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	 At present, many diseases can be predicted through data obtained by wearable sensors. The 
majority of these proposed wearable devices only use inertial sensors to obtain the walking 
motion signals of a subject. However, since the symptoms of sarcopenia are reflected in the 
changes in human muscles, we propose a sarcopenia recognition system, which consists of 
hardware and software. The hardware is composed of multiple sensor module (MSM), which is a 
wearable device used to collect the signals of electromyography and gait (EAG). The software is 
composed of biomedical and inertial sensors algorithm (Bodi algorithm) and leg health 
classification net (LCNet). The Bodi algorithm is used to calculate various gait indicators after 
predicting the risk of sarcopenia obtained by LCNet. The accuracy of LCNet is 94.41%, its 
precision is 91.58%, its specificity is 95.81%, and its sensitivity is 91.58%. In the future, we 
expect to use the proposed MSM to collect additional subjects’ gait data and apply it to other 
disease predictions to assist physicians in disease diagnosis.

1.	 Introduction

	 In the field of clinical diagnosis, the use of low-cost, portable, and wearable sensors for 
human activity measurement has become a very common detection method. Among wearable 
sensors, frequently used devices include inertial sensors such as accelerometers or gyroscopes, 
electromyogram (EMG) sensors such as biomedical signal sensors, ground reaction force (GRF) 
sensors, and others. The current research is generally limited by the sensors’ energy 
consumption; thus, few sensors are generally used for human activity and gait measurement.(1) 
As a result, the gait data collected by the sensors can only be used to determine some gait 
parameters. For example, inertial sensors can only be used for collecting the human body’s 
movement direction but cannot be used to interpret the electromyographic signals generated by 
human muscle activity; therefore, we can only calculate gait parameters using sensor values such 
as step length, stride length, and walking speed, but the changes in muscle strength cannot be 
calculated using gait data.
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	 Furthermore, wearable sensors are currently used in many studies to collect human gait data, 
and they have been widely used in the fields of gait analysis, disease prediction, health re-
evaluation, and medical care.(2,3) In the wearable sensor application range, gait parameters are 
generally calculated using gait data and are used to assess whether the subject exerts uneven 
forces on the left and right feet or the asymmetry of the left and right feet; additionally, the step 
parameters can predict the probability of suffering from scoliosis, sarcopenia, Parkinson’s 
disease,(4) and multiple sclerosis.(5) Among them, sarcopenia is a disease that has attracted 
considerable attention in recent years. It is evidenced by decreased muscle quantity and muscle 
function decline. However, malnutrition, insufficient physical activity, and chronic diseases can 
also lead to the occurrence of sarcopenia. Moreover, in the current preliminary assessment of 
sarcopenia, doctors often use three factors, namely, human muscle strength, muscle quantity, 
and physical performance, to determine whether there is a risk of sarcopenia.(6–7) However, 
professional instruments are not used to calculate these indicators when implementing testing, 
and most diagnoses are based on the doctor’s experience. In addition, there are many test items, 
and the patient must repeat similar tests many times before the physician can determine whether 
the patient has sarcopenia and its severity.
	 Given the above problems, we developed a multiple sensor module (MSM) that has a low 
power consumption and uses a small Arduino Nano 33 BLE Sense as the micro-control 
processing core, combined with a built-in accelerometer, an EMG sensor, lithium batteries, and 
lithium battery charging boards. These components are used to collect electromyography and 
gait (EAG) signals, which consist of three-axis acceleration and myoelectric signals during 
walking to analyze a person’s health status.(8–10) Then, we calculate gait indicators such as step 
length, stride length, walking speed, and muscle strength using the Bodi algorithm proposed in 
our study. The Bodi algorithm can be used to discover a subject’s problems when walking, such 
as whether the subject distributes weight to one side of the body, and it also provides gait 
indicators that assist the physician in assessing the subject’s health. In addition, we also input the 
calculated gait indicators into a deep learning model for training so that it can learn to recognize 
and predict the risk of sarcopenia. Therefore, people may pay more attention to skeletal muscle 
mass loss and go to the hospital for further examination before symptoms become severe.
	 This study is divided into four sections. In Sect. 2, we discuss the related literature. In Sect. 3, 
we introduce this study’s research methods, including the system process, software, developed 
hardware devices, self-collected gait dataset, model, and algorithm used in this study. Sect. 4 
consists of the experimental results and provides a discussion regarding the different variables. 
In the final section, we present the conclusion and future research directions.

2.	 Related Works

2.1	 Application fields of wearable devices and importance of gait parameters for health 
prediction

	 Many studies have collected human activity signals using small and portable wearable 
sensors. In 2012, Tao et al. mentioned that the gait analysis methods based on wearable sensors 
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can be divided into three categories, namely, gait kinematics, gait kinetics, and 
electromyography.(2) In gait kinematics, inertial sensors such as accelerometers and gyroscopes 
are often used to collect dynamic gait data and are installed on the waist, thighs, or calves of the 
human body to measure acceleration or angular displacement while walking. In 
electromyography, EMG sensors are primarily placed on the skin’s surface to measure the 
human body’s EMG signals when walking, such as the muscle change between steps, which can 
also be used to calculate muscle strength. However, EMG sensors must be placed in a specific 
position on the muscle before they can be used as a gait analysis tool for clinical treatment when 
assessing the recovery degree of patients with neurological diseases such as Parkinson’s disease 
and stroke.(2)

	 Additionally, in 2020, Díaz et al.(1) mentioned sensors in wearable sensor systems, such as an 
inertial measurement unit (IMU) and electromyography (EMG) sensors, which are commonly 
placed on the breastbone, waist, or upper and lower limbs to assess balance disorders and 
measure gait parameters. The wearable sensors play an important role in rehabilitation research 
and have the advantage of realizing gait characterization and the objective evaluation of balance 
function performance. However, the sensors’ power consumption is currently a major problem in 
this field. The more sensors are used, the more power the system consumes, which may cause 
the system to fail to achieve the expected performance. Therefore, this problem is also a focus of 
future research.
	 In 2019, Gujarathi and Bhole(11) placed two inertial MPU6050 sensors, which include a three-
axis accelerometer and a gyroscope, on the lower leg to assess and monitor the rehabilitation 
degree of orthopedic patients; they also used the sensors to collect the subjects’ gait signals 
during a 40 m walk. Then, they used the gait analysis algorithm to calculate gait parameters such 
as the stride length, step length, and standing time, among others. In this study, we found that 
acceleration and gyroscope signals can be used to evaluate the degree of rehabilitation. However, 
the sensor must be equipped with an Arduino Uno micro-control board to collect gait signals. 
Therefore, when the user wears this device while walking, the walking state may be affected by 
the collection device’s large size, resulting in unobjective data.
	 In 2010, to explore the relationship between age and lower extremity muscle EMG signals 
and electromyography, Tian et al.(12) placed EMG and mechanomyography (MMG) sensors on 
the subjects’ quadriceps femoris muscles to collect the signals. The experimental results prove 
that results from the elderly are not as good as those from the young in terms of EMG or MMG 
signals. This result means that muscle strength decreases with increasing age and is related to 
muscle quantity. Then, in 2011, Kashiwagi et al.(13) placed surface electromyography (SEMG) 
sensors on the subjects’ left and right erector spinae to collect the four waist movements of the 
human body, namely, forward, backward, left, and right, and to detect the potential changes of 
the erector spinae EMG signals to help nursing staff understand the patients’ condition and 
complete nursing tasks quickly. The above study demonstrates that the EMG sensor is placed on 
the skin surface at a specific muscle position, and then the surface EMG signal is measured by 
the EMG sensor. The results not only help researchers and medical professionals understand 
human muscle contractions and movement, but can also be used to understand human health.
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2.2	 Gait data processing and indicator calculation and application

	 The world has gradually entered an aging society, and as a result, the problem of human 
aging has attracted increasing attention. In 2019, Bonetto and Bonewald(14) mentioned that if 
accompanied by age-related bone loss, decreased muscle quantity and symptoms related to loss 
of function can be called sarcopenia, which generally becomes prevalent once patients surpass 
the age of 30, and after they surpass 60 years of age, the muscle quantity will decrease rapidly. 
Additionally, they mentioned that 20% of the global population over 60 years old will suffer 
from sarcopenia in 2050, which demonstrates its importance. In the same year, 
Cruz-Jentoft et al.(6) elaborated on the EU sarcopenia working group to update the definition and 
diagnostic criteria of sarcopenia and mentioned that, in addition to aging, sarcopenia can also be 
caused by decreased mobility, such as that which occurs during long-term bed rest. Both young 
and old patients have a chance of suffering from sarcopenia. In clinical diagnostic criteria, it is 
also mentioned that the human body’s muscle strength, muscle mass, and physical performance 
can be used to diagnose the presence of sarcopenia as well as its severity. In 2020, Chen et al.(7) 
explained in detail the diagnostic criteria for sarcopenia revised by the Asian Working Group for 
Sarcopenia (AWGS). They also noted the hereditary difference between Asians and Europeans 
in terms of body shape and lifestyle, which causes a problem because the judgment standard 
established by the European Working Group on Sarcopenia in Older People 2 (EWSGOP2) does 
not apply to Asians. However, in the current sarcopenia diagnostic process, professional medical 
equipment that can provide measured values for physician reference is only available for muscle 
quantity. There is no easy-to-operate measurement tool with a consistent judgment standard for 
measuring muscle strength and physical function when diagnosing sarcopenia. 
	 Gait analysis is one of the methods used to evaluate patient behavior and motor function in 
clinical medicine. To help medical staff quantify patients’ physical activity, many studies have 
used wearable devices to collect human activity signals and have proposed methods to quantify 
gait data. In 2006, Alvarez et al.(15) compared five mathematical estimation models for 
calculating the step length and converted the gait data collected by the accelerometer to provide 
a more accurate step length evaluation model. Then, in 2011, Jin et al.(16) proposed a relative 
threshold detection method to find the peak and valley values in the acceleration data to infer the 
location of pedestrians using low-cost sensors built into smartphones, such as accelerometers or 
digital compasses. However, in this study, we demonstrate that accelerometers are susceptible to 
noise from irregular activities by the human body. In 2015, Lan et al.(17) proposed a Pedestrian 
Dead Reckoning (PDR) attitude estimation method based on inertial sensors and satellite 
navigation systems to track pedestrian positions, and the peak and valley values from the 
acceleration data were also used to infer the pedestrians’ number of steps and step length. The 
results prove that this calculation method can effectively ascertain pedestrians’ walking 
direction and distance.
	 In 2012, Kuriki et al.(18) placed electrodes on the surface of the skin to detect EMG signals to 
infer muscle strength, but by only collecting EMG signals, muscle strength cannot be evaluated. 
Therefore, they combined this strategy with signal correction methods or standardized 
instruments and methods, such as root mean square (RMS) and principal component analysis 
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(PCA), among others. To explore the correlation between EMG and muscle strength, we use the 
RMS method to quantify the EMG signal. The results show that the EMG signal increases with 
muscle contractility and that the amplitude of the EMG signal related to isometric or isotonic 
contraction increases with the square root of the signal. In the study discussed above, Díaz 
et al.(1) mentioned not only the types and application fields of common wearable sensors but also 
the evaluation indicators and algorithms of gait parameters, such as the calculation formulas of 
step length, stride length, and walking speed. 
	 PDR uses the kinematic characteristics of pedestrian gait, travel distance, and walking 
direction data. It is primarily composed of three important components, namely, step length 
detection, stride length estimation, and walking direction estimation, and it uses an accelerometer 
to detect a pedestrian’s step length to provide accurate and continuous navigation results for 
pedestrian navigation.

2.3	 Application of machine learning and deep learning to human activity classification 
and prediction

	 In recent years, the application of machine learning and deep learning in medical treatment 
has increasingly matured, and better disease prediction and analysis will be realized by 
combining human activity data and machine learning or deep learning methods. In 2018, 
Zebin et al.(19) used the LSTM architecture to classify the data collected by an accelerometer and 
a gyroscope into six daily activities, and the accuracy is 92%. It can be seen that LSTM can 
achieve a good classification effect for a continuous-time signal. However, the classification 
effect of the discontinuous-time signal was not mentioned. In 2019, Alharthi et al.(3) integrated 
the methods of gait monitoring, gait feature extraction, and analysis, but most of the studies rely 
on manual gait feature extraction, which is prone to errors. It has been found that using deep 
learning to automatically extract gait features can eliminate dependence on handcrafting; it can 
also build a fall or disease prediction system. In the same year, Côté-Allard et al.(20) used the 
concept of transfer learning to train the ConvNet deep learning model to classify the one-
dimensional data in the Myo Armband and NinaPro datasets, such as the original EMG signal, 
the spectrogram of the EMG signal, and the continuous wavelet transform (CWT) EMG signal 
data. These data can also be used to identify the gesture of the subjects. In addition, the 
classification accuracy of the ConvNet model can reach 98.31%, which means that it can classify 
different gestures accurately from the electromyogram.
	 According to multiple studies, wearable devices are often used to collect human activity 
signals and predict diseases, and as a human health assessment tool. However, most of the 
studies only use a single sensor to collect the subjects’ human activity signals, and they rarely 
combined the inertial and EMG sensors to collect the subjects’ acceleration and EMG signals for 
analysis. It is easy to neglect the importance of acceleration or EMG signals for gait and health 
prediction. In addition, there are still a few studies that use deep learning models for disease risk 
assessment and the prediction of calculated gait indicators. Therefore, we use the small and low-
cost Arduino Nano 33 BLE Sense with low power consumption and inertial sensors as the 
primary control core for the “wearable detection box”, which can improve the energy 
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consumption of the hardware as well as widen the range of the Bluetooth connection. Then, we 
refer to the installation position of the wearable sensor mentioned in the above study and install 
the SEMG sensor in MMG on the left and right erector spinae muscles of the human body and 
place the accelerometer on the quadriceps of both feet to facilitate the collection of gait signals 
during the test project. Next, we refer to the gait index calculation method mentioned above to 
analyze and process human activity and gait signals collected by accelerometers and EMG 
sensors. Finally, according to the above literature, although the recurrent neural network (RNN) 
performs well in classifying continuous-time data, the data pre-analyzed in this study are an 
indicator of discontinuous time. Therefore, we proposed a leg health classification net (LCNet) 
and input the gait indicators into the LCNet deep learning model for training. Not only can it be 
used in the early prediction of diseases, but it can also be used as a diagnostic reference for 
physicians. The contribution of this study lies in the following. 
(1) �The MSM proposed in our study combines an accelerometer and EMG sensors, so the 

collected gait data provide more diverse gait indicators as a basis for assessing health status.
(2) �We install MSM at specific locations on the human body, such as the waist, thighs, and 

calves, which means that we can collect more meaningful human activity signals.
(3) �We input the calculated gait indicators into the deep learning model for training to achieve 

sarcopenia risk predictions.

3.	 Materials and Methods

	 In this study, we use MSM to collect the subjects’ EAG signals, which consists of three-axis 
acceleration and myoelectric signals during the test. Next, we use the Bodi algorithm proposed 
in this study to calculate gait indicators such as the step length, number of steps, and pace. 
Finally, we input the gait indicators calculated using the Bodi algorithm into LCNet to classify 
the risk of suffering from sarcopenia. Figure 1 shows this study’s flowchart, which is primarily 
divided into two parts, namely, the testbed system and the proposed analysis method. We have 
built a testbed system that uses the interface for connecting multiple sensor modules (ICMSM) 
to connect to the MSM installed on the subject via BLE to collect data. In the testbed system, we 
also introduce MSM, ICMSM, and participation and experiment protocols. Next, in the 
description of the proposed method, we introduce the Dataset, Data Augmentation, Data 
Normalization, the Bodi algorithm proposed in this study, and LCNet. 

Fig. 1.	 (Color online) Flowchart of our proposed system.
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3.1	 MSM

	 To collect human gait performance data, we have built a testbed system that can obtain the 
EAG signals of humans from wearable devices. Each MSM includes a sensing module, a 
communication module, a microcontroller module, and a power module. The MSM circuit and 
architecture diagrams are shown in Figs. 2(a) and 2(b).
	 In the sensing module, we use an inertial sensor and a biomedical signal sensor. We adopt the 
LSM9DS1 chip in Arduino Nano 33 BLE Sense as an inertial measurement unit (IMU) to obtain 
the subject’s three-axis accelerations while walking, sitting, and getting up, which are the X-axis, 
Y-axis, and Z-axis accelerations, respectively. Then, we adopt the EMG Detector as a biomedical 
signal sensor to collect the electrical signals from muscle contraction during walking, sitting, 
and getting up. This device processes the received signal four times, which includes two 
amplifications and two filterings.
	 To reduce the load of the power module in the wearable device, we use the Bluetooth Low-
Energy Module for data transmission, as well as the Bluetooth Low-Energy Chip, which is 
embedded in the Arduino Nano 33 BLE Sense. We use Bluetooth to transfer the data received by 
the sensor module to the connected mobile device and to store the data in the server.
	 To reduce the size of the wearable device, we adopt Arduino Nano 33 BLE Sense as the 
microcontroller module, which has an embedded communication module and an inertial sensor. 
The microcontroller module is connected to the sensing module, which defines the period over 
which the sensing module receives data and transmits it to the mobile device.
	 To power the entire circuit, we use a 3.7 V lithium polymer battery to supply power and we 
also add a lithium battery charging protection board. The battery is connected in parallel to the 
Arduino Nano 33 BLE Sense and EMG Detector. The operating voltages of the Arduino Nano 33 
BLE Sense and EMG Detector are both 3.3 V, so this power module can effectively supply the 
entire circuit’s power demand. 

Fig. 2.	 (Color online) (a) MSM circuit diagram. (b) MSM architecture diagram. 

(a) (b)
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3.2	 ICMSM

	 To collect the gait data detected by MSM, we have built a testbed system. On the front end, 
we used HTML5, which is low-cost and cross-platform combined with JavaScript, which is 
highly interactive to complete the Web App interface. The testbed system interface and 
architecture is shown in Fig. 3. This configuration means that regardless of the operating system, 
such as iOS or Android, all users can access the Web App through a browser. To complete the 
communication between software and hardware, we use the Web Bluetooth API to enable the 
browser to obtain the data transmitted by the Bluetooth Low-Energy Device. At the same time, 
we present the data in the experimental interface. Next, we use the Web Storage API to 
temporarily store the data in the browser, encapsulate it once 50 data points have been collected, 
and then use Ajax technology with the PHP back-end programming language to transfer the data 
to the MySQL database. This strategy avoids losing data due to sending too much data at the 
same time.

3.3	 Participation

	 We collected activity data from 19 researchers working in a research institute and their 
families. There were 55 subjects in total. All subjects consented to participate. The subjects 
consisted of 21 men and 34 women, aged between 20 and 81, weighing between 38 and 112 kg, 
and having a skeletal muscle mass between 12 and 29 kg. Patients with severe leg or spine 
injuries were excluded. Among the effective subjects, we defined 19 subjects as being at high 
risk of sarcopenia according to the diagnostic method proposed in a previous study,(6) which is 
based on the subjects’ calf circumference and skeletal muscle mass. The remaining 36 subjects 
were defined as the low-risk group. Table 1 shows the descriptive statistics.

3.4	 Experimental protocols

	 To understand the subjects’ physical performance, we use the sarcopenia diagnostic criteria 
proposed by the European Working Group on Sarcopenia(6) and asked each subject to take the 

Fig. 3.	 (Color online) Testbed system interface and architecture.
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Four-meter Usual Walking Speed Test and the Time-up and Go Test six times. In most human 
gait kinematics measurements, the accelerometers are worn on the thighs and calves(2) to collect 
gait data during the test, and the accelerometer placed on the waist can obtain data about the gait 
cycle. Therefore, we will place the MSM at the back of the left and right legs and at the back of 
the subject’s waist. To obtain the subject’s muscle activity while walking, we attach the electrode 
patches of the EMG Detector to the left and right erector spinae muscles.(13) To obtain data about 
waist movement during walking and the changes in thigh muscle contraction during walking, 
sitting, and getting up, we attach the electrode patches to the quadriceps femoris muscles of the 
left and right thighs. The positions at which the MSM is worn are shown in Fig. 4, and the 
directions of the X-axis, Y-axis, and Z-axis of each MSM are uniform. Each subject was asked to 
walk normally during the test, with no requirement to walk fast or slow. At the same time, the 
entire test process is monitored by researchers, and the walking time is calculated.

3.4.1	 Four-meter Usual Walking Speed Test

	 Since the Four-meter Usual Walking Speed Test is considered to most resemble daily 
walking, it is one of the important tests used to evaluate walking speed in the related literature.(6) 
In this test, the subject starts with a standing posture and then walks straight for four meters at a 
normal walking speed. The schematic diagram of this test is shown in Fig. 5.

3.4.2	 Time-up and Go Test

	 The Time-up and Go Test is a test that can measure the soundness of the functions required 
for human movement in all aspects.(6,7) During the test, the subject needs to start at a sitting 
state, then gets up and walks three meters. Next, the subject turns 180 degrees, walks back to the 
starting point, and sits down. Since the test consists of getting up from a chair and turning 
around, the test is also regarded as a measure of muscle function. A schematic diagram of the 
Time-up and Go Test is shown in Fig. 6.

3.5	 Dataset

	 In this study, we collected various data about the subjects’ walking during the two tests using 
inertial sensors and biomedical signals, including their X-axis, Y-axis, Z-axis accelerations, and 
EMG. There are a total of 55 subjects in the test, and each test collects six valid data. To ensure 
the validity of the received data and to avoid losing data during exchange and transmission due 
to environmental interference, the data sampling rate used was 6 Hz. Finally, a total of 660 valid 

Table 1
Descriptive statistics.

Mean Min Max Range
Age 33.88 19.00 81.00 62.00
Weight 62.33 38.00 112.00 74.00
Skeletal muscle 18.83 12.50 28.99 16.48
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data points were obtained in the two tests. In the denoising part, we used the median filter to 
filter noise in the raw data.

3.6	 Data augmentation

	 As a small number of data cause the model to overfit, data augmentation allows the model to 
learn more about the characteristics of data invariance.  Therefore, we adopt the DTW 

(a) (b)
Fig. 4.	 (Color online) (a) Positions at which MSM is worn on the body. (b) Positions where electrodes and ground 
terminal are attached.

Fig. 5.	 (Color online) Schematic diagram of Four-meter Usual Walking Speed Test.

Fig. 6.	 (Color online) Schematic diagram of Time-up and Go Test.
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Barycenter Average (DBA) algorithm, which was developed specifically for time series,(21–23) to 
improve the model’s generalization ability. Finally, the amplified dataset has a total of 2860 data 
points. In this study, 90% of the time-series data in this dataset is used as the training dataset, 
and 10% is used as the test dataset.

3.7	 Bodi algorithm 

	 To assist rehabilitation physicians in clinical diagnosis and disease analysis, we calculate the 
indicators from the data obtained by the MSM. Among the indicators used in this study, seven 
indicators are calculated on the basis of three-axis acceleration signals collected by the inertial 
sensor: step length, stride, the number of steps, step speed, average acceleration, acceleration 
RMS, and symmetry. The other two indicators are calculated on the basis of the data from the 
biomedical signal sensor, which includes the average EMG and EMG RMS. 

3.7.1	 Indicators calculated on the basis of three-axis acceleration signals

	 Step length represents the distance between the feet when both feet are on the ground. When 
the step length is large, the leg has to expend more power to step, which expresses the strength of 
the leg muscles.(1,15–17) To calculate the step length, we first obtain the acceleration in the 
forward direction. In this study, the subject’s forward direction is the Z-axis of the inertial 
sensor. Then, we find the maximum and minimum values of the Z-axis acceleration. The step 
length is defined as

	 1/4 ( ) .max minStep Z Z= − 	 (1)

Zmax and Zmin represent the maximum and minimum values of the Z-axis acceleration, 
respectively. 
	 Stride is defined as the distance between the two right heels, that is, the sum of the lengths of 
the left and right feet. It is mainly affected by the muscles’ horizontal and vertical forces, which 
means that insufficient muscle strength or the wrong direction of the force will affect the stride 
size. The stride equation is

	     .left rightStride Step Step= + 	 (2)

Stepleft and Stepright represent the step lengths of the left and right feet, respectively.
	 After knowing the step length and stride, we can calculate the number of steps, which is 
closely related to the step size.(24) However, the step size is closely related to the muscle strength; 
that is, the smaller the number of steps, the larger the step length and the greater the effort 
required to walk and stride. Therefore, it can be used to express the leg muscle strength. The 
number of steps is defined as

	  | / ( / 2) |Num Distance Stride= ,	 (3)
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where Distance is the testing distance.  
	 Gait speed, also called walking speed, is the distance walked in a given period. Walking 
speed represents the overall walking performance, that is, it can be used to measure the ability, 
reliability, and sensitivity of assessing and monitoring overall health. The gait speed equation is 

	 ( )   / / 60 0.5.Speed Num Time Stride = × ×  	 (4)

Num and Time represent the total number of steps and the total time taken during the test, 
respectively.
	 In addition to the indicators related to pace, we also calculated the indicators related to 
directionality. The subject may move in different directions during the test, the acceleration 
value in a single direction cannot stably reflect the subject’s gait performance, and the axis 
perpendicular to the ground has a higher value than the other two axes.(25) To avoid arbitrary 
movement by a subject as well as the effect of a single axis on other axes, we perform the 
following processing on the three-axis acceleration:

	 ( )0.52 2 2
x y zTA Acc Acc Acc= + + ,	  (5)

where Accx, Accy, and Accz represent the accelerations of the X-, Y-, and Z-axes, respectively. 
	 The human waist is very close to the human body’s center of mass when standing: thus, the 
acceleration signals collected at that position can effectively capture changes in a subject’s gait. 
In addition, there is a nonlinear relationship between RMS and walking speed;(26) thus, the  
RMS acceleration is calculated as

	 2 0.5 2

1

1( ) ,
n

Acc j
j

RMS Acc Speed
n

−

=

= ×∑ 	 (6)

	 _ _ _ ,Acc Acc x Acc y Acc zTRMS RMS RMS RMS= + + 	 (7)

where n is the number of data collected, Acc is the acceleration of the X-, Y-, or Z-axes, and 
TRMS is the RMS of the total acceleration. 
	 Finally, to assess whether the subject is coordinated on the left and right sides during human 
activity and to observe whether there is unilateral damage to the leg,(27) we calculate the 
symmetry of the gait parameter. In this study, we utilize the average acceleration as a parameter 
to evaluate symmetry. When S = 0, the left and right sides are completely symmetrical. When S 
is larger, the left and right sides are more asymmetrical. The symmetry evaluation equation is

	 ( )
 ,
0.5

L R

L R

A A
S

A A
−

=
× +

	 (8)
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where AL is the average acceleration of the left waist or left foot, and AR is the average 
acceleration of the right waist or right foot. 

3.7.2	 Indicators calculated on the basis of EMG signals

	 EMG is a muscle activity sensing technology that detects the transmission of human nerve 
signals and changes in muscle contraction. However, EMG signals are susceptible to noise 
interference. Therefore, the signal processing or calculation of related indicators is required to 
easily observe muscle activity.(28) Therefore, we calculated the average EMG for the subject’s 
four body parts in one test. The calculation formula is 

	
1

1 ,
n

avg j
j

EMG EMG
n =

= ∑ 	 (9)

where n is the number of EMGs and EMGj is the value of EMG. 
	 EMG RMS represents the amplitude of the EMG signal, and the EMG signal amplitude 
increases with the muscle contractility. Additionally, the EMG signal amplitude of isometric or 
isotonic contraction is expected to increase with the square root of the signal. This relationship 
can be used to evaluate the force exerted by the muscle strength. The calculation equation for 
EMG RMS is
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where n is the number of data collected and x is the EMG value.

3.8	 	 Data normalization

	 Since the unit of each indicator is different, the value range between the indicators may be 
very large. Therefore, we normalize each indicator separately to narrow the range gap so that the 
model will not be affected by the value range of the indicator during model training. The gap is 
unbalanced and affected. We use Eq. (11) to normalize the indicator:

	  ,i
normalize

x

X XX −
=

σ
	 (11)

where Xi is the value of each indicator, X  is the average of all the indicator values, and σx is the 
standard deviation of all the indicator values. 



2416	 Sensors and Materials, Vol.34, No. 6 (2022)

3.9	 LCNet

	 LCNet is a deep learning model used to classify one-dimensional signals, which can be well 
applied to the analysis of time series data collected by sensors, including inertial and biomedical 
signal sensors.(29,30) Figure 7 shows the LCNet architecture. The LCNet proposed in this paper is 
used to classify the risk of sarcopenia. There are two categories, namely, a low risk of sarcopenia 
and a high risk of sarcopenia. This model is primarily composed of a convolutional layer and 
two fully connected layers. Then, we input the gait parameter calculated using the Bodi 
algorithm into the convolutional layer. The kernel size is 1 × 3. To improve the model training 
speed and the model’s ability to deal with nonlinear problems, we use ReLU as the activation 
function. Finally, the fully connected layer outputs the classification result. In this study, we use 
SGD as the optimizer for model training, and the model’s classification result is better when the 
learning rate is 10−4, the batch size is 30, and the network is trained for 3500 epochs.

4.	 Experimental Results

	 In this study, we use a computer with 32 GB of RAM, an i7-9750H CPU, and an NVIDIA 
GTX 1060Ti GPU to train the LCNet model, which was developed by the Keras framework. 

4.1.	 Model performance analysis

	 To evaluate the classification ability of the LCNet model, we adopt the confusion matrix to 
evaluate the model’s classification; that is, the confusion matrix clearly shows the correct and 
incorrect classifications for each type of sample. A confusion matrix is primarily composed of 4 
elements, namely, True Positive (TP), True Negative (TN), False Negative (FN), and False 
Positive (FP). TP means that the actual value and the model’s classification results both indicate 
a high risk of developing sarcopenia. TN indicates that the actual value and the model’s 
classification results both indicate a low risk of developing sarcopenia. FN refers to when the 
actual value indicates a high risk of developing sarcopenia, but the model predicts that the risk of 
developing sarcopenia is low. FP refers to that when the actual value indicates a low risk of 
developing sarcopenia, but the model predicts that the risk of developing sarcopenia is high. We 
use the above confusion matrix to calculate the model’s accuracy, precision, specificity, and 
sensitivity using Eqs. (12) to (15).

Fig. 7.	 (Color online) LCNet architecture.
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	 We use the DBA algorithm to augment the collected data to generalize the model’s 
classification ability to various gaits during the model training. Table 2 shows the testing 
confusion matrix without and with data augmentation. The model’s testing precision before data 
augmentation only reaches 82.61% in the classification of sarcopenia. In contrast, the model’s 
testing precision after data augmentation is 91.58%, which means that the LCNet model has a 
strong generalization ability for different subjects. Additionally, it proves that data augmentation 
can greatly improve the model’s classification ability. We use binary cross entropy as the loss 
function of LCNet, train with 30 batches, and finally, stop at 3500 epochs, and the accuracy of 
the model reaches 94.41%, which means that the LCNet model is effective in classifying the risk 
of developing sarcopenia. The specificity is 95.81%, indicating that the LCNet model is less 
likely to misjudge the subject as having a higher risk of sarcopenia. Finally, the sensitivity is 
91.58%, which means that the LCNet model is less likely to miss patients with a high risk of 
developing sarcopenia. Figure 8 shows the indicators which were calculated from the confusion 
matrix without and with data augmentation. In the future, we hope to collect the data of the 
subjects during the Chair Stand Test, to increase the data that can be used to assess muscle 
strength in the training dataset, and to reduce the probability of misjudgment of sarcopenia 
patients. These results demonstrate that the data collected by the wearable device proposed in 
this study can be used to successfully classify the risk of developing sarcopenia by using the 
Bodi algorithm to calculate the indicators.

4.2	 MSM evaluation design

	 In this section, we verify that the MSM proposed in this study can obtain more comprehensive 
performance for gait classification, so that its use can be extended to various other fields. To 
achieve this outcome, we input the gait parameter obtained by MSM into the model and compare 
it with the prediction results from the model whose only inputs are the data from the EAG. 
Table 3 shows the confusion matrix after only inputting the three-axis acceleration signals into 
the model and the confusion matrix after only inputting the EMG signals into the model. 
According to the confusion matrix shown in Tables 2 and 3, the results predicted by combining 
the three-axis acceleration and EMG signals can obtain better performance when classifying the 
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risk of sarcopenia. These results prove that the MSM proposed in this study can effectively 
obtain gait performance and the changes in muscle strength during human activity. Figure 9 
shows the indicators which were calculated from the confusion matrix of the model that only 
uses three-axis acceleration signals and only uses EMG signals for training.

5.	 Discussion

	 In this study, we discuss the location and combination of sensors, data sampling rate, and 
statistical analysis.

5.1	 Location and combination of sensors

	 During the test, the subject may be affected by the wearable device’s large size, which may 
affect the way the subject walks or exercises, causing the data collected during the test to deviate 
from the patient’s actual gait. The size of the MSM proposed in this study is approximately 7 × 5  
× 2 cm3, which is smaller than that of the wearable device proposed in related work,(31) and it can 
prevent the subject from changing the size of the device during the test. The subject will feel 
discomfort when wearing the device on the body or be inconvenienced when walking.
	 There is current literature indicating the use of a mobile phone to collect human gait data.(25) 
The mobile phone is convenient to wear, but it can only be worn on the left or right side of the 

Table 2
Testing confusion matrix.

Prediction
Without Data Augmentation With Data Augmentation

Actual High risk of 
sarcopenia

Low risk of 
sarcopenia

High risk of 
sarcopenia

Low risk of 
sarcopenia

High risk of sarcopenia 19 3 87 8
Low risk of sarcopenia 4 40 8 183

Fig. 8.	 (Color online) Indicators calculated from confusion matrix without and with data augmentation.
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human body; additionally, the wearing position is not uniform or fixed. This method may be 
affected by the subject’s asymmetry while walking. In this study, according to human gait 
kinematics,(2) the proposed MSM is worn on the left and right erector spinae and at the back of 
the left and right calves in a symmetrical manner to obtain human gait cycle data, and 
information about the symmetry of the human body can therefore be effectively obtained. 
	 In addition, to prove that both MSM and this device location can more accurately obtain the 
relevant gait parameter of the human body during walking and other activities, we use the step 
length obtained in this study to calculate additional indicators.(32) We adopt two evaluation 
indicators to compare, namely, MAPE and RMSE. The larger the value of MAPE, the closer the 
prediction is to reality; the larger the value of RMSE, the greater the error between the prediction 
and the reality. Table 4 shows the errors calculated for both step size and stride. The results 
demonstrate that the method proposed in this study performs better in terms of both MAPE and 
RMSE. 

5.2 Data sampling rate

	 To obtain a higher accuracy, we test different sampling rates. We first test a sampling rate of 
100 Hz and then decrease that value to 5 Hz. We can obtain 10 data points using a sampling rate 
of 100 Hz, and the number varies with different sampling rates. Figure 10 shows that when using 
a high sampling rate, it is easy to cause rapid battery power consumption and affect the overall 

Table 3
Confusion matrix of the model.

Prediction
Only Uses Three-Axis Acceleration Signals 

for Training
Only Uses EMG Signals 

for Training

Actual High risk of 
sarcopenia

Low risk of 
sarcopenia

High risk of 
sarcopenia

Low risk of 
sarcopenia

High risk of sarcopenia 77 18 80 15
Low risk of sarcopenia 16 175 14 177

Fig. 9.	 (Color online) Indicators calculated from the confusion matrix of the model that only uses three-axis 
acceleration signals and only uses EMG signals for training.
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performance of the hardware device. When the sampling rate is 6 Hz, the model’s classification 
accuracy is not significantly reduced, and the working time of the 3.7 V lithium battery can be 
up to 1.5 h. Additionally, its stability is the best at a sampling rate of 6 Hz. Since it takes an hour 
to collect gait data, we adopt 6 Hz as the data sampling rate.

5.3	 Statistical analyses

	 To understand the effects of different individuals on the asynchrony indicators, we adopt 
statistical analysis methods to explore the effects of gender, age, BMI, and the risk of sarcopenia.

5.3.1	 Relationship between gender and other indicators

	 Men and women have different physiological structures. For example, there are usually 
differences in muscle strength between women and men. Therefore, we analyze the gait 
indicators from the Four-meter Usual Walking Speed Test and Time-up and Go Test for men and 
women, and the analysis results are shown in Table 5. We found that during the entire Four-
meter Usual Walking Speed Test, which involves only standing or walking, men and women had 
significantly different waist force levels during walking. When compared with the Four-meter 
Usual Walking Speed Test, the Time-up and Go Test involves more movements, including 
standing, sitting, and turning back to walk. These movements require more muscle strength to 
support the body and maintain body balance. In Table 5, we can see that men and women have 
different degrees of waist exertion. The results also show that there are significant differences in  

Fig. 10.	 (Color online) Relationship between sensor sampling rate and battery execution time.

Table 4
Comparison of errors in step and stride.

Step Stride
MAPE (%) RMSE (cm) MAPE (%) RMSE (cm)

Our proposed method 6.73 3.86 6.06 5.28
An et al.(32) 5.49 4.08 4.17 6.30
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EMG indicators between the genders on the right side of the body, which means that men and 
women exhibit different degrees of deviation from their centers of weight during the test. Among 
them, women rely more on the muscle strength on the right side of the body to maintain balance 
than men do. This inference proves that men and women do have differences in muscle strength. 

5.3.2	 Relationship between age and other indicators

	 With increasing age, the skeletal muscle mass decreases each year. Starting from about 40 
years of age, the skeletal muscle mass decreases by about 8% every ten years.(33) Therefore, we 
set the age of 40 as the demarcation point, and the analysis results are shown in Table 6. In the 
Four-meter Usual Walking Speed Test, the test distance is shorter, so it tests the subject’s muscle 
power. However, young adults are stronger than elderly people, so in terms of walking speed and 
EMG-related indicators, age differences produce significant differences. In the Time-up and Go 
Test, the subjects must move from a sitting posture to a standing posture, which tests the 
subjects’ physical balance and muscle endurance. However, elderly people have a poor physical 
balance due to muscle tissue degradation. Most elderly people reduce their walking speed to 
increase their walking stability. Therefore, there are significant differences in average 
acceleration, symmetry, and EMG-related indicators, indicating that the gait data from the 
elderly and young are significantly different. 

5.3.3	 Relationship between BMI and other indicators

	 Owing to the subjects’ disparity in height and weight, we explore the effects of different 
BMIs on gait indicators. First, we use the BMI conversion equation to convert the heights and 
weights of the subjects into BMI, and we then divide them into three groups, namely, 
underweight, standard, and overweight. Then, we use one-way analysis of variance (ANOVA) to 
explore the relationship between BMI and gait. Table 7 show that during both the Four-meter 

Table 5
(Color online) Independently sampled T-test applied to various indicators and gender in Four-meter Usual Walking 
Speed Test and Time-up and Go Test.
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Usual Walking Speed Test and Time-up and Go Test, the gait indicators collected from different 
body parts are significantly related to BMI; however, there is no regularity. Finally, there is no 
significant difference between BMI and gait indicators. 

5.3.4	 Relationship between risk of developing sarcopenia and other indicators

	 When a human is walking or standing, the waist muscles must be used for support, and it 
requires additional leg strength to get up. However, people at a higher risk of sarcopenia have a 
lower muscle mass than those at a lower risk. Therefore, we explore the relationship between the 
risk of developing sarcopenia and other indicators, and the results are shown in Table 8. Since 

Table 6
(Color online) Independently sampled T-test applied to various indicators and age in Four-meter Usual Walking 
Speed Test and Time-up and Go Test. 

Table 7
(Color online) One-way ANOVA applied to various indicators and BMI in Four-meter Usual Walking Speed Test 
and Time-up and Go Test.
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the Time-up and Go test requires that the subject moves from a sitting posture to a standing 
posture, the waist EMG-related indicators in this test are significantly different from those in the 
Four-meter Walking test. There are also significant differences in the EMG-related indicators 
from the legs.
	 From the above statistical analysis, we observe that the differences in gender, age, and the 
risk of developing sarcopenia are related to significant differences in EMG in gait indicators. In 
other words, the EMG signals will be different for men and women, the elderly and young adults, 
and those at high and low risks of developing sarcopenia. In addition, we can see that there is a 
significant difference between age and acceleration. Therefore, the gait indicators that we use 
can effectively classify the risk of developing sarcopenia, and the training dataset includes 
information about the above factors, which can improve the model’s generalization ability.

6.	 Conclusion

	 Wearable sensors are often used to obtain gait information during human activities. However, 
most of the measurements are performed using a single inertial sensor. Such a sensor may not 
notice changes in muscle strength, which are closely related to many diseases. Therefore, we 
propose a wearable hardware device that combines an inertial sensor with a biomedical signal 
sensor, which can be used to obtain gait information and the change in muscle strength during 
human activities. Next, we calculate important gait parameters using the Bodi algorithm and 
then input those parameters into the LCNet model to classify the risk of sarcopenia. In the 
future, we hope to obtain more gait information and apply our proposed MSM to different 
medical fields such as scoliosis, Parkinson’s disease, and multiple sclerosis.

Table 8
(Color online) Independently sampled T-test applied to various indicators and the risk of sarcopenia in Four-meter 
Usual Walking Speed Test and Time-up and Go Test.
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