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 In this research, we focus on the detection and monitoring of iron content in mining areas, 
which is of great significance in many hyperspectral imaging (HSI) studies that can be used to 
assess the advantages and disadvantages of the soil environment. Compared with the traditional 
grid sampling and interpolation methods, the unmanned aerial vehicle (UAV) hyperspectral 
inversion method can be used to quickly account for the large-area inversion of iron content and 
draw thematic maps of iron concentration in a given area suitable for mining for deposits. In this 
paper, we propose a novel classification methodology for selecting the optimal model for the 
UAV hyperspectral inversion of iron content using mathematical and computational modeling. 
Through the cross-validation comparison of three regression models, the most suitable model is 
found for the inversion of soil iron content. In addition, we also analyzed and compared the 
effects of different feature sets, namely, band selection, principal component analysis (PCA), and 
minimum noise fraction (MNF), on the model accuracy. Our experiments have proved that 
among many inversion models and feature combinations, the partial least squares regression 
(PLSR) model combined with band selection, PCA feature extraction, and MNF feature 
extraction can greatly improve the inversion accuracy of iron concentrations in the identified 
areas.
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1. Introduction

 The monitoring of iron concentration in iron mining areas plays a guiding role in 
environmental protection and land reclamation. Since mining engineering is a series of mineral 
separation processes, iron ore mining areas usually contain multiple intermediate product areas 
with different levels of intermediate products, such as ore mountains, mine tailings, dumping 
sites, and fine mining areas. Mine reclamation usually adopts different restoration methods for 
different mining areas. Monitoring the iron concentration in the soil of different iron mining 
areas is helpful for assessing the quality of the production environment, production efficiency, 
and ecological restoration effects.
 Traditionally, a large number of on-site sampling, chemical analysis, and interpolation 
methods are often used to study the concentrations of iron and other metals in the soil.(1) With 
the rapid development of hyperspectral remote sensing technology and by constructing a 
regression model between hyperspectral data and metal concentration, the efficiency and 
accuracy of soil metal concentration estimation have been greatly improved.(2,3) By utilizing the 
advantages of hyperspectral data with high spectral resolution, wide spectral range, and 
powerful feature extraction ability, point-based spectroscopy technology can be widely used to 
estimate the metal concentration in the soil.(4) However, point-based spectrometer data are 
difficult to apply to the inversion of metal concentration in a large study area. Although 
researchers can use multispectral images, such as Landsat and Sentinel, their spectral resolution 
is low, and they are not sensitive to changes in the concentration of metals in the soil.(5)

 With vigorous developments in the fields of robotics and unmanned aerial vehicle (UAV) 
technologies in the past two decades, the development of hyperspectral imaging (HSI) 
technologies and UAV-based HSI applications provide unprecedented opportunities for remote-
sensing-enabled metal concentration mappings that show promise in rapid deployment and high-
efficiency in feature detection and accuracy. The UAV-HSI iron concentration inversion not only 
has the advantage of hyperspectral data, but also has excellent feature extraction capabilities. 
Besides, it has image-based remote sensing technologies, which can cover a large land space at a 
given time. This technology is of great significance to environmental monitoring and evaluation. 
In this work, we describe the inversion of soil iron concentration levels by producing a thematic 
map based on the obtained UAV hyperspectral images, which includes data collection, 
preprocessing, model selection and construction, and iron concentration prediction in the study 
areas. 
 This paper is divided into the following themes:
• First, the preprocessing of UAV hyperspectral big data is the key step of inversion. In this 

paper, a python script based on graphics processing unit (GPU) acceleration is developed 
independently on the basis of a photo scan library, which can automatically splice 
hyperspectral data and greatly improve the operating efficiency.

• Second, the cross-validation estimation method can be used to unbiasedly evaluate the 
performance of common regression models in the retrieval of soil iron content.

• Third, the generalization ability of the model is further optimized with feature extraction and 
band selection; thus, it can improve the accuracy of iron content inversion.
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• Finally, we conclude the paper with some of the limitations and future directions of our 
research work.

2. Methodology

2.1 Site selection and data collection

2.1.1 Introduction of study area

 The study site is located in a mine in Qian’an County, Tangshan City, Hebei Province. The 
metal deposit in Malanzhuang contains more than twenty types of mineral. The main minerals 
focused on this research work include iron, gold, copper, nickel, zirconium, and so forth, of 
which iron ore accounts for the largest proportion. In this study, we mainly choose the tailings 
pond in the mining area as the area for site selection and data collection. The land type of the 
study area is relatively simple, with a length of about 330 m from east to west, a width of about 
240 m from north to south, and a total area of about 79200 m2 as shown in Fig. 1.
 The main function of the tailings pond is to store the metals and nonmetals of the mine after 
sorting. Complete tailings treatment facilities guarantee environmental protection and 
sustainable mining. If the “waste residue” accumulated in the tailings pond is not properly 
treated, it will cause serious damage and pollution to the surrounding environment. Therefore, it 
is of great significance to monitor the iron content of the tailings pond and the soil around the 
tailings pond.

2.1.2 Data collection

 In previous studies, Yang et al.(6) used an HSI instrument to collect radiation data, whereas 
Wei et al.(7) used Nano-HyperSpec sensors to collect hyperspectral data from the river. In this 

Fig. 1. (Color online) Location, sampling points, and control points of study area.
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research, we used the Cubert UHD-185(8) hyperspectral-imaging camera mounted on a UAV. 
The camera parameters are shown in Table 1. The sensor provides 125 bands of information in 
the range of 450–950 nm and at a resolution of 21 cm. The flying height of the UAV was set to 
178 m, and a total of 1022 50 × 50 hyperspectral data cubes were obtained. The corresponding 
RGB images were obtained at a size of 1000 × 1000, and a spatial resolution of 0.05 m was also 
obtained from the data collected. Through hyperspectral image fusion, the total amount of 
hyperspectral image data reached 144 GB.

2.1.3 Field work and chemical analysis

 At noon on June 27, 2018, UAV hyperspectral data collection was carried out on a tailings 
pond in Malanzhuang Iron Mine, Tangshan. At the same time, ground control points were 
deployed and soil samples were collected, as shown in Fig. 2. There are six control points 
(longitude and latitude coordinates measured by RTK) and 26 ground sampling points (using a 
five-point sampling method to obtain soil samples).
 After completing the field collection, a third-party testing agency was found to use 
inductively coupled plasma (ICP) technology to analyze the concentration of iron in these soil 
samples.

Table 1
UHD185 spectral characteristic parameters.
Spectral range 450–950 nm
Sampling interval 4 nm
Spectral resolution 8 nm @ 532 nm
Number of channels 125

Fig. 2. (Color online) Panchromatic band image of UAV in tailings yard and location of sampling and control 
points.
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2.2 Data preprocessing and mathematical modeling

2.2.1 Image stitching

 On the basis of the photo scan library, a python script based on GPU acceleration was 
independently developed. This process can automatically splice the hyperspectral data, which 
greatly improves the operating efficiency. The specific implementation method is as follows. 
First, python script is used to stitch together all the images on a specific band followed by other 
band frequencies as specified by the user and parameter setup. The algorithm used in this 
process mainly includes the automatic mosaic line and GPU-based Sift algorithm, which quickly 
realizes the automatic splicing of massive hyperspectral data and is then followed by geocoding 
in the next step.

2.2.2 Geocoding

 After the image stitching is completed, a second-order polynomial fitting method based on 
six control points will be used to geocode the entire stitched hyperspectral image. The model 
selection is based on the model evaluation of partial least squares regression (PLSR), support 
vector machine (SVR), and artificial neural networks (ANNs) using cross-validation estimation. 
The derivation below is the mathematical formula of solving parameters using the least squares 
algorithm by fitting geocoding with polynomial parameters. The coding mainly uses multi-order 
nonlinear fitting, and the optimization method is the classic least square indirect method. The 
nearest neighbor index (NNI) was computed for both sets of geocoded incidents for each land 
type. The NNI is a common measure of spatial concentration and a component of other spatial 
statistics, such as nearest neighbor hierarchical clustering. All nearest neighbor calculations 
were computed, and the NNI is defined as

 NNI = Do / DE. (1)

 Do is the average nearest neighbor distance for a dataset, computed as 

 Do = Summation of Di / n, (2)

where Di is the nearest neighbor distance for land point i and n is the number of land points as 
shown in Fig. 2 in the dataset.
 In addition, DE is the expected nearest neighbor distance from a point pattern exhibiting 
complete spatial randomness, which is defined as

 DE = 0.5 / SQRT (n/A), (3)

where A is the geographic area of the study site. Assuming that n sets of control point spatial 
coordinates are given, there are n sets of image point coordinates corresponding to them, and the 
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image point coordinates are found using the ground point marks on the image. Then, there is the 
relationship shown in Eq. (4),  

 r = f(x, y) and c = g(x, y). (4)

A second-order polynomial fitting is used as follows:

 f(x, y) = ax2 + by2 + cxy + dx + ey + l, (5)

where x = 1, 2, 3, …, n.
 The known least squares indirect adjustment formula is

 V = Bx – l. (6)

Among which,

 x = (a, b, c, d, e, l) and l = (r1, r2, …, rn)t. (7)

By solving the equation, we can obtain

 Xr = (BTPB)(BTPl) = (BTB)(BTlc). (8)

For the parameter solving of c = g(x, y), we have replaced Eq. (8) to obtain Eq. (9) as 

 xc = (BTPB)(BTPl) = (BTB)(BTlc). (9)

For the calculation of the image point coordinates of the sampling point, it is assumed that there 
are m object coordinates as follows:

 (x1, y1), (x2, y2), …, (xm, ym). (10)

In this way, a one-to-one correspondence between the position of the ground point and the 
position of the pixel is established, and the image is geocoded into the WGS84 coordinate 
system, which can realize the automatic coding of hyperspectral images.

2.3 Establishment model

2.3.1 Model selection

 In this research, three commonly used regression models were applied: PLSR, SVR, and 
ANN. These models were adopted in this work for the estimation of iron concentration. PLSR(9) 

is a specific form of multivariate linear regression, and it is used here for the estimation of soil 
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properties. SVR, with the features of good generalization abilities and robustness to noise, is 
becoming popular in the investigation of geophysical and chemical properties.(9,10) ANN proved 
to be efficient in establishing the nonlinear relationship between soil heavy metal concentration 
and remote sensing data, which are used for the inversion of iron content that is widely used to 
estimate soil properties.(11)

2.3.2 Band selection and feature extraction

 Magendran and Sanjeevi proved through experiments that iron will have absorption peaks in 
the 700 to 870 nm spectrum.(12) We can observe in Fig. 3 the spectral curve with a relatively 
clear absorption peak in the 120–130 band. On the basis of previous research results, we tried to 
use 45 bands between 700 and 900 nm to build a model to improve the estimation accuracy of 
soil iron content. We compared the use of all spectrum bands and band selections as inputs to the 
PLSR model to obtain prediction accuracy. In addition, feature extraction was performed on the 
input spectral data to build a better regression model(13) using principal component analysis 
(PCA) and minimum noise fraction (MNF) models.

2.3.3 Accuracy evaluation

 By splitting the data set into a training set and a test set and evaluating the performance of the 
model based on the test set cross-validation, the available samples can be fully utilized and 
unbiased estimation can be guaranteed.(14) In this work, we mainly used the cross-validation 
method to design the experiment and evaluated the accuracy through the statistical coefficient of 
determination and the root mean square error.

Fig. 3. (Color online) Spectral curve diagram of ground feature points in tailings pond of Malanzhuang iron mine 
area.
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2.4 Map of iron element content 

 The best model and the best feature combination can be found through cross-validation. Once 
the model parameters of the best regression coefficient and the most effective input features are 
determined, we will input the best feature combination extracted from the entire hyperspectral 
image of the study area into the selected training model with the highest regression coefficient, 
which is used in the generation of an accurate iron content map as shown in Fig. 4. 

3. Results and Discussion

3.1 Model comparison

 The model selection process mainly uses cross-validation to evaluate the three empirical 
models of PLSR, SVM and ANN. Table 2 shows the accuracy statistics of training and test data. 

Table 2 
Model comparison with current methods.

Elements Model Training Prediction
Max Min Median Mean Max Min Median Mean

R2
PLSR 0.9965 0.0143 0.6224 0.5716 0.8613 0.0112 0.5954 0.4988
ANN 0.9672 0.0563 0.6559 0.6816 0.8192 0.1253 0.4598 0.4092
SVR 0.8989 0.2619 0.5718 0.6147 0.7996 0.1393 0.4731 0.4756

RMSE
PLSR 17426 946 6123 6257 17982 1454.5 7641 7432
ANN 15139 744 5219.4 5834 19731 1602.7 8630 8423
SVR 12337 507 6903 6492 16476 1528.5 7424 6902 

Fig. 4. (Color online) By band selection, the feature combination of PCA and MNF predicts the iron content 
through PLSR.
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The regression coefficients of PLSR and ANN are close to each other. The median determination 
coefficient of PLSR on the test data set reaches 0.5954, which is much higher than the median 
regression coefficient (0.4598) of ANN. This shows that the overfitting phenomenon of the ANN 
model is very serious. For the SVR regression model, the training coefficient of determination is 
the lowest among the three regression variables. However, the tested coefficient of determination 
is higher than that of ANN and it is lower than that of PLSR. On the test data set, the root mean 
square error of support vector regression is the smallest, with a median of 7424 mg/kg. The 
average root mean square error of PLSR on the test set is 7432 mg/kg, which is slightly higher 
than that of support vector regression, but far lower than that of the ANN model. According to 
the statistical data comparison of the coefficient of determination and the root mean square 
error, it can be seen that PLSR has the best generalization ability on this data set. 

3.2 Band selection

 Owing to the iron absorption peak in the 700 to 870 nm spectral range, we extracted 45 bands 
from the 700 to 900 nm spectral range from the hyperspectral image as the model input for iron 
content inversion. To evaluate the impact of these 45 bands on the inversion of iron elements, 
PLSR was used for model construction and accuracy evaluation. The accuracy results are shown 
in Table 3. The median values of the coefficient of determination and the root mean square error 
are 0.6311 and 5571 mg/kg on the test set, respectively. Compared with using all hyperspectral 
bands as the model input, using band selection can improve the accuracy of the model with an 
average determination coefficient of 0.5589.

3.3 Feature evaluation and selection

 In the inversion of hyperspectral soil heavy metal elements, adding feature extraction can 
effectively reduce the effect of noise on the model. Aiming at the impact of feature extraction on 
the accuracy of the regression model, in this paper, we mainly choose several common feature 
extraction methods to construct the regression model and evaluate the accuracy. Common 
feature extraction methods mainly include PCA, MNF, and so forth.
 In this paper, the spectral data after band selection and different combinations of PCA and 
MNF are mainly used to retrieve the soil iron concentration. It mainly includes three different 
combinations of band selection + PCA, band selection + MNF, and band selection + PCA + 
MNF. Table 4 shows the three different feature combinations to obtain statistical data of 
determination coefficients through PLSR. When PCA or MNF feature extraction is separately 

Table 3 
Band selection determination coefficient and root mean square error statistics. 

Max Min Median Mean

Training R2 0.9503 0.2891 0.7773 0.6869
RMSE 16439 804 4892.6 5141

Prediction R2 0.9862 0.1082 0.6311 0.5589
RMSE 19831 1634 5571 5814
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added to the spectral data after the band selection, the accuracy will not improve, indicating that 
the presence of PCA or MNF alone does not help improve the model accuracy. 
 However, when both PCA and MNF features are added to the spectral data for band selection, 
the median R2 and average R2 on the test set reach 0.7122 and 0.6087, respectively, which are 
higher than the median R2 (0.6311) and average R2 (0.5589) obtained using only band selection.  
It can be seen that when the other exists, the simultaneous use of PCA and MNF helps the model. 
This result is consistent with the feature importance theory. That is, features that are not useful 
in themselves can be used together with other features to play a role.(15) 
 Therefore, to ensure the highest inversion accuracy of the regression model, we used the data 
after band selection and combined the features of PCA and MNF as the model input. Similarly 
distributed CNN technologies using the A3pviGrid architecture (16–18) were proposed and 
previously studied by Shankaranarayanan and other researchers. In our previous work,(19–24) the 
main innovations were twofold. First, the generative adversarial network (GAN) is based on a 
dense residual network, which fully learns the higher-level features of HSIs. Second, the loss 
function is modified using the Wasserstein distance with a gradient penalty, and the discriminant 
model of the network is changed to enhance the training stability. Hyperspectral image data 
were obtained from airborne visible infrared sensors of an imaging spectrometer, and the 
performance of ResGAN was compared with those of two HSI classification methods. Our other 
research works support high-performance experiments, which were previously used and form 
the basis of this study.

3.4 Iron concentration diagram

 The spectral data after appropriate band selection and feature map extraction were used in 
the post processing of the HSI data. These in turn were used as the model input to obtain the 
optimal regression inversion model for the prediction and inversion of the iron concentration 
map of the study area  as shown in Fig. 4. It can be seen that the iron content of the dumping site 
in the upper left corner (shown in the green frame) is much lower than that of the sedimentation 
tank area in the upper right corner (shown in the red frame). The lower left foot (indicated by the 
yellow frame) has the lowest iron concentration along the road, which is caused by dust. The 
land cover type proved the rationality and consistency of the iron content map. Although there 
are some shadow areas on the hyperspectral image, these shadow areas will affect the predicted 
texture, but the iron concentration changes in the shadow areas are not covered, and the 
boundaries of the high concentration areas are still clearly visible.

Table 4 
Statistical table of the coefficient of determination (R2) of iron in the inversion of the three characteristic 
combinations.

Element Characteristic 
combinations

Training Prediction
Max Min Median Mean Max Min Median Mean

R2
BS + PCA 0.9295 0.21954 0.6695 0.6913 0.9199 0.1003 0.6281 0.5416
BS + MNF 0.9703 0.2891 0.7773 0.6869 0.9865 0.1123 0.6302 0.5537

BS + PCA + MNF 0.9678 0.289 0.7811 0.6843 0.9322 0.1837 0.7122 0.6087
BS means band selection.



Sensors and Materials, Vol. 34, No. 4 (2022) 1497

4. Conclusion

 In this study, we used UAV hyperspectral images combined with some necessary sampling 
data to invert the iron concentration of the Malanzhuang tailings pond. Three classical regression 
methods, namely, PLSR, ANN, and SVR, were used to inverse the iron content. The PLSR 
model is better than the other two models. In addition, the combination of band selection and 
feature extraction can better retain the effective information in the spectral data, increasing the 
coefficient of determination to 0.7122. Finally, the selected wavebands and feature maps 
extracted from PCA and MNF signs are used as the input of the PLSR model to invert the iron 
content in the study area. It can be seen from the iron content map that the iron content is in good 
agreement with the land type in space. Experiments show that UAV-based hyperspectral remote 
sensing has great potential for metal concentration monitoring, and reasonable model selection 
and feature extraction play an important role in the retrieval of iron concentration. Some 
limitations of the research include error correction features, location errors, and resolution and 
interpolation issues, which will be taken as the limitations in this research. Our future directions 
will be in minimizing errors and improving our model. The GPU models could also be made 
faster using distributed approaches, which is beyond the scope of this paper and will be taken as 
future research areas.
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