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 In this work, a self-powered fault diagnosis system using vibration energy harvesting was 
constructed to verify the accuracy of state identification and abnormality detection for a 
monitored target. A vibration energy harvester and a sensor were attached to an air compressor 
to be monitored, and the sensor signal was transmitted wirelessly using the energy acquired. 
Using the supervised machine learning of the k-nearest neighbor algorithm with the vibration 
sensor signal and the wireless transmission interval, the algorithm was able to identify three 
states (normal, unstable, and overturned) with a maximum accuracy of 99%. In addition, by 
using the local outlier factor algorithm as unsupervised learning, it was possible to achieve 
abnormality detection with a maximum accuracy of 98%. The accuracy of fault diagnosis was 
improved by analyzing not only the sensor signals but also the wireless transmission interval as 
machine learning features. It was found that the frequency of wireless transmission by energy 
harvesting is valuable information for determining the status of the monitored target.

1. Introduction

 Technology related to energy harvesting, in which the energy in the environment is acquired 
and utilized as electrical energy, is attracting attention.(1) This is due to the dramatic increase in 
the number of sensors in society, as symbolized by the trillion-sensor society. It is difficult to 
power these sensor nodes only with batteries, which need to be recharged and replaced, and 
energy harvesting is becoming inevitable. In such a large sensor network, the sensors must 
operate over a long period of time without the need for human maintenance.(2–4) Therefore, a 
number of studies have been conducted to overcome the research challenges in this area. Several 
methods of energy harvesting that are powered by vibrations,(5–8) heat,(9–11) sunlight,(12,13) and 
electromagnetic waves(14,15) have been developed. However, the power that can be acquired 
through energy harvesting is limited to about µW–mW,(16) and the time available to operate 
wireless devices and sensors is finite.(17–19) This means that the number of data that can be 
transmitted is very small, and it is also difficult to transmit data continuously. Under these 
circumstances, improving the accuracy of diagnosis in a constant monitoring system powered by 
energy harvesting is an important research issue.
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 Against this background, the purpose of this study was to establish a system that can 
diagnose anomalies with high accuracy when the transmitted information is sparse due to the 
limited energy. Notably, a diagnostic algorithm based on machine learning was incorporated to 
detect and classify anomalous conditions. In recent years, there have been many reports of 
achieving high accuracy in diagnosing abnormalities in buildings and moving objects by using 
machine learning algorithms to analyze sensor signals.(20–22) On the other hand, few methods 
have been established for machine learning analysis of sensor signals transmitted from a self-
powered system.(23) In this study, we used an air compressor as the monitoring target and 
acquired the electric power through a vibrational energy harvester (VEH). One of the novel 
ideas of this study is that the time interval between the amount of generated energy reaching a 
certain threshold and the transmission of a wireless signal is used in the analysis. On the basis of 
the accuracy of fault diagnosis, the possibility of a self-powered monitoring system using energy 
harvesting is discussed.

2. Self-powered Fault Diagnostic System 

 Figure 1 shows a schematic diagram of our fault diagnosis system using energy harvesting. A 
piezoelectric bending transducer (MIDE, S128-J1FR-1808YB) was used as the VEH. The 
transducer includes a piezoelectric Pb(Zr, Ti)O3 layer with a unimorph structure and is capable 
of generating a maximum of 10.0 V at a resonant frequency of 134 Hz. Since the air compressor 
(Takagi, 10L ACP-10A) subject to fault diagnosis had a frequency that oscillated significantly at 
25 Hz, a 8.3 g mass was fixed to the tip of the transducer to adjust the resonant frequency to 25 
Hz. The VEH was firmly installed in the air compressor via a holder made of acrylonitrile 
butadiene styrene (ABS). The resulting power was stored in an electrolytic capacitor with a 
capacitance of Cs after full-wave rectification. When the storage voltage Vc in the capacitor 
reached 4 V, the DC/DC converter (Analog Devices, LTC3588-1) was activated to output a 

Fig. 1. (Color online) Experimental setup for diagnosing air compressor failure with a VEH and PVDF sensors.
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supply voltage Vw of 2.5 V to the wireless transmitter. The wireless transmitter module (Mono 
Wireless, TWELITE DIP BLUE) complies with IEEE 802.15.4 and uses the 2.4 GHz band for 
wireless transmission. The generated voltage Vs of the piezoelectric PVDF film (KF piezo film, 
Kureha) attached to the air compressor as a vibration sensor was measured using an AD 
converter with a sampling rate of 30 ms. Both the wireless transmitter and AD converter were 
operated with the VEH as the power source, and the vibration data were acquired using a USB-
connectable wireless receiver (Mono Wireless, MONOSTICK). The PVDF film was cut to 35 
mm (length) × 17 mm (width) × 40 µm (thickness), and aluminum was vacuum-deposited on the 
film as electrodes. Then, the film was laminated with PET and adjusted to the resonant 
frequency of the air compressor by adding a mass, and installed in multiple locations on the air 
compressor with the ABS holder.

3. Energy Harvesting for Wireless Data Transmission

 Figure 2 shows the charging characteristics of the VEH. The VEH was shaken with a shaker 
(Mitutoyo, MEE15) at a constant amplitude of 25 Hz, and then charged to a capacitor with Cs = 
10–2000 µF after full-wave rectification. Figure 2(a) shows transient waveforms of Vc; it can be 
seen that the time to reach the saturation voltage increases as Cs increases. Since the capacitance 
of the VEH was 225 nF, the impedance of the storage capacitor was completely mismatched. 
Therefore, the charging efficiency is low and must be improved in the future through appropriate 
impedance conversion circuitry.  However, we would like to emphasize that the VEH was able to 
supply sufficient power to the wireless transmitter with a time interval of several tens of seconds 
with the VEH. The stored energy Uc, which is expressed by 

 2 ,1
2c s cU C V=  (1)

saturated at a value that increased in proportion to Cs as shown in Fig. 2(b). This is because the 
saturation voltage of Vc is constant. The saturation energy of Uc determined the operating time 
of the wireless transmitter. 

Fig. 2. (Color online) (a) Transient waveforms of stored voltage Vc and (b) stored energy Uc in capacitors in 
charging process.

(a) (b)
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 Figure 3 shows the charge–discharge and wireless transmission characteristics of the system 
shown in Fig. 1 when the DC/DC converter and wireless devices were driven. Figure 3(a) shows 
the transient waveforms of Vc and supply voltage Vw for the wireless transmitter when Cs = 470 
µF. It can be seen that the DC/DC converter and wireless transmitter were operating when Vc 
reached 4 V. After a rapid decrease in Vc due to the energy consumption of the capacitor, wireless 
transmission stopped when Vc decreased below 3 V, and then recharging was repeated. Figure 
3(b) is an enlarged view of Fig. 3(a), showing that Vw remained constant at 2.5 V while the 
wireless transmitter continued to operate, and Vc decreased in a stepwise manner. The staggered 
decrease in voltage corresponds to the fact that each signal with sensor data was transmitted to 
the wireless receiver at a sampling interval of 30 ms. The maximum number of points that could 
be transmitted wirelessly at one time depended on Cs, as shown in Fig. 3(c). It was confirmed 
that wireless transmission was possible for Cs > 80 µF. On the basis of the results, we successfully 
quantified the relationship between the data transmission interval and the number of data points 
during the constant monitoring of the air compressor.

4. Fault Diagnosis Based on Machine Learning

 For the fault diagnosis of the air compressor, the detection of two abnormal states was 
targeted in addition to the normal state: an unstable state with a cushion placed under the air 

(a)

(b) (c)

Fig. 3. (Color online) (a) Transient waveforms of stored voltage Vc and supply voltage Vw for wireless transmitter 
when Cs = 470 µF. (b) Enlarged view of waveform (a). (c) Plot of the number of the transmitted data points against Cs.
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compressor and an overturned state in which the compressor fell over on its side. Figure 4 shows 
the transient waveforms when the sensor voltage signals from two locations of the air compressor 
were continuously transmitted wirelessly while the capacitor with Cs = 2000 µF was charged 
with the VEH. The maximum number of data points for periodic wireless transmission was 44 
as shown in Fig. 3(c), and furthermore, some data are lost due to errors during wireless 
transmission. In addition, the entire vibration waveform could not be obtained with a sampling 
interval of 30 ms. This is evident from the fact that the vibration occurred at multiple resonance 
frequencies above 25 Hz. The amplitude values of the sensors tended to be larger in the 
overturned state for both sensors 1 and 2 than in the normal and unstable states. Regarding the 
intervals during wireless transmissions, the unstable state, where vibration was suppressed, 
tended to have the longest intervals, while the overturned state tended to have the shortest 
intervals. These results correspond to the fact that the amount of power generated by the VEH 
varied with the condition of the air compressor. 
 The relationship between the average of the absolute value of Vs in one data sequence and the 
wireless transmission interval tw is plotted in Fig. 5. The number of data points plotted is 105 for 
normal, 66 for unstable, and 164 for overturned for sensors 1 and 2. As shown in Fig. 5(a), the 
distribution of the plot points changed with the state of the air compressor and the sensor 
position.
 On the basis of the results, machine learning was used for state identification and anomaly 
detection. The k-nearest neighbor (kNN) algorithm is the one of the simplest methods in 
supervised classification.(24) The training data are plotted on a vector space, and when unknown 
data are obtained, any k data are obtained from them in order of distance, and the class to which 
the data belong is estimated by majority vote. Figure 6 shows the accuracy of state identification 
with the kNN algorithm. When the accuracy was verified for each k value using tw and Vs of 
sensor 1 in the 2D feature space as shown in Fig. 5(b), a high value of approximately 80% was 
obtained. In the case of using tw and Vs of sensor 2, a higher accuracy of up to 99% was achieved 
for state identification. The same accuracy rate was achieved when tw and Vs of sensors 1 and 2 
were all used to discriminate in a 3D feature space. This indicates that the signal at sensor 2 was 

Fig. 4. (Color online) Transient waveforms of typical sensor voltage Vs transmitted from wireless device under (a) 
normal, (b) unstable, and (c) overturned states of the air compressor. 
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effective in performing state identification with high accuracy. When the identification was 
performed with only tw without using the sensor signals, the maximum accuracy was 74% at a k 
value of 20. This indicates that effective state identification is possible even in extremely low 
power energy harvesting where only wireless signals can be transmitted without an AD 
converter. However, when highly accurate state identification is required, the accuracy can be 
improved by using both the wireless transmission interval and the sensor signal.
 The local outlier factor (LOF) algorithm,(24) a type of unsupervised learning, was then used 
for abnormality detection. In this algorithm, the previously acquired normal condition data are 
used as the criterion, and the abnormality is scored by comparing the local density with the 
neighboring points of the data to be diagnosed. Figure 7 shows the accuracy of abnormality 

Fig. 5. (Color online) (a) Plots of average of |Vs| against transmitted interval tw of wireless signal. (b) Enlarged 
view of plot and classification by kNN algorithm.

Fig. 6. (Color online) Accuracy of state identification with kNN algorithm.
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detection with the LOF algorithm. In this result, the same trend as in the state identification 
shown in Fig. 6 was obtained, and a maximum of 98% accuracy was obtained when tw and Vs of 
sensors 1 and 2 were used. It is clear that the LOF algorithm is effective in diagnosing 
abnormalities by learning only normal data, even when training data of the failure state are 
difficult to obtain.

5. Conclusions

 In this study, a self-powered fault diagnosis system using vibration energy harvesting was 
constructed to successfully identify the state of a monitored target and detect abnormalities. By 
using the kNN algorithm as supervised learning, the system was able to identify three states 
(normal, unstable, and overturned) with a maximum accuracy of 99%. In addition, by using the 
LOF algorithm as unsupervised learning, abnormality detection with a maximum accuracy of 
98% was achieved. One of the factors contributing to the high accuracy of diagnosis was the 
addition of the wireless transmission interval as a machine learning feature, noting that the 
amount of energy generated by the VEH depended on the state of the monitored target. Thus, we 
conclude that not only can energy harvesting be utilized as a permanent power supply for a fault 
diagnostic system, but also that the amount of energy generated can serve as information 
indicating the state of the target.
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Fig. 7. (Color online) Accuracy of abnormality detection with LOF algorithm.
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