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	 At present, various applications have a high demand for navigation systems. With the 
example of self-driving cars, the navigation system has to provide pinpoint accuracy for 
positioning. Inertial navigation system (INS) and global positioning system (GPS) are some of 
the common ways to navigate. However, these two systems have the disadvantages of continuity, 
cumulative error, divergence over time, and reliability. A solution based on the extended Kalman 
filter (EKF) and long- and short-term memory (LSTM) is proposed in this study to correct the 
divergence due to cumulative errors in INS. It has been proven effective by a number of studies 
to combine a Kalman filter with GPS and INS data. However, there are still issues in the 
integration of the Kalman filter with INS/GPS, such as random error model, noise resistance, 
and observability of inertial sensors. The proposed system is designed to incorporate deep 
learning to comb through long-, medium-, and short-term memories as well as predict INS and 
GPS errors using recurrent neural network (RNN), as LSTM is used to learn INS errors while 
the GPS is working well and to predict GPS errors when GPS signals are lost. Unlike the 
traditional way of learning, LSTM contains time variants. To verify the accuracy of the proposed 
design, the EKF is introduced as a means to compare with LSTM. EKF is very suitable for more 
flexible coordination between INS and GPS, so EKF is used for deep learning comparison with 
LSTM for prediction and control in a nonlinear environment. Then, the LSTM deep learning is 
used to correct the predictions. This computation reduces the errors in position and speed. 
Finally, an emulation model developed in MATLAB is used to simulate the INS–GPS integrated 
system error compensation model. The experiment results indicate that the errors in parameters 
are the smallest with the integration of LSTM in INS and GPS, thus providing the effects of 
error correction and compensation.  
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1.	 Introduction

	 Global positioning system (GPS) is a widely used way of positioning and navigation in the 
world. It has become an essential tool in daily life as it is seen in positioning for logistics and 
travel. GPS is a part of the satellite navigation system, which was developed under the 
NAVSTAR project of the US Department of Defense (DoD). GPS satellites run 24 h a day and 
orbit the Earth on six circular orbits in general. On each of these orbits, there are four or more 
satellites orbiting the Earth at the same time; i.e., there are 24 or 28 GPS satellites orbiting 24/7. 
In theory, any place on Earth’s surface with a clear view can receive signals from three or more 
GPS satellites, while there are four or more GPS satellites constantly monitoring users’ positions 
at any place on Earth every hour and every day. GPS is a very accurate positioning system, as its 
accuracy does not deteriorate over time. However, it does have its downsides, as the signal 
reception is poor in covered areas such as mountains and tunnels, since it relies on radio waves 
for navigation parameter transmission. To maintain uninterrupted navigation, inertial sensors 
are added for compensation most of the time. The inertial navigation system (INS) itself is an 
independent system used extensively for dead reckoning, as it incorporates an accelerometer, a 
gyroscope, and a magnetic compass.(1) To provide continuous speed, position, and attitude 
estimations and convert them into navigational coordinates for the transmission of position, 
speed, and attitude components, the accelerometer measures the acceleration in the direction of 
the measurement carrier, while the gyroscope monitors the angular speed in the INS. These 
estimations are accurate for a short time. However, INS does not work as an independent 
navigation system, since the estimations by the accelerometer and gyroscope are subject to 
displacement, resulting in residual deviations in the sensors. The divergence rate depends on the 
quality of sensors, and the positioning accuracy of the navigation system decreases with time. 
GPS and INS complement one another. By combining inertial navigation and satellite 
positioning, the complementing nature enables a system that allows positioning and navigation 
even with interrupted satellite signals. The INS/GPS system is often made possible with a 
Kalman filter (KF),(2) which is proven to be one of the best available integrated solutions. 
However, Wen-jiang et al. mentioned in their study that the downside of KF is that it depends 
heavily on a predefined dynamic model; without a reasonable mathematical model, the desired 
compensation is impossible.(3) A dynamic model is usually based on INS position errors, speed 
errors, and attitude errors. Therefore, many switch to the extended Kalman filter (EKF), such as 
Deepika and Arun,(4) or introduce a sigma-point Kalman filter (SPKF) for error correction.(5) In 
addition, the sensor errors, such as accelerometer deviation and gyroscope shift, add to those 
errors. In fact, every inertial sensor has its own random errors. It is difficult to define an 
appropriate random model for every inertial sensor to work effectively in every environment and 
reflect sensor errors, as this will increase the difficulty of INS error modeling and compromise 
the accuracy of INS/GPS navigation. For this, Malleswaran et al. used RBF-NN for INS error 
correction. They simulated the prediction and correction of 5 points with a software program 
and obtained the best predicted values at epoch 25.(6) Li et al. proposed a new learning method, 
the Extreme Learning Machine (ELM).(7) The interactive multi-model extended Kalman filter 
(IMM-EKF) was introduced to improve the KF’s accuracy, and ELM was used to predict and 
correct INS positions. This design achieved 40% or more of correction, but the error was still 
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close to 10 m. Yang et al. proposed a model-predictive-filter-based neural network (MPFNN) for 
INS error compensation.(8) Unlike any traditional algorithm, the model predictive filter (MPF) 
uses network weights for system status variants. Two field tests were performed in this study. 
From 720 training samples, the RMSEs of east and north positions were determined to be 8.58 
and 9.23 m, respectively. Xiong et al. incorporated Doppler velocity log (DVL) in GPS/INS for a 
hybrid positioning method and proposed a robust adaptive federated strong tracking Kalman 
filter (RAFSTKF) algorithm, where the least square adaptive signals are used to obtain the 
optimized estimations for better overall reliability.(9) Lee et al. used visual images and 
determined the position-compensated GPS/INS by identifying the characteristics of the same 
points in two consecutive images.(10) Apart from the KF, Malleswaran et al. incorporated the 
Input Delayed Dynamic Neural Network (IDNN) for KF without GPS signals.(11) In this study, 
insignificant and inexpensive inertial sensors are used as a viable navigational backup to 
compensate the blocked GPS signals, and then long- and short-term memory (LSTM) is used to 
predict the error divergence. Long- and short-term memories are used in this study because this 
has been extensively used for predictions in a number of fields, such as predictions of wind 
speed,(12) stock market, and depression,(13,14) to name a few. The difference between LSTM and 
recurrent neural network (RNN) is that a processor is added to the algorithm to determine 
whether a message is useful; the message is memorized if it is useful or discarded if not. LSTM 
is as effective in solving the dependence on long-time sequence as it is adaptive for application 
in many fields. The LSTM prediction keeps the error growing within a certain period of time for 
the accuracy of inertial navigation without resulting in error drift generated over time. 

2.	 System Design

2.1	 System hardware design 
	
	 The proposed system hardware consists of an Arduino development board, an MPU6050 
triaxial accelerometer, and a QMC5883L triaxial magnetic field sensor, as shown in Fig. 1. The 
MPU6050 is in turn composed of a triaxial gyroscope and a triaxial accelerometer module. It 
measures the accelerations and angular speeds in Ax and Ay directions of the onboard unit, while 
the QMC5883L triaxial magnetic field sensor is a low-cost electronic compass ideal for a 

(a) (b) (c)

Fig. 1.	 (Color Online) (a) Arduino development board, (b) MPU6050 triaxial gyroscope/accelerometer sensor, and 
(c) QMC5883L triaxial magnetic field sensor.
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handheld device. The assembly of Arduino, QMC5883L, and MPU6050 is presented in Fig. 2. 
The overall structure of inertial sensors, RTK GPS receiver, and PC is shown in Fig. 3, and the 
integrated wiring diagram is provided in Fig. 4. The PC comes with an i7 for CPU and RTX2070 

Fig. 2. 	 (Color Online) Assembly of Arduino, QMC5883L, and MPU6050INS.

Fig. 3. 	 (Color Online) Structure of inertial sensors, RTK GPS receiver, and PC.

Fig. 4. 	 (Color Online) Wiring layout of hardware system modules. 
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for GPU. The VCC voltage input is 3–5 V for Arduino, MPU6050, and QMC5883L, and the PC 
connection baud rate is 9600 Hz. 

2.2	 System software design 

	 MATLAB is the core of the system design program for this study, as the coordinate errors are 
corrected using MATLAB. Figure 5 is the flowchart for coordinate error correction with 
MATLAB. MATLAB is a useful program that is ideal for algorithm development, data 
visualization, data analysis, and numeric calculations. It is capable of plotting functions, data 
images as well as building user interfaces. However, MATLAB is used in this experiment only 
to determine the input values from inertial sensors and to plot the EFK-converted longitudes and 
latitudes and points measured by RTK, as shown in Fig. 6. 

Fig. 5. 	 Coordinate error correction flow.

Fig. 6 	 (Color Online) MATLAB interface.
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	 Another program used is Visual Studio, as shown in Fig. 7. It provides virtually all the tools 
needed for programming, including UML, program code control tool, and integrated 
development environment (IDE). The LSTM used in this study is programmed in python 
through Visual Studio. 

2.3	 RTK satellite receiver

	 GPS consists of user, space, and control. User refers to the receiver that receives and decodes 
satellite signals for positioning, space refers to the satellites in space that synchronize and 
transmit navigation signals for user positioning, and control is a series of monitoring stations 
that monitor the serial numbers and quality of GPS satellite transmission and correct the satellite 
signals in a timely manner. However, when a user is using a GPS receiver, a number of factors 
result in certain errors.(15)

	 The idea of RTK is the use of a base station that is highly accurate in engineering 
measurement and positioning for phase measurement of GNSS carrier waves, correction of 
parameter values, and transmission to a mobile station where the correct position is determined 
on the basis of real-time GPS signal measurements when the corrected parameters are received. 
A network RTK is a GNSS network consisting of multiple base stations for the evaluation of 
positioning errors in the area covered by the base stations. By introducing the observation data 
from neighboring physical base stations, a virtual base station (VBS) is generated for an RTK 
base station, as shown in Fig. 8.
	 The RTK used in this study, which is accurate up to 10 cm, is a product of Century 
Instruments Co., Ltd., as shown in Fig. 9. Century Instruments has established 21 
(GPS+GLONASS) reference stations in Taiwan, and each of them transmits back observation 
data every second. Every second, the computation core performs a system model computation to 
determine corrections for satellite signals, satellite coordinates, and time. These correction 
values allow the correction of all errors at the current satellite status, from receiving a satellite 
signal at a reference station to transmitting differential data to a user. 

Fig. 7. 	 (Color Online) Visual Studio interface.
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3.	 Experiment Design

	 First of all, the Arduino, gyroscope, and accelerometer are connected to the inertial sensors 
of the test system before being connected to the PC where the captured values are exported to 
EXCEL as a text file. The RTK receiver captures the longitudes and latitudes, and these 
coordinates are copied to EXCEL. The connection of inertial sensors, PC, and RTK GPS 
receiver is shown in Fig. 10. Then, MATLAB reads the values in the EXCEL file for computation 
and output of corrected coordinates. The position coordinates are plotted along with the 
coordinate errors plotted by RTK and inertial sensors. The plots are substituted into LSTM for 
learning and prediction. Figure 11 is a photo showing how the assembly of inertial sensors, RTK 
GPS receiver, and a laptop are mounted on a car. 

4.	 Principles and Methodology 

	 Figure 12 shows the experiment flowchart. The experiment consists of two parts as it starts: 
interrupted and uninterrupted GPS signals. While the GPS signals are not interrupted, the 
coordinates captured by RTK, accelerations (Ax and Ay), and change in angular speed (Gz) 
measured by INS are fed to MATLAB for geometric calculation to determine the coordinates 
from vectors and RT errors, and then the errors are fed to LSTM for learning, as shown in 

Fig. 8. 	 RTK GPS positioning scheme.

Fig. 9. 	 (Color Online) RTK GPS receiver.
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Fig. 13. When the GPS signals are interrupted, the INS and RTK errors are predicted and fed to 
MATLAB for correction. The corrected errors of both are compared with the coordinates 
generated by EKF. 

Fig. 10. 	 (Color Online) Configuration of inertial 
sensors, RTK GPS receiver, and laptop.

Fig. 11. 	 (Color Online) Inertial sensors, RTK GPS 
receiver, and laptop mounted on a car.

Fig. 12. 	 Compensation process.
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4.1	 Geometric computation of inertial sensors

	 The distance that the vehicle travels is determined from the displacement Eq. (1) as 

	 21 
2

s at= .	 (1)

	 It is clear in Fig. 14 that the velocity of the vehicle in the X-direction is defined as Vx and that 
in the Y-direction is Vy, and the angle measured by the gyroscope is Ga. Figure 15 shows that the 
movement of the vehicle in the E-axis is determined by adding the two component vectors in the 
same direction, Vy1 and Vx1, together. Therefore, the displacement in the X-axis is expressed as 
Eq. (2). The movement in the N-direction is determined by subtracting the two component 
vectors in opposite directions, Vy2 and Vx2. Therefore, the displacement in the Y-axis is expressed 
as Eq. (3). 

	 Dx = Vx1 + Vy1	 (2)

	 Dy = Vx2 − Vy2	 (3)

	 As shown in Fig. 15, Vx2 and Vy1 are determined as the sin components of Vx and Vy,  whereas 
Vx1 and Vy2 are the cos components of Vx and Vy, respectively, which are expressed as Eqs. (4) 
and (5). Finally, the direction in which the vehicle turns (Ga) is measured with a gyroscope and 
combined with Eqs. (2) and (3) to obtain the forward positions for Eqs. (4) and (5). 

	 Dx = Vx cos (Ga) − Vy sin (Ga) 	 (4)

	 Dy = Vx sin (Ga) + Vy cos (Ga) 	 (5)

Fig. 13. 	 LSTM learning and prediction with uninterrupted GPS.
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4.2	 EKF algorithm

4.2.1	 Introduction to EKF

	 A KF is often used to correct errors in linear equation for ideal data. The algorithm is based 
on the estimation of the optimized linear mean square using the least square, thus optimizing a 
linear equation. It uses a series of prediction and measurement steps for the optimal estimation 
of status vectors that include the minimum variance. There are two sets of equations; one 
predicts the system status based on the current status and assumed system model, thus obtaining 
the advanced estimation for the next time step; the other is co-variants, which are the 
measurement of estimated uncertainty for the system status prediction. 
	 The EKF is developed by improving the weaknesses of the KF.(11,12) The first-order Taylor 
expansion for the estimation of current surroundings is used, and the equation is updated with 
time and measurements as in KF. This linearizes nonlinear data for substitution into the KF 
algorithm for the optimized result of the nonlinear data. If the use of first-order Taylor expansion 
still does not lead to optimization, higher-order items may be added to the expansion. 
	 When a measurement contains unpredictable or random error or uncertain change, it uses a 
set of equations and continuous data input for quick estimations of the real value, position, and 
velocity of the measured object.  
	 The KF has the advantage over other filters in navigation algorithm, as it uses only the 
current and previous statuses to predict the next status, thus accelerating the calculation.  

4.2.2	 EKF calculation steps

	 First, assume that the initial estimated status ˆ(0 | 0)x  is xm  and that the error status covariance 
matrix (0 | 0)xP  is equal to 0.

	 ( )(0 | 0) 0ˆ xx m=  and (0 | 0) 0xP = 	 (6)

Fig. 14. 	 Vectors detected by inertial sensors. Fig. 15. 	 Vehicle vectors.
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	 The current predicted status is expressed as

	 ( ) ( )( )ˆ1| | ,x̂ k k f x k k k+ = .	 (7)

	 Linearize the status:

	 ( )( ) ( )( ) ( ) ( ) ( )ˆ, | , 1, |ˆf x k k f x k k k k k x k x k kφ  = + + − +…   	 (8)

	 Take the differential of ( )( ),f x k k :

	 ( )
( )( )
( )

( )ˆ |

,
1|

x k k

f x k k
k k

x k
∂

+ =
∂

φ 	 (9)

	 Then, the predicted covariance matrix becomes

	 ( ) ( ) ( ) ( ) ( ) ( ) ( )1| 1| | 1| 1, 1| .T T
x xP k k k k P k k k k k k Q k k kφ φ+ = + + + Γ + Γ + 	 (10)

( )ˆ 1|x k k+  is obtained from linearization:

	 ( ) ( )( ) ( )( ) ( ) ( ) ( )1 , 1 1| , 1 1 1 1ˆ̂ |h x k k h x k k k H k x k x k k + + = + + + + − − + +…  	 (11)

	 Take the differential of ( )1x k + : 

	 ( )
( )( )
( )

( )ˆ 1|

1 , 1
1

1
x k k

h x k k
H k

x k
+

∂ + +
+ =

∂ +
	 (12)

	 Then, determine the gain K for k + 1: 

	 ( ) ( ) ( )1 1| 1T
xK k P k k H k+ = + + * ( ) ( ) ( ) ( ) 1[ 1 1| 1 1 ]T

xH k P k k H k R k −+ + + + + 	 (13)

	 Correct and update with the gain in Eq. (13), ( )1K k + :

	 ( ) ( ) ( ) ( ) ( ) ]ˆ |ˆ ˆ1| 1 1 1 [ 1 1 |x k k x k k K k z k z k k+ + = + + + + − + 	 (14)

	 Update the covariance matrix ( )1|xP k k+ . I in Eq. (15) is equal to an n*n matrix of the same 
size as the gain ( ) ( )1 1K k H k+ +

	 ( ) ( ) ( ) ( )1| 1 1 1 1| .x xP k k I K k H k P k k + + = − + + +  	 (15)
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	 The EKF estimation process is presented in Fig. 16. 

4.3	 LSTM algorithm

	 The LSTM algorithm is a type of RNN. It is widely used for time sequence prediction and 
proven to perform well in long- and short-term predictions. As shown in Fig. 17, LSTM consists 
of three levels, namely, input level, hidden level, and output level.(9)

Fig. 16. 	 EKF calculation process.

Fig. 17. 	 LSTM structure.
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	 It takes at least three levels to build the LSTM, namely, the input level (it), forget level ( ft), and 
output level (Ot). The data to be stored for the next status are selected at the input level. The values 
not to be stored in the status data are selected at the hidden level. If a value is 0 as calculated, it 
will be kept at the hidden level. On the other hand, it will be forgotten if it is calculated as 1. In a 
simple term, the hidden level is a level where data are determined to be useful or not. Finally, the 
data are transmitted to the output level where a confirmed status message is generated. 
	 xt is input, ft is the forget level, it is the input level, ct is the current status, Ot is the output 
level, and ht is the output. The forget level controls whether to transmit the message in the 
memory cell of last time, ct−1, to the current time, and the output time controls the input of the 
current time, xt, to the memory cell of the current time through the candidate memory cell, ct If 
the forget level stays close to 1 and the input level to 0, the past memory cell will keep 
transmitting to the current time through time storage. This design is the response to the gradient 
decay issue in RNN, as shown in Fig. 18.

5.	 System Verification

	 There were three interruptions in this experiment. It started on Zhongshan Rd at coordinates 
24.15028692183025 and 120.7318637891659. The GPS signals were lost at the first turn on 
Dongying Rd at coordinates 24.14853077029017 and 120.7063391068262. As the vehicle traveled 
to Leye Rd at coordinates 24.1376073742325 and 120.70535724891008, the GPS signals were 
blocked at the second turn. Next, the vehicle made the third turn to Section 1, Zhongshan Rd at 
coordinates 24.13473977507443 and 120.73280792666246, and the GPS signals were lost at 
coordinates 24.147464780480675 and 120.7337514383481. Figure 19 shows the start, turns, and 
signal interruptions on Google Map. For a better presentation of the travel route, the RTK points 
were plotted into a closed route of the entire travel for comparison in greater detail, as shown in 
Fig. 20.

Fig. 18. 	 LSTM algorithm composition.
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	 It can be seen from Fig. 21(a) that the RTK GPS output positioning map within 9 km around 
the campus can be drawn using MATLAB. When the vehicle turns left in the upper right corner, 
the RTK receiver signal is blocked to cause the RT signal to be interrupted to verify the 
correction method outside the system design, as shown in Fig. 21(b). The acceleration and 
angular speed measured by inertial sensors on RTK signal interruption were recorded and 
substituted into MATLAB to calculate and plot the route compensated by INS, as shown in 
Fig. 22(a). Apparently, the accuracy of simple compensation is very low. In Fig. 22(b), therefore, 

Fig. 19. 	 (Color Online) Actual road map.

Fig. 20. 	 (Color Online) Road map and RTK.
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EKF and LSTM, which are both commonly used, were introduced in this study for the correction 
of INS-compensated points, so that the longitude is close to the RTK positioning point. With 
EKF and LSTM compensation, it is found that the points after compensation were very close to 
the RTK points. However, the values of LSTM-corrected points were much closer to RTK point 
values than EKF. It is also clear in the other two interruptions in Figs. 23(a) and 23(b) that the 
LSTM compensation resulted in positioning points closer to reality along every section of the 
travel. All points are plotted in Fig. 24 for a clear picture of the difference between before and 
after correction. 

6.	 Experiment and Test Results and Discussion

	 A field test was performed to evaluate the performance of the learning algorithm proposed. A 
car was used as the carrier and mounted with simple inertial sensors and an RTK receiver. The 

(a) (b)

Fig. 21. 	 (Color Online) (a) RTK GPS receiver output plots and (b) RTK GPS receiver signals blocked.

(a) (b)

Fig. 22. 	 (Color Online) (a) RTK and INS-compensated points and (b) LSTM and EKF-compensated points.
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car traveled in streets and alleys lined with buildings at a fluctuating speed, since the car did not 
travel on open roads. The average speed of the travel was 50 km/h. Table 1 shows that, at the 
interruption at the upper right corner, the minimum longitude and latitude errors were 0.893 and 
1.083 m, respectively, with the simple compensation of inertial sensors. The minimum longitude 
and latitude errors with EKF correction, on the other hand, were 0.303 and 0.28 m, respectively. 
Compared with the minimum errors with EKF correction, the minimum longitude and latitude 
errors with LSTM correction were merely 0.049 and 0.036 m, respectively. In Table 2, the EKF-
corrected minimum longitude and latitude errors at the upper left corner were 0.168 and 0.257 m, 
and they were 0.174 and 0.386 m, respectively, with LSTM correction. In Table 3, the EKF-
corrected minimum longitude and latitude errors at the lower left corner turn were 0.462 and 
0.51 m, and they were 0.328 and 0.264 m, respectively, with LSTM correction. The result 
suggests that LSTM is more effective than EKF in terms of reducing longitude and latitude 
errors. The experiment results in Table 4 indicate that the LSTM-corrected RMSE values are 

(a) (b)

Fig. 24. 	 (Color Online) LSTM, INS, and EKF-compensated points in relation to RTK receiving points.

Fig. 23. 	 (Color Online) (a) Upper left LSTM and EKF-compensated points and (b) lower left LSTM and EKF-
compensated points.
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4.529 and 3.433 m, greater than the EKF-corrected RMSE longitude and latitude, which are 
9.435 and 10.076 m, respectively. The results in Table 5 suggest that the TM-corrected RMSE 
values are 2.747 and 4.163 m at the upper left turn. The results in Table 6 indicate that the LSTM-
corrected RMSE values are 1.609 and 4.083 m at the lower left turn. In both cases, they are more 

Table 1 
Minimum coordinate errors with INS, EKF, and LSTM corrections.

Min. error Correction
INS (m) EKF (m) LSTM (m)

Longitude 0.893 0.303 0.049 
Latitude 1.083 0.28 0.36 

Table 2 
Min. coordinate errors at upper left turn with EKF and LSTM corrections.

Min. error Correction
EKF (m) LSTM (m)

Longitude 0.168 0.174 
Latitude 0.257 0.386 

Table 3 
Min. coordinate errors at lower left turn with EKF and LSTM corrections.

Min. error Correction
EKF (m) LSTM (m)

Longitude 0.462 0.328 
Latitude 0.51 0.264 

Table 4 
RMSE values with INS, EKF, and LSTM corrections.

RMSE Correction
INS (m) EKF (m) LSTM (m)

Longitude 9.877 9.435 4.529 
Latitude 22.908 10.076 3.433 

Table 5 
RMSE values at upper left turn with EKF and LSTM corrections. 

RMSE Correction
EKF (m) LSTM (m)

Longitude 7.961 2.747 
Latitude 8.696 4.163 

Table 6 
RMSE values at lower left turn with EKF and LSTM corrections.

RMSE Correction
EKF (m) LSTM (m)

Longitude 13.492 1.609 
Latitude 19.106 4.083 
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accurate than EKF-corrected RMSE longitudes and latitudes, which are 7.961 and 8.696 m, and 
13.492 and 19.106 m, respectively. The compensations and corrections at the three turns verify 
that the proposed method is more accurate than the common correction with EKF and produces 
results closer to points captured by RTK. 

7.	 Conclusions

	 The GPS system often becomes unstable or even interrupted due to climate and surroundings, 
among other factors. It is common to couple it with inertial sensors to compensate roads where 
signals are blocked and to keep the onboard positioning system running. However, the accuracy 
of inertial sensors will deteriorate over time owing to the divergence of accumulated errors. 
Therefore, a KF is added to correct the data generated by the inertial sensor and improve the 
positioning accuracy of the system. However, the use of relatively inexpensive inertial sensors 
leads to significant positioning errors in the navigation system. Even the correction with EKF 
does not necessarily provide the accuracy within 10 cm for the errors captured by the RTK GPS 
receiver. Therefore, long- and short-term memory with high accuracy is introduced to correct 
the system errors. The results show that LSTM compensation and correction are more accurate 
than EKF correction at all three turns and closer to the points captured by RTK. The LSTM-
compensated points are closest to the RTK points even with cheap and simple sensors. Also, the 
maximum longitude and latitude errors with EKF correction are 13 and 15 m, whereas those 
with LSTM correction are merely 4.529 and 3.433 m, respectively. Clearly, LSTM correction is 
more accurate than EKF correction. 
	 However, this study uses offline calculation and prediction, and compensates and corrects the 
system positioning coordinates. An idea for future development is to streamline the entire 
process and develop the software with C or Python for real-time calculation, compensation, and 
correction, allowing highly accurate positioning and navigation with a simple inertial sensor 
when GPS signals are blocked. 
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