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 Path planning has always been a hot research topic in various sensor applications of car-like 
mobile robots (CLMRs). In a known or unknown map information environment, a safe collision-
free path of a CLMR from the starting point to the endpoint is planned according to strict 
indexes such as the shortest time and distance and the lowest energy consumption. To minimize 
the additional delay caused by the time-delay system in a remote sensing CLMR, a new 
predictive control algorithm is proposed for use in nonvisual environments. On the basis of the 
dynamic analysis and remote sensing model of the CLMR, the Smith predictor is used to 
compensate for the signal delay between the PHANTOM Omni controller and the CLMR, and 
reduce the positioning error caused by the delay. The grey prediction (GP) model is used to 
predict the values of the sensors on the CLMR and reduce the remote-control disoperation due to 
the delay. The feasibility of the GP algorithm is demonstrated by simulation, and a control 
experiment of force feedback between the PHANTOM Omni controller and a CLMR in a 
nonvisual environment demonstrated the feasibility of the system. The compensation effect was 
clearly shown, despite the experiments being performed by remote control with manipulators.

1. Introduction

 Modern industrial production control is often accompanied by a time-delay system, which 
makes the system unable to accurately track its input. Moreover, once the system is affected by 
external interference, the overshoot of the system will gradually increase, affecting its stability. 
Serious overshoot can even endanger the safety of equipment and personnel. Therefore, 
compensating for the delay effect is an important topic in the field of car-like mobile robots 
(CLMRs) and also a research focus in the military, aviation, ocean, and power generation 
fields.(1)

 In recent years, the theoretical research and practical application of the Smith predictor in 
modern industrial production processes have made remarkable progress.(2,3) To solve the delay 
problem in principle, Kirtania and Choudhury proposed a predictive controller with long dead 
times and designed a delay compensation device so that there was no lag between the output of 
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the controller and that of the system.(4) In other words, the Smith predictor can compensate for 
the delay of the controlled object and add a predictive compensation device in the closed-loop 
feedback loop. By adjusting the compensation device, the delay factor in the transfer function of 
the control object can be effectively isolated to improve the stability of the system and avoid 
large overruns.(5) In addition, the grey prediction (GP) model is at the core of grey system theory, 
which mainly consists of a generation function and grey differential equation, in which the basis 
is the grey generation function and the modeling method is differential fitting.(6) The solution of 
the grey quantity of the prediction model is to find patterns in the chaotic raw data, rather than to 
seek its statistical law and probability distribution. The basic idea is to process the original data 
into a regular data series and finally establish a GP model. The core of the GP model is the GM 
(1,1) model,(7) which can carry out modeling and prediction with a small amount of known 
information and has been extended to many practical prediction models.
 To resolve the above problems, in this paper, we propose a new system to control CLMRs in a 
nonvisual environment. Then the Smith predictor is applied to compensate for the signal delay 
between the manipulator and the CLMR. Next, the GP model is used to predict the value 
obtained by the CLMR sensors to reduce the remote-control disoperation caused by the time 
delay. Finally, the feasibility of the algorithm and system is demonstrated by simulation 
experiments.

2. Related Works

 CLMRs are gradually having an increasing effect on people’s daily lives. In the CLMR field, 
path planning, which can be divided into global and local path planning, has always been a hot 
research topic. The common global path planning algorithms include raster-based methods,(8) 
sampling-based methods,(9) and some intelligent algorithms.(10) Such algorithms are usually 
based on accurate global maps, which are often difficult to grasp in advance in real situations. 
The local path planning algorithm refers to the real-time planning of a CLMR according to the 
data of various sensors (e.g., 2D lidar (11) and camera (12)), which can better adapt to the unknown 
working environment.
 Considerable research has been carried out on full traversal path planning CLMRs.(13,14) The 
progress in research on applying CLMRs to the manufacturing industry has been remarkable. In 
particular, the United States and Japan first introduced CLMRs, and the United States 
formulated a strategic plan for a ground space–human combat platform, which was the prelude 
to research on CLMRs in the early 1980s. In addition to CLMR research, Japan will also focus 
on middleware research in the future. China is also performing increasing research on CLMR, 
and the development of CLMR technology has long been regarded as an important development 
field of robot research. The traditional ant colony optimization algorithm (ACO) applies a weight 
matrix to form a connection relationship between the shortest path and obstacles in the range of 
activity of a CLMR and optimize the spatial distance of each element to obtain path planning 
results. Although the traditional ACO considers obstacles and other problems that affect the path 
distance, it has the disadvantages of slow convergence and easy trapping at local optima. To 
solve the problems encountered by an CLMR in path planning, Hwang and Chang proposed a 
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path planning algorithm for hexapod robots facing unknown maps.(15) In this algorithm, the 
shape of the obstacle is classified by ranging group and fuzzy rules, an environmental map is 
built, a modified repulsive function is introduced, and local path planning is carried out by the 
artificial potential field method. The simulation results show that the path planning method has 
high feasibility, but it does not fully consider the impact of a full traversal environment, resulting 
in a long path planning process. Majd et al. proposed a CLMR path planning method based on 
arc-linear-arc theory according to double-arc theory, and a tracked mobile platform was used to 
experimentally verify this method in a laboratory environment.(16) The experimental results 
showed that the mean values of the lateral error and longitudinal error in path planning are low, 
which indicates that the method is effective for applications, but it cannot effectively obtain the 
optimal path. To better maintain a formation of CLMRs, Rathinam et al. transformed the 
formation control problem into a trajectory tracking problem. According to the position of each 
CLMR in the formation, trajectory parameters were calculated separately, and a formation of 
CLMRs was controlled on the dynamic level, although no research related to dynamic 
coordination and dynamic control was conducted.(17) To sum up, the pilot-follow method,(18) 
virtual structure method,(19) and behavior-based method(20) are often adopted in research on the 
control of CLMR formations. On the other hand, owing to external factors such as weather, the 
pilot speed and workshop distance must be constantly adjusted during formation planning. The 
above method must constantly calculate and update the track parameters used to follow the 
CLMRs, which increases the calculation burden of the system, causes instability, and reduces 
the practicality of the system.
 With the above background, a remote-control system of a CLMR based on a predictive 
algorithm for local path planning is proposed in this paper. To reduce the positioning error 
caused by the additional delay, the Smith predictor is used to compensate for the additional delay 
between a PHANTOM Omni controller and the CLMR. At the same time, to reduce the 
disoperation caused by the additional delay, the GP model is used to predict the values of sensors 
on the CLMR.

3. Controller and CLMR Modeling

 The haptic device PHANTOM Omni from US Sensible Technologies serves as the controller 
in the GP control algorithm. After the remote monitoring system is started, the manipulator 
controls the CLMR by operating the interactive PHANTOM Omni device. According to the 
position relationship of the interaction process, the position attitude of the CLMR is collected to 
determine whether a collision has occurred. If a collision has occurred, the PHANTOM Omni 
controller is triggered and the collision force is calculated using the collision data. The controller 
then moves the handle of the force feedback device to the correct location, then holds down the 
button to control the CLMR, and releases the button to stop control. If other objects (such as 
obstructions) are added to the environment, the manipulator can also simulate the environment 
force (contact force, gravity, friction force, spring force, etc.) to “feel” the pilot. If the actual 
CLMR is equipped with mechanical sensors, the PHANTOM Omni controls the CLMR and can 
also read the mechanical information and feed it back to the manipulator.
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3.1 Structural modeling of PHANTOM Omni controller

 The general kinetic equation of the one-degree-of-freedom CLMR is

 M(q)q″ + C(q, q′)q′ + d + G(q) = τ, (1)

where nq R∈  is the joint rotation angle, q′ is the angular velocity of the CLMR, q″ is the angular 
acceleration of the CLMR, M(q) is an n × n positive definite inertia matrix, C(q, q′) is a matrix 
comprising the Coriolis force and centrifugal force terms, G(q) is the gravity term, d is the 
external interference, and nRτ ∈  is the torque vector of each joint of the CLMR, namely, the 
control input. The dynamic model of the CLMR has the following characteristics: the inertia 
matrix M(q) is symmetric positive definite and bounded, and a skew-symmetric matrix 
M(q) − 2C(q, q′), namely, XT(M(q) − 2C(q, q′)) = 0, exists for any vector X. The PHANTOM 
Omni controller studied in this paper is shown in Fig. 1.
 The PHANTOM Omni CLMR has three rotating joints q1, q2, and q3. Its inertia matrix M(q) 
is the 3 × 3 matrix
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, (2)

where M12 = M21 = a7cos(q2), M23 = M32 = −0.5a5sin(q2 − q3) + 0.5a6cos(q2 − q3), 
M11 = a1 + a2cos(2q2) +a3cos(2q3) + a4cos(2q3) + a5cos(q2)sin(q3) + a6cos(q2)sin(q3), M22 = a8, 
and M33 = a9 exist. Here, a1, a2, ..., a9 are constants greater than 0. The combined vector of the 
Coriolis force, the centrifugal force terms, and the gravity term is

Fig. 1. (Color online) Architecture of PHANTOM Omni controller.
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 V(q, q′) = [V1, V2, V3]T = C(q, q′)q′ + G(q). (3)

 Since the movement of the second and third joints is on the same horizontal plane, to simplify 
the operation, the second joint is locked in this study, and only the angle variables q1 and q3 of 
the first and third joints are considered for analysis and research. At this point, corresponding to 
Eq. (2), the specific expressions of each matrix and vector in the PHANTOM Omni CLMR are 
as follows:

 1 2 2,3 3 2,3 4 3 5 3

6

0
( )

0
a a c a s a c a s

M q
a

+ + + + 
=  
 

, (4)

where ci = cos(qi), si = sin(qi), c2,i = cos(2qi), and s2,i = sin(2qi). Similarly, the combined vector of 
the Coriolis force, the centrifugal force terms, and the gravity term in our study of the first and 
third joints is the 2 × 1 matrix.
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 Equation (5) is substituted into Eq. (1) to obtain the following general kinetic equation:

 M(q)q″ = V(q, q′) + d = τ. (6)

 In this paper, X1 = q = [q1, q3] and 2 1 3[ , ]X q q q′ ′ ′= =  are the state variables, then the state 
space expression of the PHANTOM Omni CLMR dynamic equation is defined as

 ( )
1 2

1
2

,

( , ) .

X X

X M d V q qτ−

′ =
 ′ ′= − −

 (7)

3.2 Dynamic model of CLMR

 The mobile device of the CLMR consists of two driving wheels and two training wheels as 
shown in Fig. 2. Forward power is provided by the rear wheels and the direction is controlled by 
steering the front wheels. In a system composed of N CLMRs and one PHANTOM Omni 
controller, the kinematic model of the ith CLMR can be expressed as
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 Unlike a differential mobile robot, the steering angular velocity of a CLMR is related to the 
forward velocity and spot steering cannot be realized. The nonholonomic constraints in the 
moving process for the CLMR can be expressed as
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 The motion of the CLMR is mainly controlled by longitudinal traction and the steering force. 
Considering that the steering angle of the front wheel is usually relatively small in actual 
operation, its dynamic model can be expressed as
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where τvi is the traction force; τwi is the torque applied on the steering wheel; Fui is the friction 
force in the forward direction; Fwi is the transverse force, both ( , )v

di iv tτ  and ( , )w
di i tτ ω  are the sum 

of other friction forces and external interference; Ji, Jb, Jv, and Jh are the uncertain inertia 
coefficients in the system, which are related to the parameters of the CLMR; and r is the wheel 
radius.

Fig. 2. (Color online) Structure of CLMR.
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4. Improved Smith Predictor

4.1 Improved Smith predictor

 A schematic diagram of control optimization with the Smith predictor method is shown in 
Fig. 3. The predictor consists of a given regulator, a load regulator, and a system model. In Fig. 3, 
R(s) is the input, D(s) is the load disturbance, ( ) d s

pG s e τ−  is the transfer function of the controlled 
object, d se τ−  is the pure delay link, and τd is its delay time. The system model is made up of a 
nondelay model * ( )pG s  and an equivalent delay time *

dτ . To ensure that the system output response 
has no residual difference, both regulators are proportional integral (PI) action regulators, i.e.,

 1( ) 1 , 1, 2CJ CJ
CJ

G s K J
s T

 
= + = ⋅ 

, (11)

where KCJ is the proportional gain and TCJ is the time constant. This algorithm differs from the 
original Smith algorithm in that the given response and load response of the closed-loop system 
are uncoupled and are tuned by two separate PI regulators GC1(s) and GC2(s), respectively.
 The controlled object consists of a first-order link and a delay link, and the transfer function 
is defined as

 ( )
1

d dps s
p

p

K
G s e e

s T
τ τ− −=

+ ⋅
, (12)

where Kp is the system gain and Tp is the time constant. Then the transfer function of the system 
model is

Fig. 3. Schematic diagram of Smith predictor control optimization.
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 If the system model is ideal, and therefore the input and load responses can be independently 
controlled, i.e., GC1(s) and GC2(s) confirm the transfer function Wr(s) and the load disturbance 
function Wd(s), respectively, then the two controllers can be adjusted separately to improve the 
tracking and anti-interference performance. Moreover, the system model is not included in the 
load disturbance part of the algorithm, so the accuracy of the system model does not affect the 
anti-jamming ability of the load.

4.2 GP algorithm

 GP, a prediction method for systems with uncertain factors, can identify the system factors 
and the development trend of the different degrees in the correlation analysis, process the raw 
data to find the law by which the system changes, generate data sequences with strong regularity, 
and then set up a corresponding differential equation model to predict the future trend of the 
development. In the establishment of the traditional GM (1,1) model, the sequence generated by 
one summation has the grey exponential rate, and the fitting and prediction accuracy of the GM 
(1,1) model is determined by the parameters a and b. In the traditional modeling process, the 
whitening differential equation [Eq. (15)] is estimated by the least squares method.

 
(1)

(1)( ) ( )dx t ax t b
dt

+ =  (15)

 The general solution of the whitening differential equation has an exponential form. Here, the 
known data is first used to perform polynomial fitting to approximate the exponential function, 
and then a and b are estimated by an algorithm. According to the traditional GM (1,1) modeling 
process, the solution function of the established whitening differential equation is

 (1) (0)( ) (1) atb bx t x e
a a

− = + − 
 

. (16)
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 The accumulated data x(1) is used to perform polynomial fitting by the least squares method 
to obtain the polynomial.

 1
1 2 1( ) n n

n ns t a t a t a t a−
−= ⋅ + ⋅ + + ⋅ + . (17)

 By using several polynomial fittings and the general trend of the accumulated data image, 
multiple polynomial fitting can be achieved. The appropriate order is selected depending on the 
size of the total relative residual 1 ( )n

km kε
=

=∑ . The first derivative of the polynomial s(t) can be 
defined as follows:

 (1) 1 2
1 2 1( ) ( ) ( 1)n n
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−′= = ⋅ ⋅ + ⋅ − ⋅ + + . (18)

 Currently, 
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=  exists. Therefore, the whitening differential equation can be 

transformed into y(1)(t) + a ∙ x(1)(t) = b. Equation (18) can be expressed in matrix form:
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. By the least squares method, the estimated 

value of the parameter column matrix u for which the objective function J(u) = Yn − Bu reaches a 
local minimum is obtained as

 1ˆˆ̂ [ , ] ( )T T T
nu a b B B B Y−= = . (20)

 The obtained value ˆˆ̂ [ , ]Tu a b=  is substituted into the traditional GM (1,1) model. Then the 
solution function of the whitening differential equation is defined as

 ( ) ˆ(0)
ˆ̂

ˆ 1 (1) , 0, 1, ..., 1
ˆ̂

atb bx k x e k n
a a

− 
+ = + − = −  

 
. (21)

5. Results and Discussion

 In this paper, a PHANTOM Omni controller, PC, and CLMR are used to build the entire 
working system. The composition and signal path of the system are shown in Fig. 4. The 
PHANTOM Omni controller and the computer use the IEEE1394 serial standard for synchronous 
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data transmission, and the CLMR and PC employ a Bluetooth connection. To evaluate the 
performance of the remote monitoring CLMR system presented in this paper, before applying 
the GP algorithm to the CLMR operation, the possibility of using the Smith predictor to 
compensate for the error caused by delay is verified by MATLAB simulation. This simulation 
experiment is divided into three situations: a remote-control exercise without inserting any time 
delay (i.e., the most ideal case), the effect after the time delay due to step-by-step insertion, and 
the remote-control exercise only using the Smith predictor.

5.1 Parameter settings

 We assume that the CLMR cluster is composed of the PHANTOM Omni controller and four 
CLMRs, and the physical parameters selected by the CLMR in the simulation are shown in 
Table 1. The expected speed for a given manipulator is vd = 1.7 m/s and the expected queue 
spacing is pij = 34 m. To verify the performance of the CLMR cluster forming the desired queue 
and moving along the desired path, in the initial state, CLMRs are randomly distributed on both 
sides of the desired path, and the angle between the initial direction and the starting path point of 
each CLMR is set to no more than 90º due to the large gyration radius.

Fig. 4. (Color online) Block diagram of the entire system.

Table 1
CLMR parameters.
Parameter Description Value
mi Mass of CLMR 30 kg
bi Distance between rear wheel and center of gravity 0.55 m
Li Wheelbase 1.2 m
J Moment of inertia of wheel 5 kgm2

vd Expected speed 1.7 m/s
pij Expected queue spacing 34 m
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5.2 Experimental results

 To evaluate the performance of the proposed remote monitoring CLMR system, an 
experimental delay of 0.5 s is introduced in the experiment. We perform three comparative 
experiments: remote control without any time delay (the optimal case),(15) remote control using 
only the Smith predictor after the time delay,(16) and remote control using the GP algorithm. The 
sensor transmits the converted force feedback information to the operator every 0.5 s, and the 
manipulator uses this information to convey the operation instruction to the CLMR every 0.5 s. 
The experimental data of the three cases are shown in Fig. 5. The remote-control track without 
introducing any time delay, marked in red, is smoother than the other tracks, and almost 
approaches the optimal track in this environment. The uncompensated track in the case of a 
delay is marked in green. The remote-control track obtained via using the Smith predictor and 
the GP algorithm system (marked red and blue, respectively) is smooth and the CLMR reaches 
the destination without colliding with any obstacles.
 Figure 6 shows the distance between the CLMR and the obstacle measured in the experiment 
whose results are shown in Fig. 5. The minimum sensing distance of the ultrasonic sensor is 10 
cm and the maximum sensing distance is 50 cm. In the absence of a time delay (marked red), 
when the distance between the CLMR and the obstacle becomes small, the manipulator responds 
quickly and adjusts the course, making the journey smooth and short. However, in the case of 
using only the Smith predictor (marked black), even though the CLMR is close to the obstacle, 
the manipulator cannot respond quickly and the CLMR remains below the minimum distance 
from the obstacle (10 cm) for a long time, thus increasing the collision probability and the 
running time. With the insertion of a time delay, when using the system based on the proposed 
algorithm (marked green), the CLMR can always maintain an effective distance from the 
obstacle, allowing the running direction of the CLMR to change smoothly and ensuring a 
relatively short running time.

Fig. 5. (Color online) Trajectory of CLMR in nonlinear motion.
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6. Conclusions

 In this paper, the problem of CLMR formation control with model uncertainty and an 
unknown external disturbance is studied. A remote-control system for a CLMR based on the GP 
algorithm is proposed. To reduce the positioning error caused by an additional delay, the Smith 
predictor is used to compensate for the additional delay between the PHANTOM Omni 
controller and the CLMR. At the same time, to reduce the disoperation caused by the additional 
delay, the GP model is used to predict the values of sensors on the CLMR. The simulation and 
experimental results show that the system using the Smith predictor and GP algorithm has a 
good compensation effect on the error caused by the time delay in a nonvisual environment with 
a time delay. This method is helpful for handling the time delay in various communication 
methods and communication environments. Because the GP algorithm only changes the internal 
control algorithm without changing the communication device and environment, it can be used 
in control, human–computer interaction, and other fields.
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