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At present, many diseases can be predicted through data obtained by wearable sensors. The
majority of these proposed wearable devices only use inertial sensors to obtain the walking
motion signals of a subject. However, since the symptoms of sarcopenia are reflected in the
changes in human muscles, we propose a sarcopenia recognition system, which consists of
hardware and software. The hardware is composed of multiple sensor module (MSM), which is a
wearable device used to collect the signals of electromyography and gait (EAG). The software is
composed of biomedical and inertial sensors algorithm (Bodi algorithm) and leg health
classification net (LCNet). The Bodi algorithm is used to calculate various gait indicators after
predicting the risk of sarcopenia obtained by LCNet. The accuracy of LCNet is 94.41%, its
precision is 91.58%, its specificity is 95.81%, and its sensitivity is 91.58%. In the future, we
expect to use the proposed MSM to collect additional subjects’ gait data and apply it to other
disease predictions to assist physicians in disease diagnosis.

1. Introduction

In the field of clinical diagnosis, the use of low-cost, portable, and wearable sensors for
human activity measurement has become a very common detection method. Among wearable
sensors, frequently used devices include inertial sensors such as accelerometers or gyroscopes,
electromyogram (EMG) sensors such as biomedical signal sensors, ground reaction force (GRF)
sensors, and others. The current research is generally limited by the sensors’ energy
consumption; thus, few sensors are generally used for human activity and gait measurement.()
As a result, the gait data collected by the sensors can only be used to determine some gait
parameters. For example, inertial sensors can only be used for collecting the human body’s
movement direction but cannot be used to interpret the electromyographic signals generated by
human muscle activity; therefore, we can only calculate gait parameters using sensor values such
as step length, stride length, and walking speed, but the changes in muscle strength cannot be
calculated using gait data.
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Furthermore, wearable sensors are currently used in many studies to collect human gait data,
and they have been widely used in the fields of gait analysis, disease prediction, health re-
evaluation, and medical care.> In the wearable sensor application range, gait parameters are
generally calculated using gait data and are used to assess whether the subject exerts uneven
forces on the left and right feet or the asymmetry of the left and right feet; additionally, the step
parameters can predict the probability of suffering from scoliosis, sarcopenia, Parkinson’s
disease,¥ and multiple sclerosis.®) Among them, sarcopenia is a disease that has attracted
considerable attention in recent years. It is evidenced by decreased muscle quantity and muscle
function decline. However, malnutrition, insufficient physical activity, and chronic diseases can
also lead to the occurrence of sarcopenia. Moreover, in the current preliminary assessment of
sarcopenia, doctors often use three factors, namely, human muscle strength, muscle quantity,
and physical performance, to determine whether there is a risk of sarcopenia.®7) However,
professional instruments are not used to calculate these indicators when implementing testing,
and most diagnoses are based on the doctor’s experience. In addition, there are many test items,
and the patient must repeat similar tests many times before the physician can determine whether
the patient has sarcopenia and its severity.

Given the above problems, we developed a multiple sensor module (MSM) that has a low
power consumption and uses a small Arduino Nano 33 BLE Sense as the micro-control
processing core, combined with a built-in accelerometer, an EMG sensor, lithium batteries, and
lithium battery charging boards. These components are used to collect electromyography and
gait (EAG) signals, which consist of three-axis acceleration and myoelectric signals during
walking to analyze a person’s health status.®-19 Then, we calculate gait indicators such as step
length, stride length, walking speed, and muscle strength using the Bodi algorithm proposed in
our study. The Bodi algorithm can be used to discover a subject’s problems when walking, such
as whether the subject distributes weight to one side of the body, and it also provides gait
indicators that assist the physician in assessing the subject’s health. In addition, we also input the
calculated gait indicators into a deep learning model for training so that it can learn to recognize
and predict the risk of sarcopenia. Therefore, people may pay more attention to skeletal muscle
mass loss and go to the hospital for further examination before symptoms become severe.

This study is divided into four sections. In Sect. 2, we discuss the related literature. In Sect. 3,
we introduce this study’s research methods, including the system process, software, developed
hardware devices, self-collected gait dataset, model, and algorithm used in this study. Sect. 4
consists of the experimental results and provides a discussion regarding the different variables.
In the final section, we present the conclusion and future research directions.

2. Related Works

2.1 Application fields of wearable devices and importance of gait parameters for health
prediction

Many studies have collected human activity signals using small and portable wearable
sensors. In 2012, Tao et al. mentioned that the gait analysis methods based on wearable sensors
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can be divided into three categories, namely, gait kinematics, gait kinetics, and
electromyography.?® In gait kinematics, inertial sensors such as accelerometers and gyroscopes
are often used to collect dynamic gait data and are installed on the waist, thighs, or calves of the
human body to measure acceleration or angular displacement while walking. In
electromyography, EMG sensors are primarily placed on the skin’s surface to measure the
human body’s EMG signals when walking, such as the muscle change between steps, which can
also be used to calculate muscle strength. However, EMG sensors must be placed in a specific
position on the muscle before they can be used as a gait analysis tool for clinical treatment when
assessing the recovery degree of patients with neurological diseases such as Parkinson’s disease
and stroke.®)

Additionally, in 2020, Diaz et al.(") mentioned sensors in wearable sensor systems, such as an
inertial measurement unit (IMU) and electromyography (EMG) sensors, which are commonly
placed on the breastbone, waist, or upper and lower limbs to assess balance disorders and
measure gait parameters. The wearable sensors play an important role in rehabilitation research
and have the advantage of realizing gait characterization and the objective evaluation of balance
function performance. However, the sensors’ power consumption is currently a major problem in
this field. The more sensors are used, the more power the system consumes, which may cause
the system to fail to achieve the expected performance. Therefore, this problem is also a focus of
future research.

In 2019, Gujarathi and Bhole(") placed two inertial MPU6050 sensors, which include a three-
axis accelerometer and a gyroscope, on the lower leg to assess and monitor the rehabilitation
degree of orthopedic patients; they also used the sensors to collect the subjects’ gait signals
during a 40 m walk. Then, they used the gait analysis algorithm to calculate gait parameters such
as the stride length, step length, and standing time, among others. In this study, we found that
acceleration and gyroscope signals can be used to evaluate the degree of rehabilitation. However,
the sensor must be equipped with an Arduino Uno micro-control board to collect gait signals.
Therefore, when the user wears this device while walking, the walking state may be affected by
the collection device’s large size, resulting in unobjective data.

In 2010, to explore the relationship between age and lower extremity muscle EMG signals
and electromyography, Tian et al.1? placed EMG and mechanomyography (MMG) sensors on
the subjects’ quadriceps femoris muscles to collect the signals. The experimental results prove
that results from the elderly are not as good as those from the young in terms of EMG or MMG
signals. This result means that muscle strength decreases with increasing age and is related to
muscle quantity. Then, in 2011, Kashiwagi et al.(? placed surface electromyography (SEMG)
sensors on the subjects’ left and right erector spinae to collect the four waist movements of the
human body, namely, forward, backward, left, and right, and to detect the potential changes of
the erector spinaec EMG signals to help nursing staff understand the patients’ condition and
complete nursing tasks quickly. The above study demonstrates that the EMG sensor is placed on
the skin surface at a specific muscle position, and then the surface EMG signal is measured by
the EMG sensor. The results not only help researchers and medical professionals understand
human muscle contractions and movement, but can also be used to understand human health.
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2.2 Gait data processing and indicator calculation and application

The world has gradually entered an aging society, and as a result, the problem of human
aging has attracted increasing attention. In 2019, Bonetto and Bonewald'¥ mentioned that if
accompanied by age-related bone loss, decreased muscle quantity and symptoms related to loss
of function can be called sarcopenia, which generally becomes prevalent once patients surpass
the age of 30, and after they surpass 60 years of age, the muscle quantity will decrease rapidly.
Additionally, they mentioned that 20% of the global population over 60 years old will suffer
from sarcopenia in 2050, which demonstrates its importance. In the same year,
Cruz-Jentoft et al.® elaborated on the EU sarcopenia working group to update the definition and
diagnostic criteria of sarcopenia and mentioned that, in addition to aging, sarcopenia can also be
caused by decreased mobility, such as that which occurs during long-term bed rest. Both young
and old patients have a chance of suffering from sarcopenia. In clinical diagnostic criteria, it is
also mentioned that the human body’s muscle strength, muscle mass, and physical performance
can be used to diagnose the presence of sarcopenia as well as its severity. In 2020, Chen et al.(?)
explained in detail the diagnostic criteria for sarcopenia revised by the Asian Working Group for
Sarcopenia (AWGS). They also noted the hereditary difference between Asians and Europeans
in terms of body shape and lifestyle, which causes a problem because the judgment standard
established by the European Working Group on Sarcopenia in Older People 2 (EWSGOP2) does
not apply to Asians. However, in the current sarcopenia diagnostic process, professional medical
equipment that can provide measured values for physician reference is only available for muscle
quantity. There is no easy-to-operate measurement tool with a consistent judgment standard for
measuring muscle strength and physical function when diagnosing sarcopenia.

Gait analysis is one of the methods used to evaluate patient behavior and motor function in
clinical medicine. To help medical staff quantify patients’ physical activity, many studies have
used wearable devices to collect human activity signals and have proposed methods to quantify
gait data. In 2006, Alvarez et al'® compared five mathematical estimation models for
calculating the step length and converted the gait data collected by the accelerometer to provide
a more accurate step length evaluation model. Then, in 2011, Jin et al(!®) proposed a relative
threshold detection method to find the peak and valley values in the acceleration data to infer the
location of pedestrians using low-cost sensors built into smartphones, such as accelerometers or
digital compasses. However, in this study, we demonstrate that accelerometers are susceptible to
noise from irregular activities by the human body. In 2015, Lan et al'?) proposed a Pedestrian
Dead Reckoning (PDR) attitude estimation method based on inertial sensors and satellite
navigation systems to track pedestrian positions, and the peak and valley values from the
acceleration data were also used to infer the pedestrians’ number of steps and step length. The
results prove that this calculation method can effectively ascertain pedestrians’ walking
direction and distance.

In 2012, Kuriki et al.1® placed electrodes on the surface of the skin to detect EMG signals to
infer muscle strength, but by only collecting EMG signals, muscle strength cannot be evaluated.
Therefore, they combined this strategy with signal correction methods or standardized
instruments and methods, such as root mean square (RMS) and principal component analysis
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(PCA), among others. To explore the correlation between EMG and muscle strength, we use the
RMS method to quantify the EMG signal. The results show that the EMG signal increases with
muscle contractility and that the amplitude of the EMG signal related to isometric or isotonic
contraction increases with the square root of the signal. In the study discussed above, Diaz
et al.) mentioned not only the types and application fields of common wearable sensors but also
the evaluation indicators and algorithms of gait parameters, such as the calculation formulas of
step length, stride length, and walking speed.

PDR uses the kinematic characteristics of pedestrian gait, travel distance, and walking
direction data. It is primarily composed of three important components, namely, step length
detection, stride length estimation, and walking direction estimation, and it uses an accelerometer
to detect a pedestrian’s step length to provide accurate and continuous navigation results for
pedestrian navigation.

2.3 Application of machine learning and deep learning to human activity classification
and prediction

In recent years, the application of machine learning and deep learning in medical treatment
has increasingly matured, and better disease prediction and analysis will be realized by
combining human activity data and machine learning or deep learning methods. In 2018,
Zebin et al.(1”) used the LSTM architecture to classify the data collected by an accelerometer and
a gyroscope into six daily activities, and the accuracy is 92%. It can be seen that LSTM can
achieve a good classification effect for a continuous-time signal. However, the classification
effect of the discontinuous-time signal was not mentioned. In 2019, Alharthi et al.® integrated
the methods of gait monitoring, gait feature extraction, and analysis, but most of the studies rely
on manual gait feature extraction, which is prone to errors. It has been found that using deep
learning to automatically extract gait features can eliminate dependence on handcrafting; it can
also build a fall or disease prediction system. In the same year, Coté-Allard et al.*” used the
concept of transfer learning to train the ConvNet deep learning model to classify the one-
dimensional data in the Myo Armband and NinaPro datasets, such as the original EMG signal,
the spectrogram of the EMG signal, and the continuous wavelet transform (CWT) EMG signal
data. These data can also be used to identify the gesture of the subjects. In addition, the
classification accuracy of the ConvNet model can reach 98.31%, which means that it can classify
different gestures accurately from the electromyogram.

According to multiple studies, wearable devices are often used to collect human activity
signals and predict diseases, and as a human health assessment tool. However, most of the
studies only use a single sensor to collect the subjects’ human activity signals, and they rarely
combined the inertial and EMG sensors to collect the subjects’ acceleration and EMG signals for
analysis. It is easy to neglect the importance of acceleration or EMG signals for gait and health
prediction. In addition, there are still a few studies that use deep learning models for disease risk
assessment and the prediction of calculated gait indicators. Therefore, we use the small and low-
cost Arduino Nano 33 BLE Sense with low power consumption and inertial sensors as the
primary control core for the “wearable detection box”, which can improve the energy
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consumption of the hardware as well as widen the range of the Bluetooth connection. Then, we
refer to the installation position of the wearable sensor mentioned in the above study and install
the SEMG sensor in MMG on the left and right erector spinae muscles of the human body and
place the accelerometer on the quadriceps of both feet to facilitate the collection of gait signals
during the test project. Next, we refer to the gait index calculation method mentioned above to
analyze and process human activity and gait signals collected by accelerometers and EMG
sensors. Finally, according to the above literature, although the recurrent neural network (RNN)
performs well in classifying continuous-time data, the data pre-analyzed in this study are an
indicator of discontinuous time. Therefore, we proposed a leg health classification net (LCNet)
and input the gait indicators into the LCNet deep learning model for training. Not only can it be
used in the early prediction of diseases, but it can also be used as a diagnostic reference for
physicians. The contribution of this study lies in the following.
(1) The MSM proposed in our study combines an accelerometer and EMG sensors, so the
collected gait data provide more diverse gait indicators as a basis for assessing health status.
(2) We install MSM at specific locations on the human body, such as the waist, thighs, and
calves, which means that we can collect more meaningful human activity signals.
(3) We input the calculated gait indicators into the deep learning model for training to achieve
sarcopenia risk predictions.

3. Materials and Methods

In this study, we use MSM to collect the subjects’ EAG signals, which consists of three-axis
acceleration and myoelectric signals during the test. Next, we use the Bodi algorithm proposed
in this study to calculate gait indicators such as the step length, number of steps, and pace.
Finally, we input the gait indicators calculated using the Bodi algorithm into LCNet to classify
the risk of suffering from sarcopenia. Figure 1 shows this study’s flowchart, which is primarily
divided into two parts, namely, the testbed system and the proposed analysis method. We have
built a testbed system that uses the interface for connecting multiple sensor modules (ICMSM)
to connect to the MSM installed on the subject via BLE to collect data. In the testbed system, we
also introduce MSM, ICMSM, and participation and experiment protocols. Next, in the
description of the proposed method, we introduce the Dataset, Data Augmentation, Data
Normalization, the Bodi algorithm proposed in this study, and LCNet.

Connect with Conduct Experimental Store the Data

festheCovten e e BLE and MSM Test Projects in the Database

l

Our Proposed System Input Datasets

Calculate Various
-> Indicators through -> Data Normalization ->
Bodi Algorithm

Data Augmentation
using DBA Algorithm

Training and Testing
LCNet Model

Fig. 1. (Color online) Flowchart of our proposed system.
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3.1 MSM

To collect human gait performance data, we have built a testbed system that can obtain the
EAG signals of humans from wearable devices. Each MSM includes a sensing module, a
communication module, a microcontroller module, and a power module. The MSM circuit and
architecture diagrams are shown in Figs. 2(a) and 2(b).

In the sensing module, we use an inertial sensor and a biomedical signal sensor. We adopt the
LSMO9DSI chip in Arduino Nano 33 BLE Sense as an inertial measurement unit (IMU) to obtain
the subject’s three-axis accelerations while walking, sitting, and getting up, which are the X-axis,
Y-axis, and Z-axis accelerations, respectively. Then, we adopt the EMG Detector as a biomedical
signal sensor to collect the electrical signals from muscle contraction during walking, sitting,
and getting up. This device processes the received signal four times, which includes two
amplifications and two filterings.

To reduce the load of the power module in the wearable device, we use the Bluetooth Low-
Energy Module for data transmission, as well as the Bluetooth Low-Energy Chip, which is
embedded in the Arduino Nano 33 BLE Sense. We use Bluetooth to transfer the data received by
the sensor module to the connected mobile device and to store the data in the server.

To reduce the size of the wearable device, we adopt Arduino Nano 33 BLE Sense as the
microcontroller module, which has an embedded communication module and an inertial sensor.
The microcontroller module is connected to the sensing module, which defines the period over
which the sensing module receives data and transmits it to the mobile device.

To power the entire circuit, we use a 3.7 V lithium polymer battery to supply power and we
also add a lithium battery charging protection board. The battery is connected in parallel to the
Arduino Nano 33 BLE Sense and EMG Detector. The operating voltages of the Arduino Nano 33
BLE Sense and EMG Detector are both 3.3 V, so this power module can effectively supply the
entire circuit’s power demand.

Slide Switch

Lithium Battery Charging

Protection Board
5 ;

EMG Detector

Power Module

Arduino NANO

33 BLE Sense
i’igﬁﬁlllllflﬁjﬂl‘
AARDZE LS. € +
e Communication Microcontroller Inertial Measurement
Module Module Unit
3.7V Polymer Lithium Battery EMG Detector
@ (b)

Fig. 2. (Color online) (a) MSM circuit diagram. (b) MSM architecture diagram.
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3.2 ICMSM

To collect the gait data detected by MSM, we have built a testbed system. On the front end,
we used HTMLS, which is low-cost and cross-platform combined with JavaScript, which is
highly interactive to complete the Web App interface. The testbed system interface and
architecture is shown in Fig. 3. This configuration means that regardless of the operating system,
such as i0S or Android, all users can access the Web App through a browser. To complete the
communication between software and hardware, we use the Web Bluetooth API to enable the
browser to obtain the data transmitted by the Bluetooth Low-Energy Device. At the same time,
we present the data in the experimental interface. Next, we use the Web Storage API to
temporarily store the data in the browser, encapsulate it once 50 data points have been collected,
and then use Ajax technology with the PHP back-end programming language to transfer the data
to the MySQL database. This strategy avoids losing data due to sending too much data at the
same time.

3.3 Participation

We collected activity data from 19 researchers working in a research institute and their
families. There were 55 subjects in total. All subjects consented to participate. The subjects
consisted of 21 men and 34 women, aged between 20 and 81, weighing between 38 and 112 kg,
and having a skeletal muscle mass between 12 and 29 kg. Patients with severe leg or spine
injuries were excluded. Among the effective subjects, we defined 19 subjects as being at high
risk of sarcopenia according to the diagnostic method proposed in a previous study,® which is
based on the subjects’ calf circumference and skeletal muscle mass. The remaining 36 subjects
were defined as the low-risk group. Table 1 shows the descriptive statistics.

3.4 Experimental protocols

To understand the subjects’ physical performance, we use the sarcopenia diagnostic criteria
proposed by the European Working Group on Sarcopenia® and asked each subject to take the

( = -0.08056640625
=0.9932861328125

Connect and
Interact with BLE

Temporarily Stored
in the Browser

Fig. 3. (Color online) Testbed system interface and architecture.
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Table 1
Descriptive statistics.

Mean Min Max Range
Age 33.88 19.00 81.00 62.00
Weight 62.33 38.00 112.00 74.00
Skeletal muscle 18.83 12.50 28.99 16.48

Four-meter Usual Walking Speed Test and the Time-up and Go Test six times. In most human
gait kinematics measurements, the accelerometers are worn on the thighs and calves® to collect
gait data during the test, and the accelerometer placed on the waist can obtain data about the gait
cycle. Therefore, we will place the MSM at the back of the left and right legs and at the back of
the subject’s waist. To obtain the subject’s muscle activity while walking, we attach the electrode
patches of the EMG Detector to the left and right erector spinae muscles.!3) To obtain data about
waist movement during walking and the changes in thigh muscle contraction during walking,
sitting, and getting up, we attach the electrode patches to the quadriceps femoris muscles of the
left and right thighs. The positions at which the MSM is worn are shown in Fig. 4, and the
directions of the X-axis, Y-axis, and Z-axis of each MSM are uniform. Each subject was asked to
walk normally during the test, with no requirement to walk fast or slow. At the same time, the
entire test process is monitored by researchers, and the walking time is calculated.

3.4.1 Four-meter Usual Walking Speed Test

Since the Four-meter Usual Walking Speed Test is considered to most resemble daily
walking, it is one of the important tests used to evaluate walking speed in the related literature.(®)
In this test, the subject starts with a standing posture and then walks straight for four meters at a
normal walking speed. The schematic diagram of this test is shown in Fig. 5.

3.4.2 Time-up and Go Test

The Time-up and Go Test is a test that can measure the soundness of the functions required
for human movement in all aspects.®7) During the test, the subject needs to start at a sitting
state, then gets up and walks three meters. Next, the subject turns 180 degrees, walks back to the
starting point, and sits down. Since the test consists of getting up from a chair and turning
around, the test is also regarded as a measure of muscle function. A schematic diagram of the
Time-up and Go Test is shown in Fig. 6.

3.5 Dataset

In this study, we collected various data about the subjects’ walking during the two tests using
inertial sensors and biomedical signals, including their X-axis, Y-axis, Z-axis accelerations, and
EMG. There are a total of 55 subjects in the test, and each test collects six valid data. To ensure
the validity of the received data and to avoid losing data during exchange and transmission due
to environmental interference, the data sampling rate used was 6 Hz. Finally, a total of 660 valid
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‘Wearable Sensor
for Right Waist
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Electrodes and Ground 1 % . Electrodes and Ground

Terminal for Left Waist Terminal for Right Waist

" Attachment Position of
.. Electrodes and Ground

. Terminal for Left Leg

Wearable Sensor
for Left Leg

Wearable Sensor
for Right Leg Attachment Position of
Electrodes and Ground
Terminal for Right Leg

(b)
Fig. 4.  (Color online) (a) Positions at which MSM is worn on the body. (b) Positions where electrodes and ground

terminal are attached.

End (Stand)

k4

Start (Stand) > Walk

Fig. 5. (Color online) Schematic diagram of Four-meter Usual Walking Speed Test.

Start (Sit) =2 Walk > Turmnback > End (Sit)

Fig. 6. (Color online) Schematic diagram of Time-up and Go Test.

data points were obtained in the two tests. In the denoising part, we used the median filter to

filter noise in the raw data.

3.6 Data augmentation

As a small number of data cause the model to overfit, data augmentation allows the model to
learn more about the characteristics of data invariance. Therefore, we adopt the DTW
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Barycenter Average (DBA) algorithm, which was developed specifically for time series,?1~23 to
improve the model’s generalization ability. Finally, the amplified dataset has a total of 2860 data
points. In this study, 90% of the time-series data in this dataset is used as the training dataset,
and 10% is used as the test dataset.

3.7 Bodi algorithm

To assist rehabilitation physicians in clinical diagnosis and disease analysis, we calculate the
indicators from the data obtained by the MSM. Among the indicators used in this study, seven
indicators are calculated on the basis of three-axis acceleration signals collected by the inertial
sensor: step length, stride, the number of steps, step speed, average acceleration, acceleration
RMS, and symmetry. The other two indicators are calculated on the basis of the data from the
biomedical signal sensor, which includes the average EMG and EMG RMS.

3.7.1 Indicators calculated on the basis of three-axis acceleration signals

Step length represents the distance between the feet when both feet are on the ground. When
the step length is large, the leg has to expend more power to step, which expresses the strength of
the leg muscles."'>~17) To calculate the step length, we first obtain the acceleration in the
forward direction. In this study, the subject’s forward direction is the Z-axis of the inertial
sensor. Then, we find the maximum and minimum values of the Z-axis acceleration. The step
length is defined as

Step = (Zmax _Zmin)1/4‘ (1)

V4

max

and Z

min Tepresent the maximum and minimum values of the Z-axis acceleration,
respectively.

Stride is defined as the distance between the two right heels, that is, the sum of the lengths of
the left and right feet. It is mainly affected by the muscles’ horizontal and vertical forces, which
means that insufficient muscle strength or the wrong direction of the force will affect the stride

size. The stride equation is

Stride=Step,,; + Step,, - )

Stepj,p; and Step,.;q, represent the step lengths of the left and right feet, respectively.

After knowing the step length and stride, we can calculate the number of steps, which is
closely related to the step size.*¥) However, the step size is closely related to the muscle strength;
that is, the smaller the number of steps, the larger the step length and the greater the effort
required to walk and stride. Therefore, it can be used to express the leg muscle strength. The
number of steps is defined as

Num = | Distance / (Stride / 2) |, 3)
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where Distance is the testing distance.

Gait speed, also called walking speed, is the distance walked in a given period. Walking
speed represents the overall walking performance, that is, it can be used to measure the ability,
reliability, and sensitivity of assessing and monitoring overall health. The gait speed equation is

Speed = [Num / (Time / 60)} x Stride x0.5. @)

Num and Time represent the total number of steps and the total time taken during the test,
respectively.

In addition to the indicators related to pace, we also calculated the indicators related to
directionality. The subject may move in different directions during the test, the acceleration
value in a single direction cannot stably reflect the subject’s gait performance, and the axis
perpendicular to the ground has a higher value than the other two axes.?> To avoid arbitrary
movement by a subject as well as the effect of a single axis on other axes, we perform the
following processing on the three-axis acceleration:

0.5
TA=(Acc. + Acc,” + Acc.”) )

where Accy, Acc,, and Acc, represent the accelerations of the X-, Y-, and Z-axes, respectively.

The human waist is very close to the human body’s center of mass when standing: thus, the
acceleration signals collected at that position can effectively capture changes in a subject’s gait.
In addition, there is a nonlinear relationship between RMS and walking speed;*®) thus, the
RMS acceleration is calculated as

RMS ,.. = (l ZAcc jz )’ x Speed ™, ©6)
n

Jj=1

TRMS,.. = RMS,,,, ,+RMS,. ,+RMS,, .. ()

Acc Acc_x Acc_y

where 7 is the number of data collected, Acc is the acceleration of the X-, Y-, or Z-axes, and
TRMS is the RMS of the total acceleration.

Finally, to assess whether the subject is coordinated on the left and right sides during human
activity and to observe whether there is unilateral damage to the leg,?”) we calculate the
symmetry of the gait parameter. In this study, we utilize the average acceleration as a parameter
to evaluate symmetry. When S = 0, the left and right sides are completely symmetrical. When S
is larger, the left and right sides are more asymmetrical. The symmetry evaluation equation is

|4, ~ 4]

T0.5x(4, + 4y’ ®)
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where A; is the average acceleration of the left waist or left foot, and Ay is the average
acceleration of the right waist or right foot.

3.7.2 Indicators calculated on the basis of EMG signals

EMG is a muscle activity sensing technology that detects the transmission of human nerve
signals and changes in muscle contraction. However, EMG signals are susceptible to noise
interference. Therefore, the signal processing or calculation of related indicators is required to
casily observe muscle activity.*®) Therefore, we calculated the average EMG for the subject’s
four body parts in one test. The calculation formula is

1 n
EMG,,, = ;ZEMG s ©)

J=1

where 7 is the number of EMG and EMG; is the value of EMG.

EMG RMS represents the amplitude of the EMG signal, and the EMG signal amplitude
increases with the muscle contractility. Additionally, the EMG signal amplitude of isometric or
isotonic contraction is expected to increase with the square root of the signal. This relationship

can be used to evaluate the force exerted by the muscle strength. The calculation equation for
EMG RMS is

0.5
RMS . = Hzxizjxn_ll ,i=1,2,3,....n, (10)

where #n is the number of data collected and x is the EMG value.
3.8 Data normalization

Since the unit of each indicator is different, the value range between the indicators may be
very large. Therefore, we normalize each indicator separately to narrow the range gap so that the
model will not be affected by the value range of the indicator during model training. The gap is
unbalanced and affected. We use Eq. (11) to normalize the indicator:

X -X
Xﬂormalize =— 5 (11)

GX

where X; is the value of each indicator, X is the average of all the indicator values, and o, is the
standard deviation of all the indicator values.
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3.9 LCNet

LCNet is a deep learning model used to classify one-dimensional signals, which can be well
applied to the analysis of time series data collected by sensors, including inertial and biomedical
signal sensors.(?%30 Figure 7 shows the LCNet architecture. The LCNet proposed in this paper is
used to classify the risk of sarcopenia. There are two categories, namely, a low risk of sarcopenia
and a high risk of sarcopenia. This model is primarily composed of a convolutional layer and
two fully connected layers. Then, we input the gait parameter calculated using the Bodi
algorithm into the convolutional layer. The kernel size is 1 x 3. To improve the model training
speed and the model’s ability to deal with nonlinear problems, we use ReLU as the activation
function. Finally, the fully connected layer outputs the classification result. In this study, we use
SGD as the optimizer for model training, and the model’s classification result is better when the
learning rate is 1074, the batch size is 30, and the network is trained for 3500 epochs.

4. Experimental Results

In this study, we use a computer with 32 GB of RAM, an i7-9750H CPU, and an NVIDIA
GTX 1060Ti GPU to train the LCNet model, which was developed by the Keras framework.

4.1. Model performance analysis

To evaluate the classification ability of the LCNet model, we adopt the confusion matrix to
evaluate the model’s classification; that is, the confusion matrix clearly shows the correct and
incorrect classifications for each type of sample. A confusion matrix is primarily composed of 4
elements, namely, True Positive (TP), True Negative (TN), False Negative (FN), and False
Positive (FP). TP means that the actual value and the model’s classification results both indicate
a high risk of developing sarcopenia. TN indicates that the actual value and the model’s
classification results both indicate a low risk of developing sarcopenia. FN refers to when the
actual value indicates a high risk of developing sarcopenia, but the model predicts that the risk of
developing sarcopenia is low. FP refers to that when the actual value indicates a low risk of
developing sarcopenia, but the model predicts that the risk of developing sarcopenia is high. We
use the above confusion matrix to calculate the model’s accuracy, precision, specificity, and
sensitivity using Egs. (12) to (15).

Conv 1 FC1 FC2

| — T N N
T P I H”F’_W”:fg _EL —— ou

Fig. 7. (Color online) LCNet architecture.
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Accuracy = IP+IN (12)
TP+TN+FP+ FN
Precision =L (13)
TP+ FP

TN
Specificity =————— 14
pecificity TN +FP (14)

TP
Sensitivity =———— 15
4 TP+ FN (15)

We use the DBA algorithm to augment the collected data to generalize the model’s
classification ability to various gaits during the model training. Table 2 shows the testing
confusion matrix without and with data augmentation. The model’s testing precision before data
augmentation only reaches 82.61% in the classification of sarcopenia. In contrast, the model’s
testing precision after data augmentation is 91.58%, which means that the LCNet model has a
strong generalization ability for different subjects. Additionally, it proves that data augmentation
can greatly improve the model’s classification ability. We use binary cross entropy as the loss
function of LCNet, train with 30 batches, and finally, stop at 3500 epochs, and the accuracy of
the model reaches 94.41%, which means that the LCNet model is effective in classifying the risk
of developing sarcopenia. The specificity is 95.81%, indicating that the LCNet model is less
likely to misjudge the subject as having a higher risk of sarcopenia. Finally, the sensitivity is
91.58%, which means that the LCNet model is less likely to miss patients with a high risk of
developing sarcopenia. Figure 8 shows the indicators which were calculated from the confusion
matrix without and with data augmentation. In the future, we hope to collect the data of the
subjects during the Chair Stand Test, to increase the data that can be used to assess muscle
strength in the training dataset, and to reduce the probability of misjudgment of sarcopenia
patients. These results demonstrate that the data collected by the wearable device proposed in
this study can be used to successfully classify the risk of developing sarcopenia by using the
Bodi algorithm to calculate the indicators.

4.2 MSM evaluation design

In this section, we verify that the MSM proposed in this study can obtain more comprehensive
performance for gait classification, so that its use can be extended to various other fields. To
achieve this outcome, we input the gait parameter obtained by MSM into the model and compare
it with the prediction results from the model whose only inputs are the data from the EAG.
Table 3 shows the confusion matrix after only inputting the three-axis acceleration signals into
the model and the confusion matrix after only inputting the EMG signals into the model.
According to the confusion matrix shown in Tables 2 and 3, the results predicted by combining
the three-axis acceleration and EMG signals can obtain better performance when classifying the
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Table 2
Testing confusion matrix.
Prediction
Without Data Augmentation With Data Augmentation
Actual High risk of Low risk of High risk of Low risk of
sarcopenia sarcopenia sarcopenia sarcopenia
High risk of sarcopenia 19 3 87 8
Low risk of sarcopenia 4 40 8 183
.00 419 95.819
100.00% £9.39% 94.41% 9158%  90.91% 5.81% TLE
0,
82.61% £0:807%
80.00%
60.00%
40.00%
20.00%
0.00%
Accuracy Precision Specificity Sensitivity
B Without Data Augmentation B With Data Augmentation

Fig. 8.  (Color online) Indicators calculated from confusion matrix without and with data augmentation.

risk of sarcopenia. These results prove that the MSM proposed in this study can effectively
obtain gait performance and the changes in muscle strength during human activity. Figure 9
shows the indicators which were calculated from the confusion matrix of the model that only
uses three-axis acceleration signals and only uses EMG signals for training.

5. Discussion

In this study, we discuss the location and combination of sensors, data sampling rate, and
statistical analysis.

5.1 Location and combination of sensors

During the test, the subject may be affected by the wearable device’s large size, which may
affect the way the subject walks or exercises, causing the data collected during the test to deviate
from the patient’s actual gait. The size of the MSM proposed in this study is approximately 7 x 5
x 2 cm?3, which is smaller than that of the wearable device proposed in related work,®D and it can
prevent the subject from changing the size of the device during the test. The subject will feel
discomfort when wearing the device on the body or be inconvenienced when walking.

There is current literature indicating the use of a mobile phone to collect human gait data.(>>)
The mobile phone is convenient to wear, but it can only be worn on the left or right side of the
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Table 3
Confusion matrix of the model.
Prediction
Only Uses Three-Axis Acceleration Signals Only Uses EMG Signals
for Training for Training
Actual High risk of Low risk of High risk of Low risk of
sarcopenia sarcopenia sarcopenia sarcopenia
High risk of sarcopenia 77 18 80 15
Low risk of sarcopenia 16 175 14 177
100.00%
92.67%
§8.11% B.86% g5.01% ’ ;
82.80% ' 81.05% 84.21%
80.00%
60.00%
40.00%
20.00%
0.00%
Accuracy Precision Specificity Sensitivity

B Only Uses Three-Axis Acceleration Signals for Training

® Only Uses EMG Signals for Training

Fig. 9. (Color online) Indicators calculated from the confusion matrix of the model that only uses three-axis
acceleration signals and only uses EMG signals for training.

human body; additionally, the wearing position is not uniform or fixed. This method may be
affected by the subject’s asymmetry while walking. In this study, according to human gait
kinematics,® the proposed MSM is worn on the left and right erector spinae and at the back of
the left and right calves in a symmetrical manner to obtain human gait cycle data, and
information about the symmetry of the human body can therefore be effectively obtained.

In addition, to prove that both MSM and this device location can more accurately obtain the
relevant gait parameter of the human body during walking and other activities, we use the step
length obtained in this study to calculate additional indicators.®? We adopt two evaluation
indicators to compare, namely, MAPE and RMSE. The larger the value of MAPE, the closer the
prediction is to reality; the larger the value of RMSE, the greater the error between the prediction
and the reality. Table 4 shows the errors calculated for both step size and stride. The results
demonstrate that the method proposed in this study performs better in terms of both MAPE and
RMSE.

5.2 Data sampling rate

To obtain a higher accuracy, we test different sampling rates. We first test a sampling rate of
100 Hz and then decrease that value to 5 Hz. We can obtain 10 data points using a sampling rate
of 100 Hz, and the number varies with different sampling rates. Figure 10 shows that when using
a high sampling rate, it is easy to cause rapid battery power consumption and affect the overall
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Table 4
Comparison of errors in step and stride.
Step Stride
MAPE (%) RMSE (cm) MAPE (%) RMSE (cm)
Our proposed method 6.73 3.86 6.06 5.28
Anet al?? 5.49 4.08 4.17 6.30
96 004 100
90
95 004 o
= 00 e
= &0 g
B g
g 93.00% Sl
g 40 E
92 00% ”
91 004 L
10
90.00% 0
100 50 30 10 5

Accuracy s Erecytion Time

Fig. 10. (Color online) Relationship between sensor sampling rate and battery execution time.

performance of the hardware device. When the sampling rate is 6 Hz, the model’s classification
accuracy is not significantly reduced, and the working time of the 3.7 V lithium battery can be
up to 1.5 h. Additionally, its stability is the best at a sampling rate of 6 Hz. Since it takes an hour
to collect gait data, we adopt 6 Hz as the data sampling rate.

5.3 Statistical analyses

To understand the effects of different individuals on the asynchrony indicators, we adopt
statistical analysis methods to explore the effects of gender, age, BMI, and the risk of sarcopenia.

5.3.1 Relationship between gender and other indicators

Men and women have different physiological structures. For example, there are usually
differences in muscle strength between women and men. Therefore, we analyze the gait
indicators from the Four-meter Usual Walking Speed Test and Time-up and Go Test for men and
women, and the analysis results are shown in Table 5. We found that during the entire Four-
meter Usual Walking Speed Test, which involves only standing or walking, men and women had
significantly different waist force levels during walking. When compared with the Four-meter
Usual Walking Speed Test, the Time-up and Go Test involves more movements, including
standing, sitting, and turning back to walk. These movements require more muscle strength to
support the body and maintain body balance. In Table 5, we can see that men and women have
different degrees of waist exertion. The results also show that there are significant differences in
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Table 5
(Color online) Independently sampled 7-test applied to various indicators and gender in Four-meter Usual Walking
Speed Test and Time-up and Go Test.

Four-meter Usual Walking Speed Test Time-up and Go Test
Male (N=21) Female (N=19) Male (N=21) Female (N=19)
Result of Bodi algorithm Wit STD e STD p-value e STD M STD p-value
Step 0.63 0.25 0.67 0.24 0.195 0.63 0.30 0.62 0.28 0.824
Stride 1.27 0.50 1.34 0.48 0.195 1.26 0.59 1.25 0.56 0.824
Num 7.89 3.11 7.40 2.77 0.150 8.48 3.86 841 3.62 0.876
Speed 5234 11.87 47.66  37.01 0.172 20.95 3116 10.34 10488  0.209
TAgight Leg 1.09 0.11 1.12 0.14 0.078 110 0.10 1.10 0.12 0.622
TALefe Leg 1.10 0.11 1.11 0.13 0311 1.11 0.13 1.09 0.12 0.174
TApighe waise 1.02 0.27 1.02 0.27 0.838 1.02 0.02 1.02 0.02 0.316
TArese waist 1.02 0.27 1.01 0.26 0.125 1.01 0.02 1.01 0.02 0.793
RMSacc righe waist 0.00 0.00 0.52 6.68 0.304 0.00 0.00 1.34 16.83  0.373
RMSacc refe waise 0.00 0.00 047 6.05 0.380 0.00 0.00 1.40 17.57 0374
EMGright Leg 335.76 9759 5 <7 b S | 0.897 304.81 12173 33586 85.09 0.015
EMGpropt teg 303.40 9.30 300.60 21.61 0.128 302.92  12.19 30343 17.20 0776
EMGpignt waist 270.53 8.83 27277 1207 0079 27327 289 273.65 1.79 0.034
EMGLere waist 267.75 8051 206.80 12205 <0.001 267.59  80.70 21087 12358 0.034
RMSgmG right Leg 341.04 103.15 34366 9337 0819 310.87 12492 341.92 1.39 0.019
RMSgmG Left teg 304.80 6.48 30344 16.00 0311 304.69  8.30 305.62 1294  0.480
RMSgmc_righe waist 268.57  80.49 21193 121.71 <0.001 268.64  80.72 214.78 12420 <0.001
RMSEme_Left watst 271.46 5.11 27338 921 0.035 27237 249 27400  6.74 0.004
Sacc Leg 0.04 0.05 0.05 0.67 0.266 0.03 0.04 0.03 0.04 0.741
Sace waist 0.02 0.03 0.02 0.03 0.652 0.02 0.01 0.02 0.01 0.728
Semc eg 0.26 0.29 0.26 0.26 0.930 0.37 0.39 0.25 0.39 0.002
Seme waist 0.24 048 0.57 0.73  <0.001 0.23 0.48 0.56 048  <0.001

EMG indicators between the genders on the right side of the body, which means that men and
women exhibit different degrees of deviation from their centers of weight during the test. Among
them, women rely more on the muscle strength on the right side of the body to maintain balance
than men do. This inference proves that men and women do have differences in muscle strength.

5.3.2 Relationship between age and other indicators

With increasing age, the skeletal muscle mass decreases each year. Starting from about 40
years of age, the skeletal muscle mass decreases by about 8% every ten years.3 Therefore, we
set the age of 40 as the demarcation point, and the analysis results are shown in Table 6. In the
Four-meter Usual Walking Speed Test, the test distance is shorter, so it tests the subject’s muscle
power. However, young adults are stronger than elderly people, so in terms of walking speed and
EMGe-related indicators, age differences produce significant differences. In the Time-up and Go
Test, the subjects must move from a sitting posture to a standing posture, which tests the
subjects’ physical balance and muscle endurance. However, elderly people have a poor physical
balance due to muscle tissue degradation. Most elderly people reduce their walking speed to
increase their walking stability. Therefore, there are significant differences in average
acceleration, symmetry, and EMG-related indicators, indicating that the gait data from the
elderly and young are significantly different.

5.3.3 Relationship between BMI and other indicators

Owing to the subjects’ disparity in height and weight, we explore the effects of different
BMIs on gait indicators. First, we use the BMI conversion equation to convert the heights and
weights of the subjects into BMI, and we then divide them into three groups, namely,
underweight, standard, and overweight. Then, we use one-way analysis of variance (ANOVA) to
explore the relationship between BMI and gait. Table 7 show that during both the Four-meter
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Table 6
(Color online) Independently sampled T-test applied to various indicators and age in Four-meter Usual Walking
Speed Test and Time-up and Go Test.

Four-meter Usual Walking Speed Test Time-up and Go Test
Older than 40 Younger than 40 Older than 40 Younger than 40
Result of Bodi algorithm (N=18) (N=32) p-value (N=18) (N=32) p-value
Mean STD Mean STD Mean STD Mean STD

Step 0.65 0.25 0.66 0.24 0.851 0.66 0.31 0.61 0.27 0.126
Sride 1.30 0.51 1.31 0.48 0.851 1.32 0.61 1.21 0.55 0.126
Num T7.69 3.02 7.55 2.87 0.686 8.26 3.99 8.54 3.56 0.536
Speed 41.12 44.34 5438 13.29 0.003 21.38 6.88 11.10 102.54 0.169
TAright Leg 1.11 0.12 111 0.14 0.967 111 0.12 1.09 0.11 0.117
TALefe Leg 1.12 0.13 110 1.12 0.272 1.13 0.14 1.09 0.11 0.007
TAgight Waist 1.02 0.03 1.02 0.03 0.576 1.02 0.01 1.02 0.02 0.043
TApest waist 1.01 0.03 1.02 0.03 0.297 1.01 0.02 1.01 0.02 0.514
RMSacc mignt waist 0.00 0.01 0.43 5.76 0.443 0.07 0.68 118 16.02  0.476
RMSacc efe waise 0.00 0.00 0.43 5.76 0.441 0.07 0.65 1.23 16.72  0.474
EMGright Leg 371.02  62.24 317.16 98.16 <0.001 375.83 69.45 293.00 10696 <0.001
mufu.eg 299.89 16.31 302.83 18.18 0.165 298.98 15.75 305.60 14.51 <0.001
mﬁigm,wm 271.22 10.65 27217 11.00 0.465 272.15 3.58 273.59 7.29 0.056
EMGyeft waist 246.72 101.94 22434 114.68 0.082 246,00 101.66 22833 115386 0.187
RMSgmc right Leg 377.14 7630 323.11 102.70 <0.001 382.78 81.93 298.56 108.71 <0.001
RMSguc Lefe Leg 30191 1052 305.19 1392  0.034 301.67  10.06 307.23 1136 <0.001
RMSgue_right waist 247.91 102.03 22886 113.67 0.138 247.26  101.64 231.86 11607 0233
RMSguc tere waist 272.30 7.16 272.73 8.16 0.646 27227 323 273.90 6.28 0.012
Sacc_reg 0.04 0.05 0.04 0.06 0.802 0.04 0.05 0.03 0.04 0.001
Sace_waist 0.02 0.02 0.02 0.03 0.999 0.02 0.02 0.02 0.02 0.144
SEMG Leg 0.24 0.14 0.27 0.32 0.174 0.25 0.17 0.33 037 0.008
Seme waist 0.36 0.61 0.48 0.67 0.109 0.35 0.61 0.47 0.68 0.121

Table 7
(Color online) One-way ANOVA applied to various indicators and BMI in Four-meter Usual Walking Speed Test
and Time-up and Go Test.

Four-meter Usual Walking Speed Test Time-up and Go Test

Overweight (0) Standard (S) Underweight (U) Overweight (0) Standard (S) Underweight (U)
Result of Bodi algorithm (N=16) (N=28) (N=6) p-value si; (N=16) (N=28) (N=6) p-value

Mean STD Mean STD Mean _ STD Mean _ STD Mean STD Mean _ STD
Step 0.64 0.25 0.66 025 0.66 0.20 0.703 0.63 0.29 0.63 0.29 0.62 0.27 0973
Stride 1.28 0.50 1.33 0.50 1.32 0.40 0.703 1.26 0.57 1.26 0.59 123 0.54 0.973
Num 791 3.09 7.52 2.89 7.19 2.56 0.392 8.36 3.64 8.49 3.83 8.36 348 0.956
Speed 4130 4810 54.16 1199 50.66 8.00 0.002 5$>0 1089  76.88 2114 51.88 438 1699.03 0.206
TArignt_Leg 111 0.14 112 0.13 1.09 0.11 0.432 1.08 0.09 111 0.12 110 0.12 0.193
TALeft Leg 1.10 0.11 1.12 0.13 1.08 0.08 0.204 1.09 0.11 L1l 013 1.08 0.10 0.235
TAgight_waist 1.02 0.03 1.02 0.03 1.03 0.23 0.524 1.02 0.02 1.02 0.02 102 0.03 0.429
TAiert waist 1.01 0.03 1.02 0.03 1.02 0.03 0.733 1.00 0.02 1.01 0.02 1.02 0.03 0027 U>s8>0
RMSacc_right waise 0.02 0.18 0.53 6.80 0.00 0.00 0.686 0.08 0.72 1.34 17.13 0.00 0.00 0.692
RMScc refe waist 0.02 0.18 0.48 6.16 0.00 0.00 0.687 0.08 0.69 1.40 17.88 0.00 0.00 0.690
EMGgigne 1eq 34457 R0.44 32679 102.85  360.75 2985 0.071 33222 100.49 309.10  11.66 361.77 3337 0011 u=s
EMCere teg 301.34  16.64 301.29 17.54 305.18 20,03 0.464 30297 1177 302,14 1675 308.94 1545  0.051
EMGyigne waist 27021 1042 27255 634 27279 2263 0207 272.08 342 27278 6.85 277.06 763 <0001 U>S>0
EMG ezt waist 24129 107.08 23878 10517 17894 13147 0008 O>S>U 241.03  109.74 24231 105.08 182.21 12990 0010 S>0>U
RMSemc right Leg 35129  90.34 33360 10941 361.12  29.88 0.174 33922 110.09 31569 114.69 362.86 3250 0030 U>0>S
RMSgmG Lert Leg 303.08  12.89 30383 1194 307.36 1651 0227 304.60 817 30447 1217 31048 1249 0011 U>0>S
RMSemc right waist 24238 107.02 24230 105.03 18725 12881 0018 0O>S>U 24246 109.46 24468 10539 189.94 131.97 0.023 s$>0>U
RMSemc Lere waist 27148 636 27291 461 27395 1741 0.189 27223 291 27311 5.69 27713 753 <0001 U>S>0
Sacc.reg 0.04 0.06 0.05 0.06 0.05 0.07 0.463 0.03 0.03 0.04 0.05 0.02 0.04 0172
Sacewatst 0.02 0.03 0.02 0.02 0.01 0.01 0.075 0.02 0.02 0.02 0.01 0.01 0.02 0.402
SEMG Leg 0.23 0.19 0.29 033 0.20 0.09 0.047 s$>0 0.27 0.24 0.34 0.37 0.19 0.08 0011 s>0>U
SEMG waist 0.40 0.63 0.39 0.62 0.76 0.77 0007 U=>S8>0 0.40 0.65 0.38 0.62 0.72 0.79 0016 U>0>S

Usual Walking Speed Test and Time-up and Go Test, the gait indicators collected from different
body parts are significantly related to BMI; however, there is no regularity. Finally, there is no
significant difference between BMI and gait indicators.

5.3.4 Relationship between risk of developing sarcopenia and other indicators

When a human is walking or standing, the waist muscles must be used for support, and it
requires additional leg strength to get up. However, people at a higher risk of sarcopenia have a
lower muscle mass than those at a lower risk. Therefore, we explore the relationship between the
risk of developing sarcopenia and other indicators, and the results are shown in Table 8. Since
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Table 8
(Color online) Independently sampled T-test applied to various indicators and the risk of sarcopenia in Four-meter
Usual Walking Speed Test and Time-up and Go Test.

Four-meter Usual Walking Speed Test Time-up and Go Test
High risk Low risk High risk Low risk
Result of Bodi algorithm (N=16) (N=36) p-value (N=16) (N=36) p-value
Mean STD Mean STD Mean STD Mean STD
Step 0.67 025 0.65 0.24 0.458 0.63 0.29 0.63 0.29 0.975
Stride 1.34 0.49 1.30 0.48 0.458 1.26 0.57 1:25 0.58 0.975
Num 746 294 7.67 291 0.556 8.40 372 8.46 373 0.896
Speed 44.04 47.84 52.26 13.00 0.101 12.90 103.81 15.69 70.47 0.784
TApight_Leg 112 0.13 1.11 0.13 0.448 1.11 0.13 1.09 0.11 0.233
TAeri teg 113 0.14 1.10 0.11 0.093 1.11 0.14 1.10 0.12 0.280
TApigne waist 1.02 0.03 1.02 0.03 0.152 1.02 0.02 1.02 0.02 0.844
TArere waise 1.02 0.03 1.02 0.03 0.251 1.01 0.02 1.01 0.02 0.093
RMSacc_right waist 0.01 0.08 0.44 6.17 0.495 0.12 0.79 1.09 15.54 0.541
RMSycc repe waise 0.11 0.09 0.40 5.59 0.496 0.11 0.77 1.14 16.22 0.538
EMGgignt_Leg 340.52 89.40 334.68 91.35 0.603 34151 80.49 314.03 111.21 0.016
EMGyeft Leg 300.62 22.44 302.32 14.75 0.500 30496 17.89 302.40 13.85 0.177
EMGrigne wais 273.14 9.02 27121 11.60 0.151 272.93 8.66 273.14 4.73 0.823
EMGrert waist 194.63 126.63 250.18 9760  <0.001 19585 12522 252.97 98.97  <0.001
RMSemg right Leg 345.43 96.45 34121 98.11 0.727 34481  86.47 32138 115.75 0.052
RMSgm tefe teg 303.93 16.50 304.05 10.80 0.946 306.99  14.11 304.40 9.49 0.062
RMSgmg_righe waist 200.75 126.27 252.17 97.24 0.001 202.39  126.86 25435 98.83 <0.001
RMSgug tert waist 273.77 6.86 272.02 8.16 0.054 273.42 7.02 273.26 4.52 0.839
Sacc.Leg 0.04 0.06 0.04 0.06 0.999 0.04 0.05 0.03 0.03 0.114
Sacc_waist 0.02 0.02 0.02 0.03 0.219 0.01 0.01 0.02 0.02 0.343
SEMG._ieg 0.28 0.29 0.25 0.27 0.479 0.24 0.20 0.33 0.35 0.005
Semc waist 0.64 0.75 0.34 0.58 <0.001 0.63 0.76 0.33 0.58 0.001

the Time-up and Go test requires that the subject moves from a sitting posture to a standing
posture, the waist EMG-related indicators in this test are significantly different from those in the
Four-meter Walking test. There are also significant differences in the EMG-related indicators
from the legs.

From the above statistical analysis, we observe that the differences in gender, age, and the
risk of developing sarcopenia are related to significant differences in EMG in gait indicators. In
other words, the EMG signals will be different for men and women, the elderly and young adults,
and those at high and low risks of developing sarcopenia. In addition, we can see that there is a
significant difference between age and acceleration. Therefore, the gait indicators that we use
can effectively classify the risk of developing sarcopenia, and the training dataset includes
information about the above factors, which can improve the model’s generalization ability.

6. Conclusion

Wearable sensors are often used to obtain gait information during human activities. However,
most of the measurements are performed using a single inertial sensor. Such a sensor may not
notice changes in muscle strength, which are closely related to many diseases. Therefore, we
propose a wearable hardware device that combines an inertial sensor with a biomedical signal
sensor, which can be used to obtain gait information and the change in muscle strength during
human activities. Next, we calculate important gait parameters using the Bodi algorithm and
then input those parameters into the LCNet model to classify the risk of sarcopenia. In the
future, we hope to obtain more gait information and apply our proposed MSM to different
medical fields such as scoliosis, Parkinson’s disease, and multiple sclerosis.
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