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 A 3D automatic sensing measurement system was developed to improve image processing 
technology for inspecting electronic parts. The developed system can automatically and rapidly 
measure a small workpiece, such as the width and center position of a circular aperture, and the 
distance, length, and angle of a geometrical shape. Through the optimization of the light system 
design, the 3D automatic measurement system can maximize the efficiency of the measurement. 
This measurement system includes two parts. The first part is an optics servo system including a 
standardized system, a turret-type magnification, and a zoom lens. The second part is a photo 
source servo system including an objective table, coaxial light, four-split ring light, and colored 
photo source. Each measurement routine of the testing workpiece must be programmed in 
advance by using QVPAK software. QVPAK controls multiple sensors such as a vision sensor, 
touch probe, continuous scanning devices, and special ultra micro accurate probes (UMAPs) or 
long-range nano probes (LNPs). The moving position of the 3D platform of the system can be 
controlled. The developed program can be transformed into a Visual Basic program. The system 
can automatically measure a large processed workpiece. Two objective functions, measuring 
precision and measuring time, are selected to improve the design. The response surface method 
is combined with a multiple performance characteristic index for multi-objective optimization, 
which is carried out using orthogonal particle swarm optimization. This experiment confirmed 
the short measuring time of the system. Human error can be avoided when using this system, 
and the accuracy may reach up to 0.002 mm. The proposed multi-objective optimization 
technique for detecting workpieces of electronic parts can increase the image processing 
efficiency. The discussed algorithm can be uploaded onto a cloud server to provide a 3D 
automatic measurement system for sensing and inspecting the workpieces of electronic parts. 
Intelligent manufacturing via a cloud server can be achieved in the era of Industry 4.0.
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1. Introduction

1.1 Review of image sensors and inspection techniques

 Inspection techniques for electronic packaging are required in highly automated generation 
processes. Conventional inspections are often performed manually by humans and are usually 
inefficient.
 Recently, the size of electronic packaging has reached the nanometer range. A microscope is 
usually required to check for defects in electronic components. A human inspector might neglect 
a defect due to a lack of experience.
 The conventional method of inspecting tiny objects is to use an inspection probe with contact 
measurement. However, the contact might damage the surface of the objects. Three-dimensional 
optical laser inspection is widely used as a noncontact measurement method to prevent the 
surface of a workpiece from damage. By image processing, the range of inspection is globally 
wide and rapid. Therefore, it is a popular technique in electronic packaging. 

1.2 Review of 3D image measurement and inspection

 Stout introduced some commonly used 3D measurement techniques.(1) Although profiling 
techniques have been widely used in industry and academic research for manufacturing control 
and functional control of surface roughness, in some cases, the profiling techniques and 2D 
parameters defined in standards are inadequate and/or unsuitable for characterizing surfaces.  
Hough reported various methods of identifying image patterns.(2) These methods are particularly 
adaptable to the study of subatomic particle tracks passing through a visual field.  Cao proposed 
automatic methods of micro-dimension measurement using image processing.(3) In Cao’s paper, 
a technique to measure the locations and orientations of apertures and their diameters on the 
spout nozzle of an engine was presented and a complex measuring apparatus designed for this 
purpose was discussed. Beckwith and Marangoni discussed various mechanical measurement 
methods to obtain 3D geometric sizes and surface properties.(4) With an emphasis on precision 
and clarity, their book covered fundamental issues common to all areas of measurement, with 
individual chapters on applied areas of measurement.    
 Kawasue and Ishimatsu employed circular image shifting motion for the 3D measurement of 
moving objects,(5) where a new approach to 3D measurement of the position and velocity of 
moving particles was introduced. Subbarao and Choi discussed the image recovery principle for 
3D shapes for a target image.(6) They described a new shape-from-focus method that was based 
on a new concept named the focused image surface. Pentland illustrated a new technique for 
sensing the depth of field.(7) He examined a novel source of depth information: focal gradients 
resulting from the limited depth of field inherent in most optical systems. Nayar and Nakagawa 
proposed an effective approach to measure a rough surface.(8)  They also illustrated that suitable 
pattern analysis and machine intelligence can be used to analyze surface images.(9) They 
presented two algorithms for depth estimation. The first algorithm simply looked for the focus 
level that maximizes the focus measure at each image point. The second algorithm used a 
Gaussian model to interpolate the focus measures to obtain more accurate depth estimates.   
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1.3 Description of analytic methodology 

 Lu and Antony discussed the use of fuzzy inference rules and multiple response surfaces to 
obtain optimal solutions.(10) Their approach took advantage of both the Taguchi method and a 
fuzzy-rule based inference system, resulting in a robust and practical methodology in tackling 
multiple-response optimization problems.  Tarng et al. proposed a fuzzy logic method to 
optimize the submerged arc welding process.(11) They used fuzzy logic in the Taguchi method to 
optimize the submerged arc welding process with multiple performance characteristics.  
 Tong et al. used principal component analysis to optimize multiple response surfaces(12) and 
proposed a novel optimization procedure for multiple responses based on Taguchi’s parameter 
design. Wu proposed the use of principal component analysis to derive a robust design for 
multiple quality characteristics,(13) presenting an approach to optimizing multiple correlated 
quality characteristics based on the modified double-exponential desirability function.  Myers 
and Douglas discussed a response surface method (RSM) for obtaining a statistical model for 
associated problems.(14) They discussed many topics such as optimal designs, optimization 
techniques, robust parameter design, methods for design evaluation, computer-generated 
designs, multiple response optimization, and non-normal responses.  
 Using the RSM, Koyamada et al. selected the control factors in a studied problem and 
obtained the optimal parameters.(15) They proposed a parameter optimization technique using 
the response surface methodology for accurate biological cell simulation. Parkinson formulated 
an engineering problem in an automatic manufacturing process(16) and examined how 
engineering models can be used to develop robust designs.  
 Sundaresan et al. provided a procedure that incorporates manufacturing and operational 
variances to achieve designs with robust and optimal performance.(17) They proposed a suitable 
optimization technique involving the definition of variables and constraints. 
 In this study, we designed a system that is suitable for finding the optimal parameters for 
sensing an image. We confirmed that the proposed system had a short measuring time. Human 
error can be avoided when using the system, and the accuracy can reach up to 0.002 mm. We 
demonstrated that the proposed multi-objective optimization technique for detecting workpieces 
of electronic parts can increase the image processing efficiency. 

2. Optical Image Sensor and Automatic Inspection System

2.1 Image sensor and measurement system 

 It is not possible to measure tiny electronic components accurately using a conventional 
contact measuring technique. To overcome this problem, many advanced image processing 
techniques have been proposed. 
 An image processing technique includes three parts: pre-processing, post-processing, and 
noise reduction.  Sometimes, when the image quality is poor, the automatic inspection machine 
shuts down during processing.
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 The lighting system used in image processing is a key factor determining the quality of 
images. A suitable lighting system is required to provide a good light source and obtain good-
quality images.
 As shown in Fig. 1, the contact measuring components include an image sensor interface 
card, optical ruler, and servo motor driver. Noncontact measuring methods include laser 
measurement, ultrasonic measurement, and general light source measurement.  
 When probes touch tiny objects during contact measurement, the electronic ON/OFF signal 
is ON and the machine performs a measuring function. If the workpiece size is larger than the 
probe, z-axis path tracking motion control is required to track the entire workpiece surface.
 If the probe is moving in the z-direction, the z-position data is recorded for every time step. If 
the object has obvious defects, the local area of concern should be scanned again to increase the 
local resolution.
 If a noncontact measurement is selected, optical triangulation is used and scanning motion is 
activated using laser beam projection. Then, the geometric relation of the light source, the object, 
and the image is recorded to calculate the profile of the object. 
 The purpose of image processing is to obtain a clear image for analysis. Commonly used pre-
processing methods are brightness and contrast regulation and noise reduction. Post-processing 
methods include thresholding and edge inspection. A threshold value can be set to clearly 
separate the image of a workpiece from its background. 

2.2 Image sensor and measurement hardware

 The image sensor measurement system used in the study includes four subsystems: optical, 
lighting, image processing, and analyzing systems. A CCD and zoom lens are controlled by a 
z-axis servo motor with an optical ruler. XY linear stepping motors are used to move the zoom 

Fig. 1. (Color online) Optical image sensor and automatic inspection system. 
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lens to the target area. The obtained images of objects are then transmitted to a PC for image 
processing and analysis. 

2.2.1 Optical auxiliary system

 The parts of an optical auxiliary system are listed in Table 1. The measurement precision 
depends on the quality of the image obtained using QVPAK software. QUICK VISION software 
is used to set up the different parameters for the lighting system. 

2.2.2 Light source auxiliary system

 A light source auxiliary system can be selected to provide the appropriate image effect. The 
types of light in the system are listed in Table 2. The effects of carrier light, coaxial light, and 
four-split ring light on an image are shown in Fig. 2.

Fig. 2. (Color online) Effects of (a) carrier light, (b) coaxial light, and (c) four-split ring light on image.

Table 1 
Optical auxiliary system.
Prime lens Prime lens located at bottom of CCD. 
Turret-type zoom lens Three turret-type zoom lenses can rotate to change the zoom ratio. 
Adjustable zoom object lens Adjustable zoom object lens can be set to 15 positions.

(a) (b) (c)

Table 2 
Light source auxiliary system. 
Carrier light Carrier light source located at bottom of workpiece.

Coaxial light Light source passing through lens can increase contrast of object surface for z-axis 
measurement. 

Fixed ring light Fixed ring light located in area surrounding lens. 

Four-split ring light Programmable ring light (PRL) provided for further four-split ring light control to 
improve image effect.

Color lights Four color lights selected: white, red, green, and blue. 
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2.2.3 Laser probe

 As shown in Fig. 3, a laser probe is used to improve the surface measurement using z-axis 
position control. The laser probe can measure the ball grid array of surface-mount packaging 
and the C-type lead wire used in wire bonding. 

2.2.4 Contact probe

 As shown in Figs. 4 and 5, the contact probe is controlled by QUICK VISION software.  The 
contact probe can measure the surface condition of the workpiece. 

2.2.5 Rotational accessory

 The rotational accessory is a bracket metal plate used to rotate the workpiece by any specific 
angle. QVPAK software can control the rotational angle with a resolution of up to 0.1º. 

2.2.6 Joystick control box

 A joystick control box, whose specifications are given in Table 3, is used to manually move 
the mask position in the z-direction. 

2.2.7 Lighting system

 In QVPAK, there are three types of light sources: coaxial light, carrier light, and ring light. 
For example, when inspecting the surface of an object, the surface gradient effect should be 
emphasized, and when inspecting the workpiece border, the border gradient should be 
sharpened. 

Fig. 5. (Color online) Image of 
contact probe.

Fig. 3. (Color online) Laser 
probe.

Fig. 4. (Color online) Schematic 
diagram of contact probe.
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2.2.8 Light source system

 The QVPAK light source system in the 3D inspection machine is shown in Fig. 6.  The 
system includes carrier light, coaxial light, ring light, and optional four-split ring light.

2.3 Image sensor and measurement software

2.3.1 Brightness and contrast regulation

 The brightness and contrast of the light sources in the system can be regulated independently. 

Table 3 
Joystick control box.
Function Description
Power QUICK VISION power
Emergency Emergency stop
Joystick Control motion of carrier 
Speed CNC speed control 
Status LED Display status of machine
Measure Control motion of probe
GOTO/interrupt Interrupt routine for CNC mode and GOTO function for learning mode
TS key ON/OFF of probe or laser
Cancel Cancel function

Fig. 6. (Color online) Lighting system in the 3D inspection machine. 
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2.3.2 Four-split ring light source

 A four-split ring light source is a special hardware accessory. It can improve the image border 
of a slot border, tilt border, and transparent workpiece, and it can increase the gradient effect to 
emphasize the border of an object with the help of the reflection and shadow. 
 A PRL is divided into four quarter-circle parts: front, rear, right, and left parts, which can be 
set up separately. The light angle and tilt can also be regulated as shown in Figs. 7 and 8. Upon 
increasing the height of the PRL above the workpiece, the light sources irradiate the workpiece 
vertically, whereas the light sources irradiate the workpiece obliquely at a low height.   

2.3.3 Color light source

 The color light source can improve the contrast of the border of the object. To sharpen the 
border, the same background color is set. Reversely, if we want to soften the border, the inverted 
color is set. 

2.3.4 Brightness tool 

 As shown in Fig. 9, the light source can regulate the optimal brightness of the target image. 
Two modes are included. In the independent mode, the four-split ring light moves to the 
appropriate light source position with a reset mode. In the dependent mode, the light source 
moves to the appropriate position directly without a reset mode. 

Fig. 9. (Color online) Image pattern obtained with brightness tools.

Fig. 8. Four-split ring light illuminating the tilt 
border.

Fig. 7. Four-split ring light position at 30 and 80º.



Sensors and Materials, Vol. 34, No. 6 (2022) 2169

2.3.5 Dual-area contrast tool

 As shown in Fig. 10, a dual-area contrast tool can improve the contrast of two areas of the 
target image and increase the measurement reliability. When the function is executed, the light 
source can provide the appropriate contrast of two areas of the target image.

2.3.6 Image processing and analyzing functions

 As shown in Fig. 11, the image processing and analyzing functions are set up in an industrial 
PC. The automatic optical inspection system can perform the automatic processing for inspection 
using Visual Basic software. 

3. Multi-objective Optimization by RSM

3.1	 Control	factors	and	level	definition

 Three control factors, the coaxial light, four-split ring light, and mask position, are selected to 
study the optimal precision and optimal time for image inspection by the RSM. 

Fig. 10. (Color online) Image pattern obtained with dual-area contrast tool.

Fig. 11. (Color online) Image sensing machine and automatic inspection system. 
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 The coaxial light and four-split ring light are both positive light sources. Because positive 
light sources have greater impact than the backlight sources, positive light sources are here 
selected as study targets.
 The color light is also a key factor for workpieces of different colors. To simplify the 
measurement, a white light source is selected. In the RSM, nominal-the-best is selected to study 
the measuring precision. To transform the nominal-the-best problem into a larger-the-better 
problem, the following relation is used:

 
1

value
value value

LTB
Target NTB

=
−

, (1)

where LTBvalue is the measurement for the larger-the-better problem, NTBvalue is the measurement 
for the nominal-the-best problem, and Targetvalue is the target value for the nominal-the-best 
problem.
 On the other hand, smaller-the-better is selected to study the measuring time. To transform 
the smaller-the-better problem into the larger-the-better problem, the following relation is used:

 
1

value
value

LTB
STB

= , (2)

where LTBvalue is the measurement for the larger-the-better problem and STBvalue is the 
measurement for the smaller-the-better problem.
 Figure 12 shows the levels of the three control factors: factor A (coaxial light), factor B (four-
split ring light), and factor C (mask position). The level definitions for the three control factors in 
the RSM are defined in Table 4.

Fig. 12. Level definitions for factor A (coaxial light), factor B (four-split ring light), and factor C (mask position). 
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3.2 Optimization cases

 Three cases are studied to compare the optimization of the studied problem. The objective 
functions of Cases 1–3 are measuring precision and measuring time, respectively. The multiple 
objective functions of Case 3 are both measuring precision and measuring time. Because of the 
limited space, only Case 3 is discussed in detail, but similar mathematical processes apply to 
Cases 1 and 2. 
 In Case 3, a multiple performance characteristic index (MPCI) fuzzy-based dual RSM is 
used to formulate the multiple objective functions. Both the measuring precision and measuring 
time are considered together as one compact objective function to obtain the optimal solution. 
The first objective function is measuring precision. Nominal-the-best is used to obtain the 
optimal precision for the image inspection. The second objective function is measuring time. 
Smaller-the-better is used to obtain the minimal operation time for the image inspection. To 
unify the experimental data, the nominal-the-best problem is converted into a larger-the-better 
problem and the smaller-the-better problem is converted into a larger-the-better problem.  
 In the dual RSM, a combinational table including 16 experimental runs is used to perform 
experiments for different combinations of levels. In addition to the three control factors, two 
noise factors are also added to consider the possible variation in the experiments. 
 Two environmental lights that may interfere with the experimental measurements are 
considered as noise factors. The first light source is an LED light near the testing machine and 
the second light source is the fluorescent lamp in the testing room. For the three level definitions, 
color temperatures of 5000, 6000, and 7000 K are used to assess their effect on experiments. The 
lighting system of the testing machine and the fluorescent lamp of the testing room may slightly 
affect the target image.  
 Sixteen standard experimental runs are performed in the RSM. Four central-point 
experiments are also performed to study the central-point condition in the RSM. Cases 1–3 are 
studied to obtain the optimal values for the multiple objective functions. 

3.3 Fuzzy inference and MPCI value

 To integrate the two objective functions into one compact MPCI value, it is necessary to use 
a fuzzy inference process to obtain the MPCI value. In this process, the input membership 
function of the measuring precision is defined as shown in Fig. 13, where the triangular functions 
of fuzzy meanings S1, M1, and L1 are defined. The input membership function of the measuring 
time is defined in Fig. 14, where the triangular functions of fuzzy meanings S2, M2, and L2 are 

Table 4 
Definitions of levels for the three control factors in the RSM.

Level 1 Level 2 Level 3
A: coaxial light (%) 10 20 30
B: four-split ring light (%) 50 60 70
C: mask position (%) 10 20 30



2172 Sensors and Materials, Vol. 34, No. 6 (2022)

defined. The output membership function of the MPCI value is defined in Fig. 15, where the 
triangular functions of fuzzy meanings VS, S, M, L, and VL are defined. The MPCI value is 
normalized in the range of (0.0, 1.0). The fuzzy inference table is shown in Table 5.
 The fuzzy inference process includes the following nine fuzzy rules:

i. P1 = if S1 and S2 then U is VS.
ii. P2 = if S1 and M2 then U is S.
iii. P3 = if S1 and L2 then U is M.
iv. P4 = if M1 and S2 then U is S.
v. P5 = if M1 and M2 then U is M.
vi. P6 = if M1 and L2 then U is L.
vii. P7 = if L1 and S2 then U is M.
viii. P8 = if L1 and M2 then U is L.
ix. P9 = if L1 and L2 then U is VL.

Table 5 
Fuzzy inference table.

S/N ratio of time
S2 M2 L2

S/N ratio of precision
S1 VS S M
M1 S M L
L1 M L VL

Fig. 13. Membership function of the S/N ratio of the 
measuring precision.

Fig. 14. Membership function of the S/N ratio of the 
measuring time. 

Fig. 15. Membership function of the MPCI value.
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 For the final defuzzification process, the weighted average method is used to obtain the final 
output: 

 *
( )i i

i

i
i

P P P
P

P

∑ ×
=

∑
, (3)

where Pi is the weighting coefficient, P(Pi) is the membership degree, and P* is the final output.
 The final obtained MPCI values obtained after the inference process are listed in Table 6. 

3.4 Derivation of dual response surface model 

 The average value of the MPCI values for the four central-point experiments is calculated as

 ( )0 4871 0 4412 0 4798 0 4153 4 0 4559Cy . . . . /  .= + + + = . (4)

 The average value of the MPCI values for the sixteen experimental runs is calculated as

 
0.5166 0.6936 0.5019 0.6046 0.4556 0.5428

0.4261 0.5184 0.5449 0.8076 0.5033 0.5264 /16 0.5414
0.4878 0.6986 0.4510 0.3838

Fy  
+ + + + + 

 = + + + + + + = 
 + + + + 

. (5)

Table 6 
MPCI values for the 16 experimental runs and four central-point experiments.
Measuring precision Measuring time MPCI value
357.1429 0.01293 0.5166
454.5455 0.01358 0.6936
322.5806 0.01379 0.5019
384.6154 0.01363 0.6046
303.0303 0.01365 0.4556
370.3704 0.01352 0.5428
250.0000 0.01385 0.4261
344.8276 0.01367 0.5184
344.8276 0.01384 0.5449
454.5455 0.01451 0.8076
357.1429 0.01345 0.5033
416.6667 0.01308 0.5264
270.2703 0.01416 0.4878
400.0000 0.01399 0.6986
250.0000 0.01401 0.4510
303.0303 0.01339 0.3838
312.5000 0.01377 0.4871
294.1176 0.01364 0.4412
333.3333 0.01357 0.4798
312.5000 0.01388 0.4153
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 The sum of the curvature variances is expressed as

 ( ) ( )2 216 4 0.5414 0.4559
0.02339

16 4
F C F C

C
F C

n n y y
SS

n n
− × −

= = =
+ +

. (6)

 The sum of the error variances is expressed as

 ( )2
1

0.0034
Cn

E i C
i

SS y y
=

= − =∑ . (7)

 
 The F-statistics value is

 
( ) ( )

/ 1 0.02339 20.58567
/ 1 0.0034 / 4 1

C

E C

SSF
SS n

= = =
− −

. (8)

 After performing regressive analysis for the 20 experimental runs, a regressive model is 
obtained. Since the curvature is small, the first-order statistical model is selected to approximate 
the studied problem. 
 The average response surface is expressed as

 

( )( ) 0

1 2 1 3 2 4 3

7 1 2 8 1 3 9 2 3

1 2 3

1 2 1 3 2 3

,

                  
 

                  0.524320 0.055538 0.052000 0.045925
0.036675 0.015150 0.001312 .

ZE y x z b x b x Bx

Q Q x Q x Q x
Q x x Q x x Q x x

x x x
x x x x x x

′ ′= + +

= + + +

+ + +

= + − −

− − +

 (9)

 The average response surface is shown in Fig. 16 and the contour plot is shown in Fig. 17. 
Two essential variables are selected to plot the 3D response surface. Fixing x2 = −1.0, x1 and x3 
are selected to plot the 3D response surface.
 The variance response surface is defined as

 2 2 2 2 2 2
1 1 2 2( ( , )) ( / ) ( / ) ( / )Z i zi z zVar y x z y z y z y zσ σ σ= ∂ ∂ = ∂ ∂ + ∂ ∂∑ . (10)

 The two partial derivative terms in Eq. (10) are calculated as

 1 1 2 3/ 0.001862 0.032300 0.000800 0.008988y z x x x∂ ∂ = − − + + , (11)

 2 1 2 3/ 0.004912 0.002625 0.028025 0.007363y z x x x∂ ∂ = − − − − . (12)
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 Assuming that the standard deviation is 1.0 for noise factors z1 and z2, the variance response 
surface is further expressed as

 
( )( ) 1 2 3

1 2 1 3 2 3
2 2 2

1 2 3

, 0.0001350 0.0000389 - 0.0005419 0.0004270

0.0001461 0.0002724 0.0000955

0.0000276  0.0010502 0.0007860 .

zVar y x z x x x

x x x x x x

x x x

= + +

+ + +

+ + +

 (13)

 The variance response surface is shown in Fig. 18 and the contour plot is shown in Fig. 19. 
The variance response surface is converted into a constraint in the optimization problem. The 
constraint condition is expressed as

 

( )( ) 1 2 3

1 2 1 3 2 3
2 2 2

1 2 3

, 0.0001350 0.0000389 0.0005419 0.0004270

                     0.0001461 0.0002724 0.0000955

                     0.0000276 0.0010502 0.0007860 100,

Varz y x z x x x

x x x x x x

x  x x

= + − +

+ + +

+ + + ≤

 (14)

where the constraints of the three control factors are in the range of (−1.0, 1.0), i.e.,

 11 1x− ≤ ≤ , 21 1x− ≤ ≤ , 31 1x− ≤ ≤ . (15)

4. Optimal Solution by Orthogonal Particle Swarm Optimization 

4.1 Orthogonal particle swarm optimization (OPSO) modeling

 We discuss the optimization process used to derive the optimal solution in the studied 
problem based on the statistical model derived by the RSM. The optimal solution may be located 
anywhere in the range between −1.0 and +1.0 and a local optimal solution may not be the optimal 

Fig. 16. (Color online) Three-dimensional plot of 
average response surface. 

Fig. 17. (Color online) Contour plot of average 
response surface. 
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solution over the entire global range. Therefore, OPSO is used to efficiently derive the optimal 
solution. The local and global search processes are combined. The global optimal solution is 
found during the search for the optimal solution.
 If the global solution is more optimal than a local solution, OPSO can escape from the local 
optimal solution by adding random seeds into the formulation.  In the RSM, the nonlinear 
problem is approximated as a first-order statistical model problem. However, the curvature of 
this first-order model is not negligible. Thus, the nonlinearity property is still obvious in this 
problem. The nonlinearity affects the search process when the algorithm approaches the optimal 
solution. 
 Particle swarm optimization (PSO) was derived by emulating the group dynamic behavior of 
animals.(18–21)  For each particle in a group, not only the individual particle but also the overall 
group can affect the dynamic behavior. In PSO, position and velocity vectors are defined for 
each particle. The proposed search method combines the contribution of each individual particle 
with the contribution of the group. For particles at points in a search space with D dimensions, 
the ith particle associated with the problem is defined as

 ( )1 2, , ...,id i i iDX r r r= , (16)

where d = 1, 2, …,D and i = 1, 2, ...,PS with PS the population size. The individual particle value 
and the group value associated with each particle Xid are respectively defined as

 ( )1 2, , ...,pd p p pDP p p p= , (17)
 ( )1 2, , ...,gd g g gDP p p p= . (18)

 The refreshing speed vector is defined as

 ( )1 2, ,...,id i i iDV v v v= . (19)

Fig. 18. (Color online) Three-dimensional plot of 
variance response surface. 

Fig. 19. (Color online) Contour plot of variance 
response surface. 
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 The refreshing position and velocity vectors for step n are expressed as

 ( ) ( )1
1 2() ()n n n n

id id pd id gd idV V c rand P X c rand P X+ = + × × − + × × − , (20)

where 1  n n n
id id idX X V+ = + .

 The initial estimate of the solution should be made at the start of the search process. In the 
iteration process, each particle is updated by the values originating from both the group 
contribution and the individual particle contributions. The convergence condition is the 
minimum average square error of the particles in the group. The contributions of both the 
individual particles and the group are mixed together in the searching process.
 There may be a local minimum in the optimization problem at which the solution may be 
trapped, which is not the global minimum solution over the entire range. By considering the 
group contribution, a random function is adopted to jump out of the local interval. An inertia 
weighting factor is also introduced in this algorithm to increase the convergence rate. The inertia 
weighting factor in Eq. (20) and the modified formula are

 ( ) ( )1
1 2() ()n n n n

id id pd id gd idV W V c rand P X c rand P X+ = × + × × − + × × − , (21)

 max min
max

max

W W
W W gen

gen
−

= − × , (22)

where c1 and c2 are both constants, Wmax is the initial weighting value, Wmin is the final weighting 
value, gen is the current generation number, and genmax is the final generation number. However, 
this modification is actually a linear modification. Many nonlinear modification methods to 
refresh the velocity vector have been proposed to make such an algorithm suitable for nonlinear 
search problems. The modified term is defined as the key factor. By setting the learning factors 
c1 and c2 to larger than 4.0, the modification in the speed vector is expressed as

 ( ) ( )1
1 2() ()n n n n

id id pd id gd idV K V c rand P X c rand P X+  = × + × × − + × × −  , (23)

 
( ) ( )( )2

1 2 1 2 1 2

2

2 4
K

c c c c c c
=

− + − + − × +
. (24)

 However, the modified term is rather complicated and not convenient to apply in the search 
process. In the following, a modified PSO method called orthogonal PSO (OPSO) is proposed to 
improve the searching process effectively. A simple orthogonal array obtained by the Taguchi 
method is used in this algorithm to simplify the search process. 
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4.2 Orthogonal algorithm

 In the Taguchi method, two objective functions are defined before performing OPSO. The 
particle swarms are composed of an individual particle swarm Oid and a group swarm Aid 
expressed as follows.

 ( )1 ()n n n
id id id pd idO X WV c rand P X= + + × × −  (25)

 ( )2 ()n n n
id id id gd idA X WV c rand P X= + + × × −  (26)

 The two functions are functions of the three control factors in OPSO. Three levels are defined 
for the control factors. Therefore, the orthogonal array has three control factors with three levels. 
We assume that the optimal solution is expressed as Qid, then Qid is adopted to refresh the 
particle position and velocity vectors using Eqs. (27) and (28). The process for refreshing 
particles in OPSO is illustrated in Fig. 20.

 1n n
id id idV Q X+ = −  (27)

 1n
id idX Q+ =  (28)

4.3 Derivation of optimal solution

 The optimal solution for the optimization problem was found using the above formulation. 
The optimal measuring precision and measuring time were found at the same time by the 

(a) (b)

Fig. 20. (Color online) Illustration of OPSO process in the optimization problem. (a) Refreshing process from first 
generation to third generation. (b) Error percentage from first generation to fifth generation.
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proposed MPCI method. The derived optimal solution provided the optimal measuring precision 
and measuring time for the testing machine. 
 The statistical model of the studied problem was verified by the RSM and the OPSO method. 
This model is very applicable for associated smart machinery and industrial applications. The 
optimal solution can be found at the ends of the entire search range, so that the global solution is 
found instead of a local solution. Our results showed that the proposed mathematical method can 
provide a satisfactory search process.
 The optimal solution probably lies somewhere between the end points. In OPSO, global and 
local particles are searched at the same time, resulting in faster convergence than conventional 
search methods. Related verification experiments showed that the proposed methodology can 
provide a good prediction. The proposed optimal solution obtained by OPSO can optimize the 
machine parameters of the measuring precision and measuring time. 
 In Case 3, the optimal value is obtained as (x1, x2, x3) = (1.0, −1.0, −1.0). This means that the 
coaxial light should be set to 30%, the four-split ring light should be set to 50%, and the mask 
position should be set to 10% of the distance moved in the z-direction. The practical optimal 
value of measuring precision is 0.00619 mm and the practical optimal value of measuring time is 
68.64 s.

5. Discussion

 We discuss our results by comparing three testing results with different objective functions. 
As listed in Table 7, Cases 1–3 are compared, where the cases are defined in Sect. 3.2.
 Since the curvature of Cases 1–3 is sufficiently small, a first-order statistical model is used to 
approximate the problem under study. The measuring time of 68.64 s in Case 3 is slightly 
smaller than the value of 69.31 s in Case 2. The measuring precision of 0.00619 mm in Case 3 is 
similar to that of 0.00624 mm in Case 1. Satisfactory results were obtained for the studied 
problem.

Table 7  
Comparison of Cases 1–3.

Case 1
Measuring precision

Case 2
Measuring time

Case 3
Measuring precision and 

measuring time

Analytic method Response surface method Response surface method Fuzzy inference response 
surface method

Objective function Nominal-the-best Smaller-the-better Nominal-the-best and 
smaller-the-better

Optimal solution (1.0, −1.0, −1.0) (1.0, −1.0, −1.0) (1.0, −1.0, −1.0)
Curvature 16.0234 20.62051 20.58567
Maximal testing set in 
combinational table

454.5455
(0.0062 mm)

0.01451
(68.92 s)

455.5455
(0.00619 mm)

0.01457
(68.64 s)

Optimal value 445.10
(0.00624 mm)

0.01443
(69.31 s)

455.5455
(0.00619 mm)

0.01457
(68.64 s)
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6. Conclusion

 With the decreasing size of electronic components and the increasing integration of chipsets, 
higher measuring precision is required to inspect defects. By studying the optimal lighting 
system, the image sensing effect and measuring precision can be enhanced to inspect workpiece 
defects. Also, the measuring time is studied to obtain the shortest measuring time and thus 
increase the generation efficiency. Control factors related to the negative lighting system such as 
a backlighting system can also be added to assess the improvement of the measuring precision 
and measuring time in the future. 
 It is expected that the proposed statistical method can be applied in a website server and 
uploaded onto a cloud server. Smart manufacturing and intelligent sensing and inspection 
processes can be achieved to increase generation efficiency in the era of Industry 4.0.

Acknowledgments

 The experimental setup employed in this study was partially supported by Tzan-Hsing Inc.

References

 1 K. J. Stout: Three Dimensional Surface Topography: Measurement, Interpretation and Application (Penton 
Press, Cleveland, 1994).

 2 P. V. C. Hough: Methods and Means for Recognising ComplexPatterns, U.S. patent 3069654 (1962).
 3 H. Cao: J. Measurement 31 (2002) 71.
 4 T. G. Beckwith and R. D. Marangoni: Mech. Measurements (Addison-Wesley, Boston, 2003).
 5 K. Kawasue and T. Ishimatsu: IEEE Trans. Ind. Electron. 44 (1997) 703.
 6 M. Subbarao and T. Choi: IEEE Trans. Pattern Anal. Mach. Intell. 17 (1995) 266.
 7 A. P. Pentland: IEEE Trans. Pattern Anal. Mach. Intell. 9 (1987) 523.
 8 S. K. Nayar and Y. Nakagawa: Proc. Int. Conf. Robotics and Automation (1990) 218–225.
 9 S. K. Nayar and Y. Nakagawa: IEEE Trans. Pattern Anal. Mach. Intell. 16 (1994) 824.
 10 D. Lu and J. Antony: Intl. J. Prod. Res. 40 (2002) 1613.
 11 Y. S. Tarng, W. H. Yang, and S. C. Juang: Int. J. Adv. Manuf. Technol. 16 (2000) 688.
 12 L. I. Tong, C. H. Wang, and H. C. Chen: Int. J. Adv. Manuf. Technol. 27 (2005) 407.
 13 F. C. Wu: J. Manuf. Syst. 23 (2004) 134.
 14 R. H. Myers and D. C. Douglas: Response Surface Methodology: Process and Product Optimization Using 

Designed Experiments (Wiley, New York, 1995).
 15 K. Koyamada, K. Sakai, and T. Itoh: Proc. Annu. Int. Conf. IEEE EMBS, IEEE (2004) 2909–2912.
 16 A. Parkinson: Trans. ASME 117 (1995) 48.
 17 S. Sundaresan, K. Ishii, and D. R. Houser: Proc. ASME Advance in Design Automation Conf., ASME (1993) 

379–386.
 18 Y. Shi and R. Eberhart: Proc. IEEE Int. Conf. Evolutionary Computation, IEEE (1998) 69–72. 
 19 R. Eberhart and Y. Shi: Proc. Congr. Evolutionary Computation (2000) 84–88.  
 20 S. Y. Ho: IEEE Trans. Syst. Man Cybern. 38 (2008) 288.  
 21 B. Y. Qu, P. N. Suganthan, and S. Das: IEEE Trans. Evol. Comput. 17 (2013) 387.


