
1221Sensors and Materials, Vol. 34, No. 3 (2022) 1221–1227
MYU Tokyo

S & M 2885

*Corresponding author: e-mail: cy.yeh@ncut.edu.tw
https://doi.org/10.18494/SAM3566

ISSN 0914-4935 © MYU K.K.
https://myukk.org/

Development of a Deep-learning-based Pet Video Editor

Chun-Cheng Lin, Cheng-Yu Yeh,* and Kuan-Chun Hsu

Department of Electrical Engineering, National Chin-Yi University of Technology,
57, Sec. 2, Zhongshan Rd., Taiping Dist., Taichung 41170, Taiwan

(Received July 22, 2021; accepted November 4, 2021)

Keywords:	 pet video editing system, deep learning, convolutional neural network (CNN), object 
detection, you only look once (YOLO), pets’ body movement recognition

	 Nowadays, a growing number of people have animals, particularly dogs and cats, as pets. A 
lot of pet owners spend much time taking care of their beloved pets, whose images are captured 
in daily life and at memorable moments. Edited video clips can be even widely shared with 
others via the Internet. However, it takes time to edit the captured pet videos. Accordingly, our 
team aimed to develop a pet video editor using an object detection and body movement 
recognition model. Pet videos can be captured and edited automatically as expected using AI 
techniques. For simplicity, the target was narrowed down to recognize the fundamental 
movements of dogs, namely, eating, tail raising, and yawning. As the first step, input videos 
were saved automatically once dogs’ images were detected using a pretrained YOLOv4 object 
detection model. In this manner, video recordings are made easy and efficient. Subsequently, 
three types of dogs’ body movements were recognized using a self-designed recognition model. 
Therefore, close-up images of dogs containing any of the three body movements can be instantly 
recognized, saved, and then shared with others. In this study, the presented body movement 
model was experimentally validated to give a recognition accuracy of up to 98.84%. We are 
currently working on increasing the number of movements that can be recognized by our system.

1.	 Introduction

	 Machine learning and deep learning remain two of the hottest research topics and have been 
well applied to a wide variety of disciplines. As a consequence, remarkable progress had been 
made in the development of deep-learning-based image recognition techniques.(1–8) Most of the 
models therein were actually built on the basis of convolutional neural networks (CNNs), among 
which representative studies are the AlexNet,(5) visual geometry group (VGG) Net,(6) Inception 
Net,(7) and ResNet.(8) Object detection(9–15) and image classification(16–20) stand as the most 
frequently used techniques in the field of image recognition. 
	 In an object detection task, it is necessary to find and recognize specific objects in an image 
or a video. Nowadays, commonly adopted object detection models include the Single Shot 
MultiBox Detector (SSD),(10) EfficientDet,(11) and You Only Look Once (YOLO).(12–14) With the 

mailto:cy.yeh@ncut.edu.tw
https://doi.org/10.18494/SAM3566
https://myukk.org/


1222	 Sensors and Materials, Vol. 34, No. 3 (2022)

COCO dataset,(21) an object detection model can be trained to recognize up to 80 types of 
objects, including people, cars, cats, dogs, and so forth. Thus, such techniques can be widely 
applied to fields such as intelligent transportation, intelligent image analysis and retrieval, smart 
home, and smart security.
	 In the discipline of image classification, the development of facial recognition techniques has 
been a hot topic, and facial images are frequently recognized using deep-learning-based models 
such as FaceNet,(18) CosFace,(19) and ArcFace.(20) These models show high recognition accuracy 
and robustness, which gives the models advantages over traditional counterparts.
	 Currently, the population of persons who have pets, particularly dogs and cats, is growing. 
Many pet owners spend much time and money taking care of their beloved pets, and also capture 
their pets’ images in daily life and at memorable moments, which can be even widely shared 
with friends via the Internet. However, it takes time to edit the captured pet videos.
	 In light of this, our team developed a pet video editor by which pet video capturing and 
editing have become easy and efficient. This was done using a YOLO model and another deep-
learning-based model to recognize pets’ body movements.(22) So far, nothing like this is available 
in the market, and the presented video editor is considered to be a user-friendly tool for pet 
owners once commercialized. 
	 This paper is outlined as follows. Section 2 refers to the framework of the presented video 
editor, Sect. 3 details a model used to recognize dogs’ body movements, Sect. 4 gives 
experimental results and discussion, and finally, Sect. 5 concludes this paper. 

2.	 Pet Video Editor

	 In this paper, we present a deep-learning-based pet video editor by which users can record 
and edit the videos of their beloved pets efficiently. As illustrated in Fig. 1, the video editor has 
two features: (i) automatic editing of pet video clips and (ii) recognition of pets’ body movements 
for close-up shots. The presented video editor uses a two-stage CNN-based approach to get the 
job done. In Stage 1, a pretrained YOLOv4 model(13) is employed to identify and then record 
pets’ images in videos. In this manner, searching for and video editing of pet images can be 
made efficient. Subsequently, specific body movements can be recognized, and then close-up 
shots can be recorded in Stage 2.
	 Dog images were treated as subjects in the development of this work. As referenced 
previously, pet images were detected using the pretrained YOLOv4 model for the following 
reason: the YOLOv4 model has already been trained to recognize up to 80 types of objects, 
including 10 types of animals such as dogs and cats. Thus, the YOLOv4 model was directly 
applied to the presented pet video editor. Furthermore, the YOLOv4 model turns out to have 
twice as many frames per second (FPS) as EfficientDet at an average precision (AP) of 43.5%, as 
mentioned in Ref. 13.
	 As stated in Ref. 13, the vast majority of object detectors are composed of an input, a 
backbone, a neck, and a head. Object detectors are usually split into one- and two-stage 
detectors. In the neck, feature maps are extracted in different layers using techniques such as 
feature pyramid network (FPN),(23) path aggregation network (PAN),(24) and spatial pyramid 



Sensors and Materials, Vol. 34, No. 3 (2022)	 1223

pooling SPP.(25) Object detection happens in the head, and object types and boundary boxes 
thereof are provided. The YOLOv4 model employs CSPDarknet53(26) as the backbone. SPP and 
PAN are used for the neck, and a single-stage YOLOv3 detector is used for the head.
	 Table 1 gives the development environment of the video editor. As listed therein, the 
programming language is Python, and libraries such as TensorFlow, Keras, and OpenCV were 
used in the development of the video editor.

3.	 Pets’ Body Movement Recognition Model

	 A model used to recognize pets’ body movements is discussed here. As referenced previously, 
the target was narrowed down to recognize the fundamental movements of dogs, namely, eating, 
tail raising, and yawning, for simplicity.
	 Figure 2 gives the backbone of the model.(22) Color images of 128×128 pixels are applied to 
the model, and then feature maps are extracted through five layers of ‘Conv’s. Finally, the body 

Fig. 1.	 Flowchart of presented pet video editor.

Table 1
Development environment of the presented video editor.
Programming language Python
Library TensorFlow, Keras, OpenCV, numpy, threading, etc.
Detection model YOLOv4
Recognition model Proposed model

Hardware PC (Windows 10 64-bit, Intel i7-7700 3.6 GHz CPU, 32 GB RAM), 
graphics card (GeForce GTX 1070Ti), web camera



1224	 Sensors and Materials, Vol. 34, No. 3 (2022)

movements of dogs are recognized through the Dense and Softmax layers. In the first two 
convolutional layers, 32 3 × 3 filters are used, whereas 64 5 × 5 filters are used in the last three 
conventional layers. In each convolutional layer, convolution, batch normalization, relu and 
max_pooling (2 × 2) are performed sequentially. The body movement recognition model takes 
up only about 2.8 MB of memory. It is an efficient and simple solution to image classification.
	 Table 2 gives the number of collected images for dogs’ body movement recognition. Eating, 
tail raising, and yawning are numbered as Classes 0, 1, and 2, respectively. Furthermore, Table 3 
gives a sample image for each class of body movement. As listed in Table 2, up to 500 images 
were used to train the model in each class, i.e., a total of 1500 pieces of training data, whereas 
only 400 images in total were employed to test the model performance. The categorical cross-
entropy loss function and the Adam optimizer were used to train the model with a batch size of 
64 and an epoch of 200, and the model weights with the highest recognition accuracy were then 
recorded.

4.	 Experimental Results

	 A two-stage model performance test was conducted in this work. In Stage 1, the recognition 
rate of dogs’ body movements was measured, and the overall execution time was then measured 
in Stage 2. As tabulated in Table 2, as many as 1500 pieces of training data and 400 pieces of 
testing data were employed to train and test the model performance, and Fig. 3 gives confusion 
matrices as a way to demonstrate the training, testing, and overall (training + testing) results. In 

Fig. 2.	 (Color online) Backbone of proposed recognition model.



Sensors and Materials, Vol. 34, No. 3 (2022)	 1225

a confusion matrix, diagonal and off-diagonal entries represent the numbers of times that body 
movements were recognized and misrecognized, respectively. Therefore, Fig. 3 gives recognition 
rates of 99.73% in training and 95.50% in testing, and finally, an overall recognition rate of 
98.84%.
	 Table 4 gives the computational load required in each stage to process an image. The load test 
was conducted on 1000 images using a PC as specified in Table 1. As tabulated in Table 4, it 
took the YOLOv4 model 64.52 ms to detect an image in Stage 1, whereas it took the presented 
model as short as 0.38 ms to recognize a specific body movement in Stage 2. Then, the overall 
load is simply 64.52 + 0.38 = 64.90 ms, namely, 15.41 FPS, and it is obviously dominated by the 
load in Stage 1. This simple recognition model has been experimentally validated to give a high 
recognition rate.

Table 2
Number of collected images for dogs’ body movement recognition.

Class number Type of movement Total number of 
training data

Total number of 
testing data

0 Eating 500 132
1 Tail raising 500 140
2 Yawning 500 128

Table 3
(Color online) Sample image for each type of movement.
Class number 0 1 2

Sample image

Fig. 3.	 (Color online) Confusion matrices for accuracy analyses. (a) Training. (b) Testing. (c) Overall.

(a) (b) (c)



1226	 Sensors and Materials, Vol. 34, No. 3 (2022)

5.	 Conclusions

	 In this paper, we present a video editor for dogs by which video recording and editing become 
efficient for pet owners. Pet body movements were well recognized using a simple and efficient 
model, which takes up only approximately 2.8 MB of memory but gives a recognition accuracy 
of up to 98.84%. It must be stressed that nothing like this video editor is available yet in the 
market, and it is expected to be an easy-to-use and high-performance tool for pet owners when 
commercialized. As the next step, our team aims to upgrade the presented video editor, such that 
the upgrade version can recognize more types of body movements of dogs and even recognize 
those of other types of pet.

Acknowledgments

	 This research was financially supported by the Ministry of Science and Technology under 
grant number MOST 110-2637-E-167-004 and the Ministry of Economic Affairs under grant 
number 108-EC-17-A-02-S5-008, Taiwan. The authors are deeply indebted as well to the 
coauthors of a cited paper, H. Y. Lai and H. H. Huang, for their contribution as the basis of this 
work.

References

	 1	 W. G. Hatcher and W. Yu: IEEE Access 6 (2018) 24411.
	 2	 E. Min, X. Guo, Q. Liu, G. Zhang, J. Cui, and J. Long: IEEE Access 6 (2018) 39501.
	 3	 O. I. Abiodun, A. Jantan, A. E. Omolara, K. V. Dada, A. M. Umar, O. U. Linus, H. Arshad, A. A. Kazaure, U. 

Gana, and M. U. Kiru: IEEE Access 7 (2019) 158820.
	 4	 L. Jiao and J. Zhao: IEEE Access 7 (2019) 172231.
	 5	 A. Krizhevsky, I. Sutskever, and G. E. Hinton: Adv. Neural Inf. Process. Syst. 25 (2012) 1097.
	 6	 K. Simonyan and A. Zisserman: CoRR (2014). http://arxiv.org/abs/1409.1556 (accessed April 2016).
	 7	 C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich: 

Proc. IEEE Conf. Computer Vision and Pattern Recognition (IEEE, 2015) 1. https://doi.org/10.1109/
CVPR.2015.7298594

	 8	 K. He, X. Zhang, S. Ren, and J. Sun: Proc. IEEE Conf. Computer Vision and Pattern Recognition (IEEE, 2016) 
770. https://doi.org/10.1109/CVPR.2016.90

	 9	 S. Ren, K. He, R. Girshick, and J. Sun: IEEE Trans. Pattern Anal. Mach. Intell. 39 (2017) 1137.
	10	 W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C. Y. Fu, and A. C. Berg: CoRR (2015) https://arxiv.org/

abs/1512.02325 (accessed July 2018).
	11	 M. Tan, R. Pang, and Q. V. Le: Proc. IEEE/CVF Conf. Computer Vision and Pattern Recognition (IEEE, 2020) 

10778. https://doi.org/10.1109/CVPR42600.2020.01079
	12	 J. Redmon and A. Farhadi: CoRR (2018). https://arxiv.org/abs/1804.02767 (accessed July 2018).
	13	 A. Bochkovskiy, C. Y. Wang, and H. Y. Liao: CoRR (2020) https://arxiv.org/abs/2004.10934 (accessed May 

2020).

Table 4
Execution time spent in each stage.
YOLOv4 detection model 64.52 ms per image
Proposed recognition model 0.38 ms per image
Overall load 64.90 ms per image

http://arxiv.org/abs/1409.1556
https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.1109/CVPR.2016.90
https://arxiv.org/abs/1512.02325
https://arxiv.org/abs/1512.02325
https://doi.org/10.1109/CVPR42600.2020.01079
https://arxiv.org/abs/1804.02767
https://arxiv.org/abs/2004.10934


Sensors and Materials, Vol. 34, No. 3 (2022)	 1227

	14	 C. Y. Wang, A. Bochkovskiy, and H. Y. Liao: CoRR (2020) https://arxiv.org/abs/2011.08036 (accessed 
December 2020).

	15	 K. He, G. Gkioxari, P. Dollár, and R. Girshick: Proc. IEEE Int. Conf. Computer Vision (IEEE, 2017) 2980. 
https://doi.org/10.1109/ICCV.2017.322

	16	 N. Audebert, B. L. Saux, and S. Lefevre: IEEE Geosci. Remote Sens. Mag. 7 (2019) 159.
	17	 P. Tang, X. Wang, B. Shi, X. Bai, W. Liu, and Z. Tu: IEEE Trans. Neural Netw. Learn. Syst. 30 (2019) 2244.
	18	 F. Schroff, D. Kalenichenko, and J. Philbin: Proc. IEEE Conf. Computer Vision and Pattern Recognition (IEEE, 

2015) 815. https://doi.org/10.1109/CVPR.2015.7298682
	19	 H. Wang, Y. Wang, Z. Zhou, X. Ji, D. Gong, J. Zhou, Z. Li, and W. Liu: Proc. IEEE Conf. Computer Vision and 

Pattern Recognition (IEEE, 2018) 5265. https://doi.org/10.1109/CVPR.2018.00552
	20	 J. Deng, J. Guo, N. Xue, and S. Zafeiriou: Proc. IEEE Conf. Computer Vision and Pattern Recognition (IEEE, 

2019) 4685. https://doi.org/10.1109/CVPR.2019.00482
	21	 COCO dataset: http://cocodataset.org (accessed July 2019).
	22	 C. Y. Yeh, H. Y. Lai, and H. H. Huang: IEEJ Trans. Electr. Electron. Eng. 16 (2021) 647.
	23	 T. Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie: Proc. IEEE Conf. Computer Vision and 

Pattern Recognition (IEEE, 2017) 2117. https://doi.org/10.1109/CVPR.2017.106
	24	 S. Liu, L. Qi, H. Qin, J. Shi, and J. Jia: Proc. IEEE Conf. Computer Vision and Pattern Recognition (IEEE, 

2018) 8759. https://doi.org/10.1109/CVPR.2018.00913
	25	 K. He, X. Zhang, S. Ren, and J. Sun: IEEE Trans. Pattern Anal. Mach. Intell. 37 (2015) 1904.
	26	 C. Y. Wang, H. Y. Liao, Y. H. Wu, P. Y. Chen, J. W. Hsieh, and I. H. Yeh: Proc. IEEE/CVF Conf. Computer 

Vision and Pattern Recognition Workshops (IEEE, 2020) 1571. https://doi.org/10.1109/CVPRW50498.2020.00203

https://arxiv.org/abs/2011.08036
https://doi.org/10.1109/ICCV.2017.322
https://doi.org/10.1109/CVPR.2015.7298682
https://doi.org/10.1109/CVPR.2018.00552
https://doi.org/10.1109/CVPR.2019.00482
http://cocodataset.org
https://doi.org/10.1109/CVPR.2017.106
https://doi.org/10.1109/CVPR.2018.00913
https://doi.org/10.1109/CVPRW50498.2020.00203

