the distance of the shortest route from the current node s to the goal. Whether this value needs to 
be updated is determined by rhs(s).
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Here, the node sgoal is our goal node defined as 0; s′ ∈ Succ(s) is the successor node of node s, 
which means that the route can proceed from s to all other nodes; and c(s′, s) is the distance 
between nodes s′ and s. When g(s) = rhs(s), it is considered that there is local consistency; 
otherwise, there is local inconsistency. There are three types of consistency:
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Local consistency (LC) occurs when g(s) = rhs(s). When all nodes are locally consistent, the 
value of g(s) is equal to the shortest distance from node s to the starting node. Hence, s′ (the next 
node in the direction of the starting node) can be obtained from min(g(s′) + c(s′, s)).
Local overconsistency (LOC) occurs when g(s) > rhs(s), which means that the connected state 
of the node is better than before, i.e., the value of c(s′, s) can be decreased. This also indicates 
that an obstacle is cleared or a shorter route can be found, after which the value of g is updated to 
rhs(s) to return to LC.
Local underconsistency (LUC) occurs when g(s) < rhs(s), which indicates the sudden 
occurrence of an obstacle, which increases the length of the route from s′ to the starting node. It 
is necessary to recalculate the node s and the related node after node s. When the g value of this 
node is taken out, its g value is set to infinity. Hence, the node will have LOC, after which LC 
will be achieved through the processing method of LOC to achieve the shortest route.
 Meanwhile, to increase the efficiency of the algorithm, we set a Key value for each node and 
prioritize the nodes that may be found on the shortest path. The Key value is defined as follows:(7)
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where h(sstart, s) is the estimated distance from node s to the starting node.
 Next, the key values of each node are compared, and the value of K1 for each node is 
compared first when the nodes are partially inconsistent (g(s) ≠ rhs(s)). If the nodes have the 
same K1, then this is compared with K2, and the smaller value of K1 and K2 is selected.

5. Results of Experiment

 In our experiment, we obtained the map information with a ZED stereo camera. We also used 
a handheld stabilizer during the mapping process, so that the 3D visual map and the 2D map 
used for route planning could be constructed stably and accurately. We also fabricated the 
yellow-green structure in Fig. 8 using a 3D printer, which was used to fix and balance the ZED 
camera on the handheld stabilizer.

Fig. 8. (Color online) Stereo camera attached to the handheld stabilizer.
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5.1 Result of SLAM 

 The mapping in this experiment was conducted at Mingxiu Lake and on the second floor of 
the engineering hall of National Chin-Yi University of Technology. For the mapping conducted 
at Mingxiu Lake, shown in Fig. 9, the relevant data and parameters of the experiment are given 
in Table 1. The obtained 3D and 2D maps are shown in Figs. 10 and 11, respectively. In addition, 
for the mapping conducted on the second floor of the engineering hall, the relevant data and 
parameters are shown in Table 2. The obtained 3D and 2D maps in this case are shown in Figs. 
12 and 13, respectively. Tables 3 and 4 show the time details for each part of the system in each 
mapping.

Table 1
Data of the experiment at Mingxiu Lake.
Type
Construction time 12 min 19 s
Construction distance 337.73 m
Word count 294331
LTM nodes 713
WM nodes 692
Number of successful closed loops 3

Fig. 9. (Color online) Photograph of Mingxiu Lake, National Chin-Yi University of Technology.

Fig. 10. (Color online) 3D map of Mingxiu Lake, 
National Chin-Yi University of Technology.

Fig. 11. 2D map of Mingxiu Lake, National Chin-Yi 
University of Technology.
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Table 4
Time data of the experiment at the second floor of the engineering hall.
Type Average time Longest time
Feature extraction 68.52 ms 115.12 ms
Feature description 7.31 ms 14.68 ms
Similarity transformation matrix 0.42 ms 6.15 ms
BoW 253.71 ms 4.61 s
Time per frame 332.22 ms 4.78 s

Table 2
Data of the experiment at the second floor of the engineering hall.
Type
Construction time 13 min 50 s
Construction distance 249.37 m
Word count 329440
LTM nodes 814
WM nodes 778
Number of successful closed loops 5

Table 3
Time data of the experiment at Mingxiu Lake.
Type Average time Longest time
Feature extraction 46.53 ms 68.64 ms
Feature description 4.65 ms 11.86 ms
Similarity transformation matrix 0.63 ms 1.52 ms
BoW 131.25 ms 3.68 s
Time per frame 201.34 ms 3.81 s

Fig. 12. (Color online) 3D map of the second floor of the engineering hall.

Fig. 13. 2D map of the second floor of the engineering hall.
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5.2 Result of route planning

 To reduce the calculation time, the 2D map constructed by SLAM was binarized before the 
D*Lite algorithm was used for route planning, as shown in Fig. 14. During the experiment, the 
map structure may be misjudged due to changes in light, object color, camera movement speed, 
and so forth. Therefore, we adopted image segmentation to segment each 4 × 4 pixels for the 
judgment. If the average value of these 16 pixels exceeds 150, these 16 pixels are defined as a 
pseudo-obstacle. The optimized map after all pixels are processed is shown in Fig. 15. The 
results show that many pseudo-obstacles leading to incorrect judgments have been removed. In 
addition, Fig. 16 shows the successful route planning realized by the D*Lite algorithm.
 The experimental results confirmed that the proposed image optimization technique can 
indeed eliminate most of the incorrect obstacle nodes and that the 2D map can also obtain more 
accurate results. Finally, we used the D*Lite algorithm to calculate the best path in the 
environment, thus enabling users or a mobile robot to follow a certain path and reach the 
destination easily and autonomously.

Fig. 15. Binary 2D map of Mingxiu Lake after 
optimization.

Fig. 14. Binary 2D map of Mingxiu Lake before 
optimization.

Fig. 16. (Color online) Result of route planning.
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6. Conclusions

 This study mainly included two parts: the SLAM system and the route planning system. To 
construct a map, a ZED stereo camera was used to generate the image input, and the feature of 
each frame of the image was searched for and matched through the feature point method to 
enable a visual odometer to determine the position and direction of the camera movement and 
optimize it through the RANSAC algorithm. In addition, closed-loop detection was used to 
correct the judgment errors of the odometer. BoW was used to calculate the image of each frame 
and create a feature histogram to preliminarily assess whether the closed loop is successful by 
comparing histograms in pairs. Then, we determined whether or not this frame is in a closed 
loop using Bayesian filtering. The points in the LTM were retrieved back to the WM when they 
were in a closed loop.
 For route planning, pre-processing was conducted on the map to enhance the computational 
speed and reduce the number of pseudo-obstacles generated by the SLAM. In addition, obstacles 
were identified through image segmentation, after which we effectively filtered out the pseudo-
obstacles to reduce the calculation time for path planning, thus reducing the error rate of path 
planning. Finally, the route was planned using the D*Lite algorithm.
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