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	 Although the synchronization scheme of dynamic control proposed by previous studies can 
synchronize chaotic systems, not all chaotic systems can be successfully synchronized. In this 
paper, we propose an ameliorated synchronization scheme of dynamic control, in which the 
controllers are changed from 1D to 2D and are added to two signals of the slave system. As a 
result, the synchronization of chaotic systems that fail to be synchronized is successfully 
achieved. The synchronous stability is investigated by using Lyapunov theory and the master 
stability function approach. Two applications of Lü and Lü-like chaotic systems are compared. 
The results show that the proposed ameliorated scheme is effective and can be used to develop a 
chaos-synchronization sensor.

1.	 Introduction

	 For many studies on chaotic systems, synchronization is an applied and attractive research 
topic. In some cases, to achieve synchronization, specific constraints need to be imposed, and 
this phenomenon is called forced or controlled synchronization. Recently, there has been 
increasing interest in this type of research, various synchronization modes and methods have 
been studied,(1–7) and a large number of technical applications have been produced.(8–11)

	 Researchers have been pursuing global synchronization methods suitable for all systems. 
However, the applicability of some synchronization schemes is limited. For example, in a 
previous study, a synchronization scheme with a static controller failed to synchronize the 
Rössler system.(12) To address this limitation, Ramirez et al.(12) proposed a scheme with a 
dynamic controller composed of a first-order system instead of the classical static controller, and 
demonstrated that their proposed synchronization strategy was applicable to a large class of 
dynamical systems including chaotic systems. However, is it really applicable to all chaotic 
systems?
	 We reexamined the scheme and found that it was suitable for most dynamical systems but not 
all chaotic systems. For example, it failed to synchronize Lü-like chaotic systems.(13,14) To 
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overcome this problem, in this study, we proposed an ameliorated synchronization scheme in 
which two dynamic controllers driven by the scaled difference between the signals of master and 
slave systems were designed. In addition, to enhance the coupling between master and slave 
systems, two state variables were measured in the master and slave systems, and the two 
controllers were imported into two different signals of the slave system. A pair of Lü chaotic 
systems and a pair of Lü-like chaotic systems were considered as examples, which verified the 
validity of the proposed synchronization scheme. The master stability function(15) and the 
Lyapunov indirect method(16) were used to investigate the local stability of the error function. 
Moreover, the results of this study are applicable to the development of a chaos-synchronization 
sensor.
	 This paper is organized as follows. First, Sect. 2 presents the synchronization scheme with a 
dynamic controller. The proposed ameliorated synchronization scheme with dynamic controllers 
is introduced in Sect. 3. In Sect. 4, two examples, Lü chaotic systems and Lü-like chaotic 
systems, are presented. Finally, a discussion of the obtained results and some conclusions are 
provided in Sect. 5.

2.	 Synchronization Scheme with a Dynamic Controller

	 Consider the following master–slave systems.	

	
( ):
       

m m

m m

x F x
y x

 =

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

	 (1)
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	 { ( ) : m sh h kC x xα= − − −Dynamic controller  	 (3)

Here, , n
m sx x ∈  are the state vectors of the master and slave systems, respectively, iy ∈, 

i = m, s are the corresponding outputs, function F is assumed to be sufficiently smooth, nB∈  is 
a constant column vector, 1 nC ×∈  is a constant row vector, h∈ is the dynamic control input, 
k +∈  is the coupling strength, and α +∈  is a design parameter.
	 Assume that the nonlinear function F consists of linear and nonlinear parts:

	 ( ) ( ),  , i i iF x Ax f x i m s= + = ,	 (4)

where n nA ×∈  is a constant matrix.
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	 Then, the error dynamics for the systems in Eqs. (1)–(3) is obtained as

	
( , ) ( , )
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,	 (5)

where e = xm − xs, g(t, e) = f(xm) – f(xs), 
1ne +∈   is the state vector, and matrix ( 1) ( 1)n nA + × +∈  is 

assumed to be Hurwitz.(17) Since the trajectories of the master system are bounded, the term 
( , )g t e  can be regarded as a perturbation that will vanish on e if it satisfies

	 1
2 2|| ( , ) || || || ,  0, ng t e e t e Dγ +≤ ∀ ≥ ∀ ∈ ⊂    ,	 (6)

where 2|| ||⋅  denotes the Euclidean norm. The stability properties of the error dynamics in Eq. (5) 
can be inspected as follows. First, consider the quadratic Lyapunov function

	 ( ) TV e e Pe=   ,	 (7)

	
where ( 1) ( 1)n nP + × +∈  is a positive definite and symmetric matrix that is the solution of the 
Lyapunov equation

	 TPA A P Q+ = − ,	 (8)

where Q ( 1) ( 1)n nP + × +∈  is a positive definite and symmetric matrix: a standard choice is Q = I, 
where I is the identity matrix of appropriate dimensions. In addition, a unique solution for 
Eq. (8), P = PT > 0, always exists because A in Eq. (5) has been assumed to be Hurwitz.
	 Next, through calculations, the time derivative of the Lyapunov function in Eq. (7) satisfies

	 2
2( ) [ 2 ( ) ] || ||( )min maxV e Q P eλ λ γ≤ − −

  ,	 (9)

where ( )minλ ⋅  and ( )maxλ ⋅  denote the minimum and maximum eigenvalues, respectively.
	 In case that A is assumed to be Hurwitz, a sufficient condition for the local stability of the 
system in Eq. (5) is that the bound γ on the perturbation term in Eq. (6) is sufficiently small to 
satisfy

	 ( )
2 ( )

min

max

Q
P

λ
γ

λ
< .	 (10)

Consequently, the time derivative of the Lyapunov function is not greater than zero, that is, the 
error dynamics is asymptotically stable and the master and slave systems synchronize.
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	 Most pairs of systems can indeed synchronize through the above scheme, but not all systems. 
For example, the synchronization scheme with a dynamic controller fails to synchronize Lü-like 
chaotic systems. To overcome this problem, we propose an ameliorated synchronization scheme 
with dynamic controllers.

3.	 Ameliorated Synchronization Scheme with Dynamic Controllers

	 Consider the following master–slave systems.
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Here, , n
m sx x ∈  are the state vectors of the master and slave systems, respectively, iy ∈, 

i = m, s are the corresponding outputs, function F is assumed to be sufficiently smooth, 2nD ×∈  
and 2 nE ×∈  are constant vectors, h1 and h2 are the dynamic controllers, α is a design parameter, 
and k is the coupling strength.
	 Since the underlying theory is the same and the calculation is similar except that the error 
dynamics dimension is increased and the calculation is more complicated, the following process 
is omitted. The predominant feature of our proposed ameliorated synchronization scheme is that 
two signals of the slave system are input to the controllers at the same time, which simultaneously 
increases the coupling between the signals and successfully synchronizes Lü-like chaotic 
systems that are ‘nonsynchronizable’ when using the previous synchronization scheme.

4.	 Application Examples

4.1	 Synchronization scheme with a dynamic controller

4.1.1	 Example 1: Lü chaotic systems

	 Lü chaotic systems,(18) which are important models of 3D chaotic systems, are taken as an 
example and described as follows.
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where (a, b, c) = (36, 3, 20). When the error function is set to ex = xm − xs,, ey = ym − ys, and 
ez = zm − zs, the dynamics can be written in the form of Eq. (5) with
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The characteristic polynomial of matrix A in Eq. (17) is given by

	 2( ) ( 36)( 3)[ ( 20) ( 20 )]p kλ λ λ λ α λ α= + + + − + − .	 (18)

According to the Rouih–Hurwitz stability criterion,(15) Eq. (18) will have negative roots if and 
only if the following condition is satisfied:

	 α > 20 and k > 20α.	 (19)

Consequently, the error dynamics of the systems in Eqs. (14)–(16) is globally asymptotically 
stable, that is, the master and slave Lü chaotic systems will asymptotically synchronize, as 
shown in Fig. 1.

4.1.2	 Example 2: Lü-like chaotic systems

	 Next, consider Lü-like chaotic systems as another example, described as follows.
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where (a, c, d, e, f ) = (40, 5/6, 0.5, 0.65, 20). When the error function is set to ex = xm − xs,, 
ey = ym − ys, and ez = zm − zs, the dynamics can be written in the form of Eq. (5) with
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The characteristic polynomial of matrix A in Eq. (23) is given by

	 3 2( ) (1 / 6)( 40)[ (6 125) (6 125 100) (100 5 )]p k kλ λ λ α λ α λ α= + + − + − + + − . 	 (24)

(a) (b)

(c) (d)

Fig. 1.	 Time series of (a) xm − xs, (b) ym − ys, (c) zm − zs, and (d) h of error dynamics of Lü chaotic systems with 
parameters xm(0) = ym(0) = zm(0) = 0.1, xs(0) = ys(0) = zs(0) = 10, h(0) = 0, α = 21, and coupling strength k = 440 
underlying the synchronization scheme with a dynamic controller.
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It is clear from Eq. (24) that no values of k and α ∈ exist such that matrix A in Eq. (23) can be 
converted to a Hurwitz matrix. That is, the synchronization scheme with a dynamic controller 
fails to synchronize Lü-like chaotic systems.

4.2	 Proposed ameliorated synchronization scheme with dynamic controllers

	 To find a global synchronization method to solve the above situation that synchronization 
fails to be achieved, we propose an ameliorated synchronization scheme with dynamic 
controllers. We reconsider Lü-like chaotic systems as an example described as
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where (a, c, d, e, f ) = (40, 5/6, 0.5, 0.65, 20). When the error function is set to ex = xm − xs,, 
ey = ym − ys, and ez = zm − zs, the dynamics can be written in the form of Eq. (5) with
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The characteristic polynomial of matrix A in Eq. (28) is given by
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According to the Rouih–Hurwitz stability criterion, the error dynamics of the systems in 
Eqs. (25)–(27) is globally asymptotically stable if the following condition is satisfied:
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	 20.9 and 20kα α> > . 	 (30)

Consequently, the proposed ameliorated synchronization scheme with dynamic controllers 
successfully synchronizes Lü-like chaotic systems, as shown in Fig. 2.

5.	 Discussion

	 Although the synchronization scheme with a dynamic controller can indeed induce 
synchronization in some cases where the standard master–slave scheme with the static controller 
fails to synchronize the systems, it cannot synchronize all systems. Therefore, we propose an 
ameliorated synchronization with dynamic controllers to solve this predicament. The potential 
of our proposed ameliorated synchronization scheme is that the coupling between systems is 
enhanced in dimensionality. Owing to the characteristics of certain systems, even if the coupling 
strength of systems with the same dimension is increased, the systems cannot be synchronized. 
In such a case, according to the Rouih–Hurwitz stability criterion, it is impossible to find values 
of design parameter α and coupling strength k that make the error dynamics of systems 
asymptotically stable. To further enhance the overall coupling effect on systems, our proposed 
ameliorated scheme enhances the coupling strength in dimensionality, which means importing 
the coupling in two different dimensions at the same time. The result has the effect of 
synchronization as expected.

Fig. 2.	 Time series of (a) xm − xs, (b) ym − ys, (c) zm − zs, (d) h1, and (e) h2, of error dynamics of Lü-like chaotic 
systems with parameters xm(0) = ym(0) = zm(0) = 0.1, xs(0) = ys(0) = zs(0) = 10, h1(0) = h2(0) = 0, α = 21, , and coupling 
strength k = 440 underlying the proposed ameliorated synchronization scheme with dynamic controllers.

(a) (b) (c)

(d) (e)
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6.	 Conclusions

	 To seek a global method to synchronize all systems, an ameliorated synchronization scheme 
with dynamic controllers is proposed, which successfully synchronizes Lü-like chaotic systems 
that cannot be synchronized originally by enhancing the coupling in dimensionality. Our results 
verify the feasibility and effectiveness of our proposed synchronization scheme, which can be 
used to develop a chaos-synchronization sensor for complex systems.
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