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 In this study, we aim to develop a game support system that allows users to work out and 
rehabilitate at home alone. The system first reads the user’s depth image through the Kinect v2 
sensing interface, converts it into the user’s skeleton, then continues to track the human body 
and creates the required database through machine learning after recording the dynamic changes 
in the skeleton. This information is then applied to a game platform designed with the Unity 
game engine. Finally, the game screen is connected to smart glasses via Bluetooth, allowing 
users to experience the game in augmented reality (AR). The database is constructed via the 
adaptive enhanced AdaBoost algorithm used in machine learning, and the architecture of the 
Unity game platform is edited in C#. The support system of the home fitness and rehabilitation 
game is completed after being combined with Kinect v2. There are two modes in the game 
platform, fitness and rehabilitation, with five movements in the fitness mode and 10 movements 
in the rehabilitation mode. Both modes have three sub-modes: independent training, coach 
demonstration, and mini-games. We demonstrated through tests that the system can allow users 
to easily and comfortably rehabilitate and work out at home as if there were a coach guiding 
them. Therefore, in addition to effectively improving the accuracy of movements, the system can 
also help avoid injuries or accidents caused by inaccurate movements.

1. Introduction

 The outbreak of the Covid-19 pandemic in recent years has caused many changes in people’s 
habits and reduced their willingness to go out, especially during waves of infections, causing 
many places, such as gyms and rehabilitation centers, to temporarily close. This has made it 
much more difficult to perform fitness activities and rehabilitation, which require a constant 
frequency of activity for a long time, resulting in people requiring fitness activities or 
rehabilitation to seek alternative solutions.
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 The solution proposed in this paper is a support system based on the Kinect v2 sensing 
interface that allows users to rehabilitate or work out directly at home with the Unity game 
engine. Kinect v2, a depth image sensor developed by Microsoft,(1) was initially applied in the 
interface device of the Xbox One console so that players could directly control movements with 
their postures, gestures, and voice without holding a control device. In related studies, Park et al. 
proposed a depth-image-based body segmentation method(2) to improve human movement 
recognition, and their proposed method improved the accuracy by 15% compared with other 
recognition systems for custom movements such as falling or kicking. Saidin and Shukor 
developed a Kinect-based fall detection system,(3) which was designed to detect falls and alert 
caregivers by calculating the distance between each joint and the floor using a movable device 
installed underneath Kinect to make it easier to follow the subject’s movements. The Unity game 
engine used in their study was developed by Unity Technologies.(4) This game engine is used to 
create 2D and 3D games and animations with diverse development environments, has a visual 
and detailed property editor, and can export real-time game previews to multiple platforms. In 
related studies, the virtual collaborative experimental platform created by Xia et al.(5)  
established a virtual experimental environment with the Unity platform and by simulating 
experiment modules with corresponding modules, and collaborative synchronization was 
achieved by enabling the server to adopt permission control and real-time synchronization. 
Mattingly et al.(6)  constructed a 3D robot with Maya software, and used Kinect to control the 
robot to simulate movements and observe its simulated movements. Wu(7) developed a game by 
combining the Unity game engine with virtual reality (VR). Wu wrote the game with the 
animators in Unity, combined its scripts, and created a first-person shooting game by connecting 
the system with VR devices.
 The main goal of this paper is to establish a game support system that enables users to work 
out and rehabilitate alone at home, allowing them to conduct training by themselves and be 
guided by a virtual trainer without leaving their home. This paper is divided into two parts. We 
first discuss the recognition stage, i.e., recognizing human postures using depth images and 
machine learning, and then establishing a database. The second part is the application, i.e., 
applying the database to the Unity game. The human skeleton frame constructed from the input 
depth image can be compared with or follow the posture required by the game to create a game 
that supports both rehabilitation and fitness. Finally, the user can play the game while wearing a 
VR device to enhance the freedom of movement and no longer be constrained by the computer 
screen.

2. System and Hardware Architecture

 In this paper, the human skeleton is traced and recognized by using depth images with 
adaptive boosting (AdaBoost). A flow chart of the system is shown in Fig. 1. The system is 
divided into (a) the recognition stage and (b) the application stage. In stage (a), depth images are 
acquired by the photographic depth sensor of Kinect v2. The depth images and skeleton data are 
applied to the AdaBoost algorithm used in machine learning in the form of video to train the 
machine learning and form the database, and then the training results are tested to see whether 
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they meet the criteria. If they meet the criteria, the database required for the game can be 
obtained, otherwise retraining is needed. In stage (b), the depth images are input to Unity, from 
which the current human skeleton information can be read, and the trained posture database is 
input to the game, allowing the game to recognize the user’s current posture and give appropriate 
feedback.
 Figure 2 shows the architecture of this hardware. The depth images are obtained by the 
photographic depth sensor of Kinect v2, and the human skeleton information is recognized by 
the software interface provided. All the information is then compiled to create the human 
posture database of the system and is stored in the computer. In addition, based on the Unity 
game interface, the game software for rehabilitation and fitness can be transmitted to the VR 
device for augmented reality (AR) display through Bluetooth.

3. Human Posture Recognition

 As the image input terminal, Kinect v2 recognizes the image of the human body after 
receiving the depth image, then marks the joints of the human body and trains the human body 
posture dataset using the AdaBoost algorithm.

3.1 Depth image capture

 The distance between the target and the sensor can be obtained by depth image capture. The 
time of flight (ToF) is adopted in this study to capture the depth, as shown in Fig. 3.
 The ToF measurement method applied in Kinect v2 controls gate switches and generates light 
pulses with a high-speed driver circuit, projecting the pulsed light in a very short time such that 
the pulsed light hits the object in the experiment, where it is reflected. The reflected pulses of 
light are captured by a camera and are converted into a depth image by calculation. The data 
required is the time ( Dt ) from the projection to the reflection of the pulsed light and the distance 
(D) between the object and the depth lens. The following equation is satisfied, where c is the 
speed of light (approximately 3 × 108 m/s).

Fig. 1. (Color online) System flow chart.
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 1
2 DD ct=  (1)

 In this study, to confirm that the sensed distances are correct, the measured distances in 
Fig. 4 are compared with those output by the sensor in Fig. 5.
 Table 1 shows that the distances obtained by depth sensing via the ToF method are nearly the 
same as the measured distances, thus confirming the accuracy of the depth measurement.

3.2 Skeleton tracing

 The human skeleton is traced in three stages as shown in Fig. 6. The depth image of the 
human body is first recognized by the depth extraction method, then the recognized image is 
applied to classify and read different parts of the human body through the random forest 
algorithm. Finally, the joint points in the human skeleton are obtained through the mean shift 
algorithm.

Fig. 2. (Color online) Hardware architecture.

Fig. 3. (Color online) ToF.(8) 
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3.2.1 Depth image of the human body

 To reduce the computational burden and complexity of the subsequent processing, the 
unnecessary background images are removed by depth feature extraction, leaving only the 
desired human body masks. The calculation process is expressed as(9) 

 ( ),f I xθ = ( ) ( )
 I I

I I

u vd x d x
d x d x

   
+ − +   

      
. (2)

 In Eq. (2), the depth of pixel x of image I is dI(x) and the offset vector is θ = (u,v), as shown in 
Fig. 7, where X denotes pixel x, i.e., the pixel being classified as either the human body or the 

Fig. 4. (Color online) Measured distances. Fig. 5. (Color online) Sensed distances.

Fig. 6. (Color online) Skeleton recognition process.

Table 1 
Comparison of distances.

(a) Head (b) Right hand (c) Left hand (d) Body (e) Right foot (f) Left foot
Measured 
distance (mm) 2403 2532 2530 2104 2250 2250

Sensed 
distance (mm) 2400 2530 2530 2100 2250 2250
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background, and O indicates the position of the offset pixel. The images are classified according 
to the difference between the two depths.
 When the offset and classified pixels lie in the background and the human body, respectively, 
as in Fig. 7, the depth of the pixel in the background will be greater than that of the human body, 
and when the difference between the depths is too large, the pixel with the greater depth will be 
considered as the background and removed to distinguish between the background and the 
human body.

3.2.2 Recognition of body part category

 In body part recognition, the above depth feature extraction method temporarily marks the 
neighboring areas with similar depths as the same part, and then classifies the human body 
blocks by the random forest algorithm. This is a prediction model that combines T decision trees, 
where each split node consists of a feature fθ and a threshold  that are used to classify pixel x in 
image I. Each branch of the tree is derived by comparison with a threshold . The terminal node 
is reached at the tth tree, with the learning distribution ( )| ,P c I x  of the body part label c stored, 
and the final classification results are obtained by averaging and unifying all distributions, as 
follows:(10) 

 ( )
1

1| , ( | , )
T

t
t

P c I x P c I x
T =

= ∑ . (3)

 The samples are also trained using decision trees. Different training samples are adopted for 
each decision tree, and the samples may be classified by body type or posture. Each pixel in the 
depth image of the human body to be measured is recognized by the decision tree to obtain the 
probability that it is a specific part of the human body, and then the probability determined by 
each decision tree is calculated synthetically to complete the classification of the part of the 
human body.

Fig. 7. (Color online) Schematic diagram of the depth feature extraction method.
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3.2.3 Joint prediction and skeleton generation

 The final stage is to search for the positions of the joint points of the classified human body, 
for which the mean shift clustering algorithm is used in the Kinect operation,(11) as shown in 
Fig. 8.
 The mean shift clustering algorithm selects a point in the dataset, draws a circle with this 
point as the center, finds the mean of the vectors from this point to all the points in the circle, 
merges the vector mean with the center of the circle to derive the new center of the circle, and 
iterates these steps until it converges to a stable point. The position of this point is the final 
selected position, which is the position of one of the joint points recognized in the human 
skeleton. The results are shown in Fig. 9.
 Kinect v2 can acquire 25 joint points, namely, the head, lower jaw, collar, spine, pelvic center, 
and the left and right joints of the shoulder, elbow, wrist, palm, fingertips, thumb, hip, knee, 
ankle, and foot. The joints are presented in 3D images. The system can sense a total of six 
human skeletons at the same time, and the position and direction of each joint can be obtained.

3.3 Construction of human posture database

 In this study, posture recognition is applied to construct a human posture classification 
database by machine vision using AdaBoost. The architecture of AdaBoost is shown in Fig. 10. 
Each classifier of a given training set is assigned an equal weight. If a sample has been correctly 
classified in the training, then the weight of the sample is decreased when constructing the 
training set of the next classifier. In contrast, when a sample is not accurately classified, then the 
weight of the sample is increased and the updated weight of the sample set is input to the next 
classifier to be trained. The iteration is continued for a set number of times, then the trained 
weak classifiers are combined into a strong classifier. When weak classifiers are combined, the 
weights of weak classifiers with a low error rate are increased and the weights of those with a 
large error rate are decreased, thus increasing the accuracy of the final strong classifier.

Fig. 8. (Color online) Mean shift algorithm. Fig. 9. (Color online) Human skeleton frame.
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 The first step of the AdaBoost algorithm is to input various parameter messages, including 
accuracy conditions, weak classifier parameters, and the number of weak classifiers. Then the 
training set samples, expressed as Eq. (4), are input.(13)

 ( )1 1{ ,S x y= , ( ) ( )2 2, , }n nx y x y…  (4)

Here, xn is a feature vector of feature space X and { } 1, 1  ny ∈ − +  is a marker. When yn = + 1, xn is 
a positive sample, and when 1ny = − , xn is a negative sample. n is the number of weak classifiers.
 The weight distribution D of the training data is initialized by setting all the weights to 1/n:

 ( )1
1 ,  1,2, ,D i i n
n

= = … . (5)

 The second step is to perform several iterations to train the weak classifiers ht based on the 
weight distribution, as follows:

 { }:  1, 1d
th R → − + , (6)

where t is the iteration number, t = 1, 2, …, T, and T is the maximum number of iterations.

Fig. 10. (Color online) AdaBoost architecture.(12) 
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 The classification error of each weak classifier is then calculated. The sum of the misclassified 
sample weights is indicated by εt when the classification error satisfies the property ht(xi) ≠ yi:

 
( )

( )
: t i i

t t
i h x y

D iε
≠

= ∑ . (7)

 The weight factor αt of weak classifier t is then computed as

 10.5ln t
t

t

ε
α

ε
 −

=  
 

. (8)

 The weight distribution Dt + 1(i) of the training data is updated for the next iteration. When the 
sample is correctly classified, the weight is decreased, and if the sample is incorrectly classified, 
the weight is increased to improve the correctness of the next iteration, expressed as

 ( ) ( ) ( )
1

t i t iy h x
t

t
t

D i e
D i

z

α−

+ = , (9)

where Zt is the denominator set by normalization so that the sum of the updated weights is 1, 
expressed as

 ( ) ( )

1

t i t i
n

y h x
t t

i
Z D i e α−

=

=∑ . (10)

 Finally, after T iterations, the output strong classifier is a linear combination of the selected 
weak classifiers, as shown in Eq. (11). Each weak classifier is assigned a property according to 
the obtained weight, then the assigned weak classifiers are combined to obtain the high-
resolution strong classifier ( ( ))H x .

 ( ) ( )
1

T

t t
t

H x sign h xα
=

 
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∑  (11)

 In the training set, the postures to be recognized are marked as positive samples, while the 
postures not to be recognized are marked as negative samples. The iteration process is stopped 
when the accuracy of the training set reaches 95%, and the parameters are adjusted and 
recalculated using Eq. (6) if the expected conditions are not reached. The human posture 
recognition database used in this study is output if the expected accuracy is reached.
 The error rates of the final movement database are shown in Tables 2 and 3, which 
respectively indicate the error rates of the movements in the rehabilitation mode and the fitness 
mode under coaching, presented as confusion matrices.
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 It can be seen from the tables that the accuracies of the rehabilitation and fitness movement 
databases obtained in this study are 95.82 and 95.6%, respectively. Both values satisfy the 
stopping condition; thus, the databases can be applied to the Unity game created in this study.

Table 2
(Color online) Confusion matrix of rehabilitation movement recognition.

Confusion matrix

Actual movements (number of times)
Both 
hands 

upward

Left 
hand 

upward

Right 
hand 

upward

Left 
leg side 
raises

Right 
leg side 
raises

Left 
leg rear 
raises

Right 
leg rear 
raises

Left leg 
front 
raises

Right 
leg front 

raises

Right 
leg front 

raises

Right leg 
straight 
raises

Predicted 
movements

Both hands 
upward

50 0 0 0 0 0 0 0 0 0 0

Left hand 
upward

0 50 0 0 0 0 0 0 0 0 0

Right hand 
upward

0 0 50 0 0 0 0 0 0 0 0

Left leg side 
raises

0 0 0 46 0 2 0 2 0 0 0

Right leg side 
raises

0 0 0 0 46 0 3 0 3 0 0

Left leg rear 
raises

0 0 0 2 0 48 0 2 0 0 0

Right leg rear 
raises

0 0 0 0 2 0 47 0 0 0 0

Left leg front 
raises

0 0 0 2 0 0 0 46 0 2 0

Right leg 
front raises

0 0 0 0 2 0 0 0 47 0 1

Left leg 
straight raises

0 0 0 0 0 0 0 0 0 48 0

Right leg 
straight raises

0 0 0 0 0 0 0 0 0 0 49

Error rate (%) 0 0 0 8 8 4 6 8 6 4 2
Total error rate (%) 4.18

Table 3
(Color online) Confusion matrix of fitness movement recognition.

Confusion matrix
Actual movements (number of times)

Deep squat Left lateral 
lunge

Right lateral 
lunge Left lunge Right lunge

Predicted 
movements

Deep squat 48 3 2 0 0
Left lateral lunge 1 47 0 1 0
Right lateral lunge 1 0 48 0 1
Left lunge 0 1 0 49 0
Right lunge 0 0 1 0 49

Error rate (%) 4 8 6 2 2
Total error rate (%) 4.4
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4. Design of Fitness and Rehabilitation Support Game in Unity

 The construction of the game using the Unity game engine is introduced from the outside to 
the inside, as shown in Fig. 11. The project, in simple terms, is the body of the game. By creating 
a project, multiple scenes are combined, where each scene is a level of the game. The scenes are 
sorted and edited by scripts in the project to control the order and manner of each level.
 The scene is usually a game level or an option page, and can be switched through scripts 
based on user instructions or changes to the state in the game. The main scenes in this study are 
divided into two main categories (fitness and rehabilitation), each with three sub-categories of 
scenes (independent training, coach demonstration, and mini-game) with their own option 
pages.
 The animator orders the recorded animations and writes the script to the trigger. When 
triggered, characters or objects act in accordance with the recorded movements. Therefore, the 
animations are recorded first, with their characters made, and then the movement sequence and 
connection are arranged in the animator. Finally, the script is written for a successful trigger.

4.1 Scripts

 The script is a game component that controls the behavior and state of game objects in an 
additional way, which can make the maintenance and construction of scripts easier. The same 
script can be attached to different game objects at the same time, and different scripts can be 
attached to the same object at the same time. The scripts mainly used in this study (Kinect 

Fig. 11. (Color online) Unity game architecture.
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interface management, custom posture categorization, posture recognition management, 
character control management, and other functions) are described in the following. We introduce 
their functions and main construction strategies in Fig. 12.
(1) Kinect interface management
 This script enables Unity to connect with Kinect. It reads the skeleton information obtained 
by Kinect and the custom posture categories.
(2) Custom posture category
 There are two custom posture categories. One is the category in the posture database trained 
as described in Sect. 3, which is input to the written script and read for determination. The other 
is the category that is defined directly when the joint is at the set position by writing the desired 
joint position manually. 
(3) Posture recognition management
 Upon posture recognition, the accuracy of the posture is determined. When the set accuracy 
is met, the posture is recognized as the current posture, and when the recognition is completed, 
different feedback is obtained with the levels set in the game, so that the player can understand 
the correct posture of the movement or the part that needs to be improved.
(4) Character control management
 The skeleton information sensed by Kinect can not only be used to identify the current 
posture, but also be applied to the designed characters so that they can make the same movements 
as the users. When the posture required by the conditions is identified, the characters can make 
the movements set in the animator. When they are used in different characters and appear in the 
scene at the same time, coach and user embodiment can be achieved.
(5) Scripts for other functions
 In addition to the above scripts, all the functions in Unity require corresponding scripts to 
operate, such as level switching, changing the user interface (UI), setting a scene, or attaching 
physical phenomena such as a rigid body and gravitational force to the game objects. The 
diversity of game settings can be increased with the application of scripts.

Fig. 12. (Color online) Application scope of scripts.
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5. Game Design and Results

 In the experiments in this study, the human skeleton information is obtained by the skeleton 
tracking system of Kinect v2, and the database is made by the AdaBoost algorithm, which is 
then input to the game system designed in this study. The following introduces the completed 
home rehabilitation and fitness game support system.

5.1 Level setting

 After opening the game, the user first enters the game menu and selects the desired level 
through the options interface. The user then chooses the desired activity. Figure 13 shows the 
composition of the levels.
 The user can select the desired level by tapping the buttons on the screen or return to the 
previous level via the “Back” button. To quit the game, the user can tap the “Quit” button on the 
main menu to close the game program, as shown in Figs. 14 and 15.

5.2 Coaching

 The game screen of the coaching mode is shown in Fig. 16. There are two character modules 
on the screen, one of which acts as the user’s avatar and the other acts as the coach to guide the 
user. The coach demonstrates first while the user follows the coach and tries to make the correct 
movements. Each UI and the process in the game are described as follows.
(1) Movement display UI
 If the user’s current movement is recognized as a posture in the database, its name is 
displayed here.
(2) Movement reminder UI
 This UI displays the name of the next movement to be performed and the coach performs the 
same movement.
(3) Character embodiment
 The right character embodies the user, who reproduces the current posture of the user 
captured by Kinect, while the left female character embodies the coach, who demonstrates the 
correct movements in order, as shown in Fig. 17.
(4) Timing UI
 The timing UI records the time the user takes to complete all the movements. Timing starts 
from the moment the user enters the level and ends when the user has performed all the specified 
movements. This time is shown on the screen, which allows the user to compare it with the 
previous time taken for the user to complete the game to ascertain whether the performance of 
the user has improved.
(5) Task bar UI
 The task bar shows the proportion of the number of movements the user has completed 
relative to the total number of movements in the level.
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Fig. 13. (Color online) Composition of levels.

Fig. 14. (Color online) Main menu window. Fig. 15. (Color online) Fitness menu window.

Fig. 16. (Color online) Interface of coaching mode.
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Fitness movements

Left lateral lunge Right lateral lunge

Left lunge Right lunge Deep squat

Rehabilitation movements

Left leg side raises Right leg side raises

Left leg front raises Right leg front raises Right leg rear raises

Left leg straight raises Right leg straight raises Left leg rear raises

Left hand upward Both hands upward Right hand upward

(a)

Fig. 17. (Color online) (a) Fitness movements and (b) rehabilitation movements of coach demonstration.

(b)



1986 Sensors and Materials, Vol. 34, No. 5 (2022)

(6) Back button
 Tapping this button stops all functions in the coaching mode and returns to the previous level 
menu.
(7) Reset button
 Tapping this button resets the level to the initial state, and the movement reminder UI and the 
coach return to the first movement and start over again. The task bar UI and timing UI are also 
reset.
(8) Depth image of human body
 The current skeleton information captured by Kinect is displayed on the screen, from which 
the user can learn the current sensing status.
 As an example, Table 4 shows the reference completion time for each movement in the fitness 
mode. A time close to 10 s is optimal, but the time should not be less than 10 s. We employed five 
testers for training, and the time was recorded to determine the progress of each user.
 Tables 5–9 show the times of the movements completed by the five testers. Each tester was 
trained five times with five repeated movements.
 It can be observed from Tables 5–9 that although each tester took a different amount of time 
to perform all the movements, less time was required for each movement as the amount of 
training increased, demonstrating that this system can effectively improve the efficiency of 
movement of the user.

5.3 Independent training

 The user selects the movements to be trained from the level and enters the independent 
training mode. The game screen is shown in Fig. 18, with the character in the screen embodying 
the user, whose current posture is displayed. The game screen shows the completeness of the 
user’s current movement and the points that need improvement. The UIs in Fig. 18 are as follows.
(1) Movement reminder UI
 The reminder UI at the top of the screen reminds the user of the imperfect parts of the 
movements, with the necessary improvement expressed in words. The lower circle indicates the 
completion status of the movement by the proportion of the green part. The circle is gray in the 
case of a completely incorrect posture.
(2) Movement display UI
 This UI displays the name of the user’s current movement.
(3) Character embodiment
 The character embodies the user, whose current posture captured by Kinect is reproduced.
(4) Task bar UI
 The task bar shows the proportion of the number of correct movements the user has 
completed.
(5) Back button
 Tapping this button stops all functions in the independent training mode and returns to the 
previous level menu.
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Table 4
Reference times for movements.
Name of movement Time (s)
Deep squat 10
Left lunge 10
Right lunge 10
Left lateral lunge 10
Right lateral lunge 10
Total time 50

Table 5
Time of movements completed by tester 1.
Number of 
times Deep squat Left lunge Right lunge Left lateral 

lunge
Right lateral 

lunge Total time (s)

1 15 14 16 17 16 78
2 15 16 14 14 14 73
3 12 13 13 12 12 62
4 11 11 12 11 12 57
5 10 10 11 10 11 53

Table 6
Time of movements completed by tester 2.
Number of 
times Deep squat Left lunge Right lunge Left lateral 

lunge
Right lateral 

lunge Total time (s)

1 16 15 16 18 15 80
2 17 15 14 15 15 76
3 14 14 13 15 13 69
4 12 13 13 13 12 63
5 11 11 12 12 11 57

Table 7
Time of movements completed by tester 3.
Number of 
times Deep squat Left lunge Right lunge Left lateral 

lunge
Right lateral 

lunge Total time (s)

1 18 17 17 19 20 91
2 17 17 18 18 18 88
3 17 15 15 18 17 82
4 15 15 15 16 17 78
5 13 13 13v 15 15 69
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(6) Explanation button
 Tapping this button opens the movement details page, where users can learn about points 
needing attention regarding the movement.
(7) Depth image of human body
 The current skeleton information captured by Kinect is displayed on the screen, from which 
the user can learn the current sensing status.

5.4 Mini-game application

 The mini-game applies the posture recognition method used in the previously described  
games into simple games, as shown in Fig. 19. The user controls the yellow ball to move left and 

Table 8
Time of movements completed by tester 4.
Number of 
times Deep squat Left lunge Right lunge Left lateral 

lunge
Right lateral 

lunge Total time (s)

1 19 20 19 20 20 98
2 18 18 18 20 19 93
3 18 17 17 18 18 88
4 17 17 16 17 17 84
5 15 17 15 16 15 78

Table 9
Time of movements completed by tester 5.
Number of 
times Deep squat Left lunge Right lunge Left lateral 

lunge
Right lateral 

lunge Total time (s)

1 17 18 17 16 15 83
2 16 17 17 15 16 81
3 14 15 16 13 14 72
4 13 14 14 12 12 65
5 12 12 12 11 11 58

Fig. 18. (Color online) Independent training mode.
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right with the posture selected in the level (the movements in this mode are divided into left and 
right types) while avoiding green obstacles or falling off the platform. When the yellow ball hits 
the gray final trigger point, the user has completed the game successfully.

5.5 Application combined with AR device

 Finally, the game screen is transmitted to the AR device via the Bluetooth module, so that the 
screen can follow the user’s movements and the user can move without being constrained by the 
position of the computer screen. The actual setup is shown in Fig. 20.

Fig. 19. (Color online) Mini-game application mode.

Fig. 20. (Color online) Actual setup with AR device.
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6. Conclusion

 We have developed a home fitness and rehabilitation support system that allows users to 
properly rehab or work out alone at home, improve the accuracy and enjoyment of training, and 
thereby reduce the likelihood of injury and motivate them to regularly carry out training. The 
system is divided into two main parts: the recognition stage and the application stage. In the 
recognition stage, as the image input terminal, Kinect v2 recognizes the image of the human 
body after receiving the depth image, marks the joints of the human body, and then trains the 
human body posture dataset using the AdaBoost algorithm. In the application stage, the trained 
posture dataset is input to the Unity game, so that the game can recognize the accuracy of the 
user’s movements. There are two main modes of the game. In the coaching mode, movements 
are demonstrated by the coach through an animator with remade data input, so that users can 
follow the movements of the coach. In the independent training mode, the user can be trained 
after selecting the desired movements. The user’s current posture, the accuracy rate of the 
movement, and the improvement are displayed on the game screen as feedback so that the user 
can understand the correct movement posture. Therefore, in addition to effectively improving 
the accuracy of movements, the system can also help avoid injuries or accidents caused by 
inaccurate movements.
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