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 In a microgrid system, a phasor measurement device (PMU) is used to measure the electrical 
quantities of nodes, which can provide accurate data for system stability control. How to use the 
data measured using a PMU to improve the stability of a microgrid is an important practical 
problem. The mismatch between generation power and load power in a microgrid system will 
cause oscillation in the system. To ensure accurate and rapid load forecasting in a microgrid 
system and the reliable and safe operation of the microgrid, deep learning is introduced into 
microgrid load prediction, and a method of predicting the short-term load for a microgrid based 
on multivariable and multistep long short-term memory (MM-LSTM) is proposed in this paper. 
The method considers the effects of meteorological factors on load data and forecasts the current 
load situation from the load data and the temperature and humidity data of the previous period. 
A Keras-based model of the short-term load for microgrid prediction based on MM-LSTM is 
built and its parameters are optimized. Then, the load of a microgrid is predicted using the 
power consumption and meteorological data. The average absolute percentage error between the 
experimental results and the actual power consumption is 8.827%, demonstrating the 
effectiveness of the method.

1. Introduction

 The power generation and consumption of a microgrid in normal operation should be 
consistent; otherwise, the system frequency and voltage amplitude will fluctuate, affecting the 
stable operation of the system.(1,2) The power source of a microgrid system is mainly composed 
of distributed generation, such as photovoltaic power or wind power generation. Distributed 
generation exhibits randomness and volatility.(3) To maintain the balance of the system power, in 
addition to adopting advanced control methods in the output control of distributed generation to 
adjust the power output of distributed generation and respond to the load fluctuation in real time, 
the load of a microgrid system is predicted in order to make a system generation plan, to program 
the generation capacity of distributed generation in advance, and to maintain the balance of the 
system power. There are many different load components in a microgrid system, and the short-
term load f luctuation is relatively large. The load, particularly residential electricity 
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consumption, is greatly affected by meteorological factors, such as temperature and humidity. 
Therefore, it is very important to consider the impact of meteorological factors on the load and to 
quickly, accurately, and efficiently forecast the short-term load on the basis of historical 
meteorological load data.
 At present, the mainstream short-term load forecasting methods can be roughly divided into 
traditional analysis and machine learning methods.(4) Traditional analysis methods, such as time 
series prediction, the autoregressive moving average method, and the multiple linear regression 
method, mainly use time series analysis.(5–7)

 The model used in the above methods is simple and these methods are fast, but they have high 
requirements for the time series of data and cannot perform nonlinear fitting. The accuracy of 
these methods cannot meet the needs of power systems with the rise of regional interconnected 
and large-scale power grids, and the load data of power systems is growing explosively.(8,9) To 
deal with large-capacity data and nonlinear coupling data, and improve the accuracy of power 
system load forecasting, machine learning methods, such as the neural network, random forest 
(RF), and support vector machine (SVM) methods, have attracted increasing attention.(10,11) 
Machine learning methods can solve the nonlinear relationship between data; however, it is 
necessary to add time characteristics artificially to ensure the prediction accuracy in load 
forecasting.
 The application of machine learning in the load forecasting of power systems has been 
studied. Munkhammar et al. utilized the Markov chain mixture distribution model (MCM) for 
the very short term load forecasting of residential electricity consumption to forecast one-step-
ahead (30 min resolution) residential electricity consumption data from Australia.(12) Wang et al. 
proposed a multi-energy load prediction model based on deep multitask learning and an 
ensemble approach for regional integrated energy systems to ensure their operational efficiency 
and reliability, for which the accurate prediction of energy demand has become a crucial task.(13) 

Power system load series are nonlinear and nonstationary, which affect the prediction accuracy. 
To solve this problem, Niu and Zhang proposed a method in which the sequence is decomposed 
by the variable mode decomposition leaky integrator echo state network method combined with 
multistep prediction to predict the short-term power load of the combined model component 
sequence.(14) At the same time, the load data of a power system has large capacity. To improve 
the ability of the load forecasting method by feature extraction, Yuan et al. proposed a method 
that introduced an extreme learning mechanism into a traditional deep belief network to combine 
the strong generalization ability of extreme learning and the advantages of a deep belief 
network.(15) Wang et al. proposed a forecasting method based on pole symmetrical empirical 
mode decomposition (ESMD)–permutation entropy (PE) and an adaptive deep belief network 
(ADBN) to improve the short-term power load forecasting performance.(16) In addition to 
historical load data, other factors, such as electricity price, affect load changes. Wang et al. 
clustered the factors that affect load forecasting, and the clustering data were used to train a 
model to comprehensively consider the factors that affect the load and improve the prediction 
accuracy.(17) The above methods are examples of offline prediction. Fekri et al. proposed an 
online adaptive recurrent neural network (RNN) for load forecasting that is capable of 
continuously learning from newly arriving data and adapting to new patterns.(18)
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 The above machine learning methods achieved good results in power system load forecasting. 
However, the amount of data needed to be collected and processed by the above methods was 
huge, the models were complex, and the effects of meteorological factors on load, especially 
those of temperature and humidity on residential electricity consumption, were not fully 
considered. Through appropriate sensors installed in a microgrid, power consumption, 
temperature, and humidity data can be obtained. In this study, we process and analyze these data 
to achieve accurate load forecasting. To ensure the rapidity, accuracy, and efficiency of load 
prediction in a microgrid system, deep learning is introduced into microgrid load prediction, and 
we propose a method for the short-term load prediction of a microgrid system based on 
multivariable and multistep long short-term memory (MM-LSTM) that considers the effects of 
meteorological factors, such as temperature and humidity, on load data. The prediction model is 
based on Keras, an open-source artificial neural network library written in Python for the 
design, debugging, evaluation, application, and visualization of deep learning models, and the 
power consumption and meteorological data of six districts of New York are used for load 
prediction to verify the effectiveness of the method.

2. Construction of MM-LSTM Model

2.1 Introduction of LSTM model

 The RNN is effective for processing data with sequence characteristics. However, the 
learning ability of the RNN deteriorates with increasing distance between the past information 
and the current prediction information, which is called gradient disappearance. Long short-term 
memory (LSTM) was proposed to solve the problem of RNN gradient disappearance.(19)

 A cell processor is added to the LSTM algorithm with three gates shown in Fig. 1: the forget 
gate ft, input gate it, and output gate ot.(20) The memory unit update process is used to determine 
whether information is adopted after it enters the LSTM. Only the information that conforms to 

Fig. 1. Standard structure of LSTM.
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the algorithm authentication is retained; otherwise, it is eliminated through the forget gate to 
solve the problem of long-term dependence of data. The gradient disappearance problem of the 
RNN can be solved by this process.

2.2 Update process of LSTM memory unit

2.2.1 Forget gate

 The function of the forget gate is to determine how much information can be transferred from 
the previous cell state Ct−1 to the current cell state Ct. If its output is 0, the information 
representing the cell state Ct−1 at the previous moment is eliminated; if the output is 1, all the 
information representing the cell state Ct−1 at the previous moment is retained. The process can 
be expressed as

 ft = σ(Wf × [ht−1, Xt] + bf), (1)

where σ is the activation function sigmoid, Wf is the matrix weight, which is equal to the product 
of the output ht−1 of the hidden layer of the forget gate ft at the previous moment and the input xt 
at the current time, and bf is the bias.

2.2.2 Input gate

 The function of the input gate is to determine which information in the new input information 
needs to be transferred to the memory unit. It uses the activation function sigmoid to filter out 
the values used for updating. The function of the tanh layer is to generate candidate states of new 
memory units at the current time. It can be seen from Fig. 1 that these two parts of the process 
can be expressed as

 it = σ(Wit × [ht−1, Xt] + bi), (2)

 Ct = tanh(Wc × [ht−1, Xt] + bc), (3)

where Wit is the matrix weight of input gate it at the current time, Wc is the matrix weight of the 
newly generated information at the current time, and bc is the bias.

2.2.3 Updating the cell state

 The updating of the cell state is a process of discarding unnecessary and increasing 
information. This process involves the addition of two parts to obtain candidate values: the 
product of the output of the forget gate ft and the cell state Ct−1 at the previous moment, and the 
product of the input it of the input gate and the current cell state Ct. The process is expressed as

 Ct = ft × Ct−1 + it × Ct. (4)
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2.2.4 Hidden layer output and output gate

 The initial output of LSTM is obtained by controlling the output gate ot using the sigmoid 
function, and then the cell state Ct is compressed to (−1, 1) by the tanh activation function. The 
output of the model is the initial output multiplied by the value of the cell state Ct treated by the 
tanh activation function. The output is expressed as

 ot = σ(Wot × [ht−1, Xt] + bo), (5)

 hi = oi × tanh(Ci), (6)

where Wot is the matrix weight of the output gate ot at the current time, and the tanh function can 
compress the information and stabilize the numerical value.

2.3 Operating principle of LSTM

 The operating principle of LSTM is shown in Fig. 2. LSTM consists of t time steps and two 
network layers. The load data constitute the time series x1, x2, x3, x4, …, xt. The first work unit of 
the first layer of the network calculates the current response with the initial unit and hidden 
states after receiving the data x1, and transmits the response to the second and first units of the 
upper layer. At the next moment, the second unit of the first layer transmits the calculation 
results to the third and second units of the second layer according to the input data x2 and the 
state quantity of the previous unit h1

1, and so on. The unit input of the second layer is the output 
of the first layer. By passing the result of the calculation in the same way as for the first layer, the 
output response is calculated. The output of each time step is the hidden state of each unit ht

k. In 

Fig. 2. Network layer of MM-LSTM.
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the LSTM network, the time series is divided into several ordered data segments according to 
the time step, and the output results are calculated with different weights in the work units of 
each data segment. The prediction method with a time step of one is called the single-step 
prediction method, and the prediction method with a time step greater than one is called the 
multistep prediction method.(21)

 It can be seen that when the time step is set to one, only one cell provides the weight and the 
response of the output and input, and all data pass through one unit to establish the information 
persistence of time series data. In a network with multiple time steps, multiple units provide 
different weights for time series. Moreover, the persistence of information is established not only 
in the unit itself, but also for the time series between the linked units. It also increases the 
correlation of time series data in time. Therefore, to a certain extent, the multi-time-step network 
model can be time-dependent. The sequence provides more abundant weight links and multiple 
information correlations in the response process. On this basis, an MM-LSTM method is 
proposed.

3. Experimental Analysis

3.1 Data selection

 After 2014, New York has reduced the 100 h electricity demand with the highest annual value 
by using the distributed energy management method, which can delay the power system and 
reduce the electricity cost. It is estimated that this will save the state government $1.2–1.7 billion 
every year. With the continuous improvement of its power data monitoring and forecasting 
system, New York gives full play to the potential of distributed power resource management and 
control in each region, improving the load factor and thus helping improve the utilization rate of 
infrastructure, reduce excessive investment, and ensure the reliability of the power system. The 
Brooklyn & Queens Power Demand Management Project is the first such project in New York. 
At present, the whole state is testing the effect of such projects. As another example of a 
demonstration project, United Edison created a “virtual power plant” by integrating distributed 
solar photovoltaic and battery energy storage resources, similarly to a traditional power plant, 
providing important services such as capacity and frequency regulation to the power grid. In 
cooperation with two private enterprises, United Edison has installed 1.8 MW solar photovoltaic 
power generation facilities, as well as a battery energy storage system in 300 users’ homes, and 
added cloud technology to ensure that power companies can directly control the integrated 
system.
 Through the tracking forecast and real-time management strategy of the power demand and 
electricity price, the district power company will buy electricity from power plants one day or 
several days in advance. Therefore, the real-time prediction of power demand and electricity 
price can accurately predict the future power demand and electricity price trends on the basis of 
previous data, optimize the power dispatch of the state grid, and ensure the stable and safe 
operation of the power system.
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 Here, we consider the power consumption, temperature, and humidity data from June 1, 2020 
to June 25, 2020 in six districts of New York: Capital (CAPITL), Central (CENTRL), Dunwoodie 
(DUNWOD), Genesee (GENESE), Hudson Valley (HUD VL), and Long Island (LONGIL). The 
unit of power consumption is MWh, the update frequency of the power consumption data is 5 
min, and no data are missing. The integrity of the data set is very high, making it very suitable 
for research on microgrid load forecasting and the optimal regional power distribution. A total of 
7200 load data and corresponding temperature and humidity data are used as the original data 
for analysis and prediction.

3.2 Establishment of prediction and evaluation indexes

 In this paper, root mean square error (RMSE), mean absolute error (MAE), and mean absolute 
percentage error (MAPE) are used as the prediction and evaluation indexes:
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Here, yi is the true value, yp is the forecast value, and n is the number of load points to be 
predicted.

3.3	 Algorithm	verification

3.3.1 Network parameter training

 In this study, an MM-LSTM prediction model based on Keras is built. The simulation is 
carried out on a computer with an Intel (R) Core (TM) i7-6700, 3.4 GHz CPU with 32 GB RAM.
 To verify the effect of the step size on the accuracy of the prediction model and select the 
best step size, we consider data in CAPITL as the original data for analysis and prediction with 
Adam as the optimization algorithm. The step size is set to 1, 2, 5, 10, 15, 20, and 25. 
 The obtained prediction and evaluation indexes are shown in Table 1. With increasing step 
size, the prediction performance of the model increases, the error decreases, and the training 
time increases. However, when the step size is increased from 20 to 25, there is negligible 
improvement in accuracy, but the training time further increases. Considering the accuracy 
and training time, the step size of the prediction model in this study is set to 20.
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 To verify the effect of the optimization algorithm on the accuracy of the prediction model 
and select the best optimization algorithm, again we select the data in CAPITL as the original 
data for analysis and prediction with a step size of 20, and the results obtained with the 
AdaGrad, RMSProp, Adam, and AdaDelta algorithms are used for comparative analysis. The 
experimental prediction and evaluation indexes for the different optimization algorithms are 
shown in Table 2. The values of RMSE, MAE, and MAPE are the lowest for Adam. Considering 
the accuracy and training time, we select Adam as the optimization algorithm in this study.

3.3.2 Simulation analysis of prediction model

 The step size of the prediction model is set to 20, that is, the load data of the first 100 min is 
used to predict the load data of the next sampling time. The optimization algorithm is Adam and 
the number of epochs is set to 500. In the MM-LSTM prediction model, 6700 data from the six 
districts of New York are selected as the training set and 500 data are selected as the test set to 
evaluate the performance of predicting the short-term load of the microgrid.
 The actual and forecast load curves for the six districts are shown in Figs. 3–8. The forecast 
load is well fitted with the actual load for each district, showing the high prediction accuracy of 
the prediction model.
 The prediction and evaluation indexes when the load data of different districts are used in the 
prediction model are shown in Table 3. The lowest values of RMSE and MAE are 8.827 and 
6.775, respectively, for the load data sets from GENESE. The lowest value of MAPE is 0.617, 
which is for the load data sets from CAPITL. The highest values of RMSE, MAE, and MAPE are 
19.745, 15.800, and 1.282, respectively, for the load data sets from HUD VL. The prediction of 
the model is relatively accurate and the error is relatively small for all six districts.

Table 1
Comparison of prediction and evaluation indexes for different step sizes.
Step size RMSE MAE MAPE (%) Training time (s)

1 15.875 11.914 0.757 6.7510
2 15.395 11.546 0.737 8.3350
5 15.143 11.247 0.709 11.4360

10 14.013 10.196 0.642 14.2250
15 13.533 9.894 0.623 17.6410
20 13.520 9.752 0.617 20.7410
25 13.512 9.733 0.611 28.7720

Table 2
Comparison of prediction and evaluation indexes for different optimization algorithms.
Optimization algorithm RMSE MAE MAPE (%) Training time (s)
AdaGrad 14.018 10.471 0.659 21.2530
RMSProp 25.694 20.928 1.285 23.4260
Adam 13.520 9.752 0.617 20.7410
AdaDelta 22.218 16.967 1.084 18.7720
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Fig. 3. (Color online) Actual and forecast load curves of CAPITL.

Fig. 4. (Color online) Actual and forecast load curves of CENTRL.

Fig. 5. (Color online) Actual and forecast load curves of DUNWOD.

Fig. 6. (Color online) Actual and forecast load curves of GENESE.
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Fig. 8. (Color online) Actual and forecast load curves of LONGIL.

Fig. 7. (Color online) Actual and forecast load curves of HUD VL.

Table 3
Comparison of prediction and evaluation indexes in different regions.
District RMSE MAE MAPE (%)
CAPITL 13.520 9.752 0.617
CENTRL 19.376 14.540 0.838
DUNWOD 8.857 6.898 0.838
GENESE 8.827 6.775 0.620
HUD VL 19.745 15.800 1.282
LONGIL 18.324 14.136 0.471

4. Conclusion

 To ensure accurate and rapid load forecasting in a microgrid system and improve the stability 
of microgrid operation, we proposed an MM-LSTM prediction method to forecast the short-term 
load of the microgrid, fully considering the impact of temperature and humidity and other 
meteorological data obtained from sensors installed in a microgrid on load forecasting, where 
the model is built using Keras. By considering different step sizes and optimizing algorithms in 
the prediction model simulation, the best step size and optimizing algorithm were selected. Load 
forecasting using the prediction method was carried out using the electricity consumption, 
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temperature, and humidity data of six districts of New York, United States. The experimental 
results show that the method has high accuracy. The method can be used to forecast the short-
term load of microgrids and for the practical application of microgrid short-term load prediction.
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