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 Machining dynamics plays an essential role in machine tools (MTs) and machining 
operations, directly impacting the material removal rate, surface quality, and dimensional 
accuracy. With the increasing use of numerical control (NC) MTs and increasing automation of 
production, machining inaccuracy due to thermal deformation has become a significant issue. 
Furthermore, since the rotation speed and feed rate have risen, more heat is produced in MTs. In 
addition, since high machining precision is now required, techniques to avoid or regulate 
thermal deformation are also needed. Traditionally, researchers used the finite element method, 
support vector method (SVM), regression analysis method, neural network, and other methods 
to predict and compensate for the thermal deformation of MT spindles. However, these methods 
do not directly reduce the thermal errors caused by the heat source to improve the accuracy of 
MTs. Therefore, in this study, a cooling control method is proposed to reduce the impact of heat 
on the spindle by using a thermal suppression technique accompanied by the adaptive neuro-
fuzzy inference system (ANFIS) control method to predict the static thermal behavior of a 
spindle. The root mean square error (RMSE) is used as the ANFIS evaluation index to reflect 
the quality of the prediction model. This method is implemented in Simulink to simulate the 
dynamics of the coolant during the real-time monitoring of the cutting and resting positions of 
the MT. Finally, a thermal deformation prediction model is generated to demonstrate that the 
cooling control method developed in this study can be applied to the intelligent cooling of an 
MT. It is shown that the developed ANFIS prediction model is efficient for controlling cooling. 
A simulation also shows that this method can reduce the running cost, energy consumption and 
accurately predict the thermal deformation of MT spindles. It is predicted that the most suitable 
coolant pump operating frequencies for the spindle at rotation speeds of 2000, 8000, 10000, and 
12000 rpm are 20, 40, 40, and 60 Hz and the reductions of the spindle heat are 92.4, 99.9, 80.1, 
and 60.2%, respectively, with a prediction accuracy within 4.745 μm.

mailto:wjluo@ncut.edu.tw
https://doi.org/10.18494/SAM3794
https://myukk.org/


2448 Sensors and Materials, Vol. 34, No. 6 (2022)

1. Introduction

 High-speed automatic processing is necessary for manufacturing mechanical products with 
high processing precision and an even surface. Therefore, it has been widely applied in many 
equipment manufacturing industries, and high-speed machine tools (MTs) have become 
essential in the equipment manufacturing industry. A motorized spindle is the main component 
of current MT technology and the main conveyor for high-speed cutting technology.(1) Thermal 
phenomena cause most machining defects in MTs, and their reduction substantially improves the 
efficiency of machining operations. As the requirement for machining precision rises, it becomes 
increasingly essential to reduce thermal errors. The behavior of an MT in operation is affected 
by thermal errors, which are influenced by the intensity of the heat source. Thermal errors can 
be reduced by installing a cooling system in the MT spindle and improving the cooling channel 
design.(2–4) Two coolant control methods are often adopted in cooling systems: the varied 
coolant volume (VOV) control method and the constant coolant volume (COV) control method.(5) 
Using the VOV control method rather than the COV control method allows fine-tuning of the 
coolant circulating flow rate in terms of the machining load and spindle rotation speed to remove 
heat generated in the MTs, particularly internal heat generated by the spindle. The thermal 
deformation can be significantly reduced in the Y- and Z-directions by 70.1 and 73.5%, 
respectively, by applying the VOV control method.(6)

 Grama et al.(7) found that the cooling effect is dramatically enhanced using a cooler trigger 
model (CTM)-based control technique on a conventional bath recirculation cooler unit. This 
technique involves dynamically controlling the switching frequency and the cooler compressor 
switch ‘ON’ time so that the heat exchange is according to the cooling load. The resulting 
thermal distortion using the CTM is significantly reduced compared with that of the conventional 
ambient temperature tracing strategy (ATS). For instance, the average error reductions are 51.2 
and 47.6% for thermal expansion, 51.4% and 50% for the pitch angle, and 27.2 and 23.5% for the 
yaw angle for the CTM and ATS, respectively. Liu et al.(8) introduced a differentiated multiloop 
bath recirculation system that can accomplish the differentiated and close-loop cooling strategies 
in different heat-generating parts of precision MTs. Compared with a traditional bath 
recirculation cooler, it is more flexible and advantageous in controlling the temperature field and 
thermal error of precision MTs. Zhang et al.(9) proposed an active coolant technique for spindle 
thermal balance control to accurately dissipate disturbing heat transfers. The relationship among 
spindle internal heat generation, external heat convection, and coolant heat dissipation has been 
established analytically. The proposed active coolant strategy is more suitable than the previous 
power-matching techniques for an MT with a temperature-time variance (about 3.5 °C). The 
reductions of the spindle thermal error in the X-, Y-, and Z-directions were 92.9, 31.5, and 53.7%, 
respectively. Chiang et al.(10) developed a novel temperature control scheme by combining the 
proportional integral derivative (PID) controller with the Smith predictive method to precisely 
control the nonlinear and time-varying problems with time delay characteristics. They controlled 
the accuracy of the coolant outlet temperature at 0.1 °C and also effectively improved the 
performance of the traditional PID controller by using a hot-gas bypass valve. Mori et al.(11) 
studied the ON–OFF switch cooling control method to make a refrigeration system stop 
supplying coolant during the stop phase. There was no need to circulate the coolant, reducing 
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unnecessary power consumption and heat generation during this phase. They found that a time 
interval of 2 min is ideal for cooling the condenser to avoid switching the cooling device too 
frequently and reducing its life. This method can reduce the power consumption of the 
refrigeration system by as much as 75%.
 MT software and hardware programming control technologies have been developed over 
many years to achieve high precision and versatility. However, most cutting procedures are still 
manually compiled by computers that automatically carry out numerical control (NC). 
Innovative technological breakthroughs are needed in software and hardware to achieve 
intelligent MTs. For example, a characteristic of intelligent MTs is reasonable ability at learning 
with a logical understanding and thinking mode. Appropriate decisions are automatically made 
for intelligent MTs to solve various problems in cutting processes; there is no need to instruct the 
MT while operating through additional NC commands.
 The adaptive neuro-fuzzy inference system (ANFIS) introduced by Jang in 1993 is a 
prominent neuro-fuzzy system. ANFIS incorporates neural network and fuzzy logic 
components, the former capitalizing on the capacity to learn and the ability to generalize. 
Logical reasoning based on inference rules is derived from fuzzy logic, resulting in an 
instrument that can work with linguistic variables and incorporate a broad range of 
approaches.(12) Toward realizing intelligent MTs, Keshwani et al.(13) applied fuzzy prediction 
models to predict the permeability of compounds through the skin under various conditions. In 
their study, leave-one-out cross-validation (LOOCV) was combined with the root mean square 
error (RMSE) and coefficient of determination (R2) to evaluate the model performance, which 
was compared with the regression model. It was found that the prediction performance of the 
fuzzy model is better than that of the regression model. The fuzzy model was used to quickly 
determine an initial estimate of the skin permeability coefficient to determine the transdermal 
drug delivery and toxicity potential. Al-Mahasneh et al.(14) used ANFIS in food processing 
technology. They applied it to the prediction of microbial growth, thermal process modeling, 
food quality control, and food rheology, including food drying and the analysis of food 
characteristics. They compared ANFIS with other modeling methods, such as an artificial 
neural network (ANN), support vector method (SVM), and multiple linear regression (MRA), 
and they found that ANFIS had significantly higher performance than these methods.
 Sonmez et al.(15) developed an ANFIS model to predict the cadmium (Cd) concentration in 
the Filios river in Turkey. The developed model used the fewest possible number of parameters 
to calculate the Cd concentration. They found a high correlation coefficient (R2 = 0.91) between 
observed and modeled Cd concentrations, showing that the ANFIS model is a reliable approach 
for predicting the concentration of Cd in water resources. Because of the reliability and accuracy 
of the ANFIS model, it is used to predict the concentration of heavy metals in water resources. 
For empirical forecasting systems, ANFIS is highly recommended as a processing method. 
Bensaber et al.(16) developed a model based on ANFIS for predicting the security index of an ad 
hoc vehicular network. The ANFIS system is computationally efficient, and one of its most 
advantageous features is that when one of the system parameters changes suddenly, the system 
improves its dynamic performance and has excellent stability. The predictive model shows that, 
by using the ANFIS method, a security index can be obtained to predict the possibility of attack 
and the effectiveness of protection.
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 Akkaya(17) developed an ANFIS model for predicting the higher heating value (HHV) of 
biomass. The input dataset for the prediction model consisted of proximate analysis components 
such as fixed carbon, ash, and volatile matter. Three methods are used in the construction of the 
ANFIS model, grid partition (GP), sub-clustering, and fuzzy c-means (FCM), to create a fuzzy 
inference system (FIS). Several simulation experiments were conducted for each FIS technique 
to determine the optimum ANFIS-based prediction model. It was found that the ANFIS model 
based on sub-clustering was the most accurate biomass HHV prediction model. In the testing 
phase, the resulting regression coefficient (R2) and RMSE were 0.8836 and 1.3006, respectively, 
showing that the developed ANFIS model effectively predicts biomass HHV with high accuracy. 
Abdulshahed et al.(18) developed thermal error modeling based on ANFIS to establish the 
correlation between thermal errors and temperature changes. They considered two different 
ANFIS models: GP and FCM clustering. They used a computer numerical control (CNC) milling 
machine to build and test both models. The ANFIS-FCM model gave superior results with a 
maximum residual error of ±4 μm and a 94% reduction in the error.
 Researchers currently use different thermal compensation technologies to reduce the thermal 
errors caused by MTs, but thermal errors cannot be removed effectively. Computer control 
calculations are performed for the thermal compensation of MTs, but there is no solution for heat 
reduction. However, in this study, we use VOV thermal suppression rather than thermal 
compensation as a cooling method to reduce the heat generation of an MT spindle. The main 
principle of this method is to adjust the coolant pump operating frequency and control the 
coolant volume according to the machining load to reduce the thermal deformation of MTs. If 
the heat generation is relatively high, then the coolant pump frequency will be high, which 
increases the coolant volume; similarly, if the heat generation is low, the coolant pump frequency 
will be low, which decreases the coolant volume. 
 In this study, the operating frequency control of the coolant pump is used as a predictive tool. 
To make the system closer to control based on human judgment, the optimal coolant pump 
frequency of the cooling system is used to obtain the best advice of the forecasting system. The 
control system can also adjust the power according to changes in the spindle’s thermal state to 
reduce the energy consumption of the system.

2. Materials and Methods

2.1 Development method

 ANFIS is an adaptive network that comprises input-output variables and a Takagi–Sugeno-
type fuzzy rule. It is an adaptive and multilayer feed-forward network. For simplicity, the ANFIS 
framework is considered to have two inputs, x and y, and one output, z. Then, given a first-order 
Takagi–Sugeno fuzzy model, an appropriate rule set with two fuzzy if-then rules may be written 
as Eq. (1). Linguistic variables are used to assess entries (C1, D1). The outcome of each rule is 
obtained by combining the input values with a constant term (r1).

	 Rule 1: If x is C1 and y is D1, then 1 1 1 1z p x q y r= + +  
 Rule 2: If x is C2 and y is D2, then 2 2 2 2z p x q y r= + + 	 (1)
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The functionality of each layer is discussed as follows and shown in Fig. 1:(18–21)

Layer 1:  The primary function of this layer is to map input variables (x and y) into fuzzy sets A = 
{C1, C2, D1, D2} through the process of fuzzification. Each node in this layer is square 
with functions for generating membership grades. C and D are linguistic labels (such as 
“low” and “high”) characterized by different membership functions such as a 
generalized bell, sigmoid, or triangular function.

Layer 2:  This layer uses the activation strength after integrating each input fuzzy set. The 
Π-norm operator performing the fuzzy conjunction (“and”) is used to obtain the output.

Layer 3:  The main task of this layer is to calculate the ith rule ratio of the activation strength to 
the sum of all activation strengths.

Layer 4:  In this layer, the output from the previous layer is multiplied by the Sugeno fuzzy rule 
function.

Layer 5:  There is only one node in this layer. This node computes the sum of all outputs of each 
rule from the previous layer. Then, a weighted average method performs defuzzification, 
which transforms the fuzzy result into a crisp output.

2.2 Development of control system

 The control method developed in this study involves the following steps:
Step 1:  Temperature sensors (PT100 type, with measurement temperature ranging from −40 to 

+120 ºC) are mounted at the inlet and outlet of the coolant supply to measure the inlet and 
outlet coolants temperatures, respectively. A T-type sensor that can measure temperatures 
ranging from −250 to 370 ºC is used to measure the ambient temperature, and a 
displacement sensor (eddy current, AEC-S06) is mounted on the MT to measure the 
thermal deformation in the Z-direction based on the ISO 230-3 standard.

Step 2:  Excel is used to organize and record the measured data, including the experimental 
parameters of each rotation speed.

Step 3:  After sorting and organizing the data collected by the sensors into Excel, the data with R2 
higher than 0.68 is imported into MATLAB for the predictive modeling of the control 
system of the ANFIS cooling control method.

Step 4:  To generate the FIS in ANFIS, this step is divided into three parts: setting, modification, 
and testing.

Fig. 1. ANFIS structure.
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1. The operational interface for making FIS is entered, and the input and output 
parameters are selected and imported into the model training database.

2. The parameters of the inference system and the network learning method are adjusted.
3. After the predictive model of the coolant volume is developed by ANFIS, the predictive 

evaluation index (RMSE) is used to judge the accuracy of the developed model. If it 
does not meet the expected results, the three parts this step are repeated.

Step 5: In Simulink, a set of programs that can be used to simulate the actual operation of the 
MT for the predictive modeling using the cooling control methods are written to simulate the 
expected action of the main spindle of the MT as a function of the operating frequency of the 
coolant pump during operation.

Step 6: The analog control system infers and predicts the corresponding coolant pump operating 
frequency and then decompiles it into a reference value to find the coolant pump frequency of 
the main spindle in operation that can produce the greatest temperature suppression effect 
and the optimal spindle displacement conditions.

Step 7: The reference value corresponding to the predicted operating frequency of the coolant 
pump from the steady-state interval database is found.

 Figure 2 shows the flow chart of the prediction model development and the operation of the 
control system.

Fig. 2. (Color online)  Flow chart of the prediction model development and the operation of the control system.
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2.3 MT parameter selection

 The modeling data used in this study is based on the measured data, and the thermal error 
measurement of MTs refers to the ISO 230–3 international standard. Note that this standard only 
deals with non-cutting or air cutting, different from the actual cutting condition (real cutting).
 The dataset used in this study is based on the data measured and recorded during an 
experiment to analyze the steady-state time of a variable-frequency and fixed-frequency cooler. 
The dataset originates from the relevant measurement information of the MT recorded by the 
data recorder. The measurement data recorded in this experiment are listed in Table 1.
 We selected the thermal deformation in the Z-direction, inlet coolant temperature, outlet 
coolant temperature, air temperature, temperature difference between the inlet and outlet 
coolants, coolant pump frequency, and spindle speed as modeling parameters.
 The method uses a specific coolant pump frequency and targets a specific spindle speed. The 
coolant pump frequencies considered in the measurements are 0, 20, 40, 60, and 80 Hz and the 
spindle speeds are 2000, 8000, 10000, and 12000 rpm. The spindle state is measured at a fixed 
speed and coolant pump frequency. Each measurement is for 2 h. In the experiment, an interval 
of 1 h is assigned for machine cooling. Nine sets of measurement data are collected for each 
rotation speed, and each set of measurement data comprises about 35000 values. The dataset is 
used as an application and manually pre-organized with Excel to facilitate the construction of 
the forecasting model. The following methods and steps are used to process the Excel data:
Step 1: Divide the data for a single speed into groups of 0, 20, 40, 60, and 80 Hz.
Step 2:  Use the data in each frequency group to record the Z-direction deformation, inlet coolant 

temperature, outlet coolant temperature, air temperature, temperature difference 
between the inlet and outlet coolants, and so forth, as reference data for the prediction 
model.

Step 3: Reduce the number of digits of the above data types.
Step 4: In the sorting of the data, use different data as a sorting benchmark.
Step 5:  Since 19 data per second are entered into the recorder, a considerable amount of repeated 

data is generated, which must be reduced to avoid the burden of constructing the 
predictive model.

Step 6: Delete duplicate data.
Step 7: Repeat steps 4 to 6 until all duplicate data are deleted.

Table 1
Types of measurement data.
Measured item Representation Unit
Thermal deformation in Z-direction Zd μm
Inlet coolant temperature Ti ℃
Outlet coolant temperature To ℃
Air temperature Tair ℃
Front bearing temperature Tfb ℃
Back bearing temperature Tbb ℃
Temperature difference between inlet and outlet coolants Td ℃
Coolant pump frequency Freq Hz
Spindle speed Rpm rpm
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 The digits of displacement- and temperature-related data are adjusted to two decimal places. 
After reducing the number of digits of all speed groups, we found that there are tens of thousands 
of repeated data in each group. If the repeated data are included in the model construction, the 
system will crash during the construction period. On this basis, we reviewed the data obtained at 
2000, 8000, 10000, and 12000 rpm and used them at each rotation speed. One FIS is used for 
each rotation speed; thus, four FISs with different spindle rotation speeds are used. In each FIS, 
the Z-direction deformation, inlet coolant temperature, outlet coolant temperature, air 
temperature, and coolant temperature difference are used as the model learning data, which are 
used to distinguish the system from the data.
 From the simplified data of each FIS, 80% of the total data is used to train the model and the 
remaining 20% is used to test the fuzzy inference model. The above-divided dataset cannot be 
repeated to prevent the prediction model in the control system from inaccurate prediction. The 
divided data are used in the prediction modeling, including the thermal deformation in the 
Z-direction, inlet coolant temperature, outlet coolant temperature, air temperature, temperature 
difference between inlet and outlet coolants, and coolant pump frequency. The architecture of 
the FIS is shown in Fig. 3.
 Each rotation speed has its own recorded data used as a predictive model. Considering the 
2000 rpm dataset as an example, 80% of the data is divided into five frequencies used as model 
training data and 20% of the data is divided into five frequencies to verify and inspect the 
model. The above steps can generate a set of FISs. Then, the prediction system with analog 
control generates four groups, once for each rotation speed, namely, 2000, 8000, 10000, and 
12000 rpm FIS, which are input to the corresponding signal after the pre-identification signal of 
the analog control system. The structure of the identified speed signal is shown in Fig. 4.

2.4 Predictive modeling

 In this study, MATLAB R2019b is used as a fuzzy logic toolbox for a model-building tool. 
MATLAB provides three methods to create the initial FIS structure: GP, FCM clustering, and 
subtractive clustering (SC). In this study, the GP and SC methods are used to control the main 
structure of the FIS, then the ANFIS toolbox is used to input the relevant parameters into the 
software so that ANFIS can build a predictive model.
 Figure 5(a) shows the homepage interface of the inference system of the fuzzy logic toolbox 
and the Sugeno-type inference system. The software provides Mamdani-type and Sugeno-type 

Fig. 3. (Color online) Architecture of the FIS.
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inference methods for users. To use ANFIS as an application, the inference system must choose 
the Sugeno type as the architecture of the inference system. The interface can increase or 
decrease the input value and can adjust the name of each input and output, the method of the 
Boolean logic operation, the set relationship, the method of defuzzification, and other functions.
 Figure 5(b) shows the detailed parameter-setting interface of each membership function. On 
this interface, we can adjust the range of each membership function, the name of the membership 
function, the display range, the extreme value of each membership function, and the value of 
each membership function.
 Figure 6(a) shows the main operating interface of ANFIS modeling, in which training, 
testing, and verification data must be placed. The dataset shown in the right half of the image is 
placed in ANFIS for model training, testing, and verification. Regardless of the number of 
inputs, the last column must be the model’s output. The GP and SC methods mentioned above 
can also be revised from this interface. There are two learning algorithms: the hybrid and 
backpropagation (BP) methods. The learning error tolerance can also be adjusted to avoid 
excessive coupling and reduction of the model accuracy. After the above parameter input is 
modified, the number of iterations can be modified for model training, and model accuracy can 
be verified after generation.
 Figure 6(b) shows the fuzzy rules generated by the inference system after data training and 
learning. According to the current project, the user parameters can be further modified after 
modeling.
 When using the GP method as the structure of the FIS, the user can customize the number of 
membership functions of the input value. The system generates rules by enumerating all possible 
combinations of the input membership functions and directly modifying them to meet the 
requirements. Suppose the suitable number of rules is known at the beginning. In that case, we 
can even enter the membership function corresponding to the number of inputs or further 
modify the appropriate membership function graph to increase its accuracy for data analysis and 
implementation of the GP method.
 After repeated corrections and modeling, the relevant scoring index of the prediction model 
can be obtained. For example, the RMSE values   of the three average-testing errors (ATEs) can 

Fig. 4. (Color online) Structure of the identified speed signal.
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be lower than the RMSE of this modeling, which means that the prediction model can make 
accurate predictions. Figure 7(a) presents the five-layer inference structure of the model 
constructed by ANFIS. Figure 7(b) shows a 3D model view with the axial parameter adjusted to 
show the relationship between input and output values. Figure 7(c) shows the FIS model after 
training.
 After constructing the FIS for each rotation speed for ANFIS, i.e., after the predictive model 
of the control system is established, Simulink is used for the control and predictive analysis of 
the simulation system. The architecture of the simulation control and predictive analysis system 
is shown in Fig. 7(d).
 The predictive analysis process of the analog control system is as follows:
1.  Select one of the spindle rotation speeds and randomly select the following five input 

parameters of the speed as the operating state of the MT: thermal deformation in Z-direction, 

(a) (b)

Fig. 6. (Color online) (a) ANFIS modeling interface and (b) fuzzy logic rule database.

Fig. 5. (Color online) (a) Sugeno-type inference system of fuzzy logic toolbox and (b) interface for setting 
membership function.

(a) (b)
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inlet and outlet coolants temperatures, air temperature, and inlet and outlet coolants 
temperature difference.

2.  The analog control and predictive analysis system first determines the spindle rotation speed, 
assigns the signal to the corresponding ANFIS for behavior prediction, and waits for the 
ANFIS of each rotation speed to analyze the coolant pump operating frequency.

3.  After the ANFIS analysis is completed, the output of the coolant pump frequency is referred 
to as the curve-fitted data by decompiling the coolant pump frequency as a value for 
predicting the trend of the temperature and displacement changes in the main spindle. To 
predict the spindle speed and adjust the coolant pump frequency, the relevant data up to this 
frequency can be used to adjust the MT once the user knows the thermal restraint and 
predicts the thermal deformation of the spindle.

 The above method is developed and implemented for the cooling control prediction for this 
study. The detected parameters of the spindle state are the initial input to the prediction system; 
after prediction, they can be used as the basis for the optimal adjustment of parameters after 
decompilation into the relevant parameters of the spindle state.

(a) (b)

(c) (d)

Fig. 7. (Color online) (a) Schematic of model structure, (b) 3D view of the model, (c) fuzzy rule inspection view, 
and (d) architecture of analog control and predictive analysis system.
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 Figure 8 shows the frequency, temperature difference, and deformation relationship of the 
MT spindle. The temperature difference between the inlet and outlet coolants increases with 
increasing coolant pump frequency, and the deformation also increases with the coolant 
temperature difference.
 The prediction system in this study uses MATLAB Simulink to obtain the expected system 
operation from the actual operation of the machine. The real test cannot quickly correct the 
accuracy and parameters of the prediction model in a short time because of the large amount of 
data. The use of software digital simulation to verify the performance of methods can reduce 
costs and generate data in various scenarios for testing. Therefore, Simulink was used in this 
study to operate the simulation control and predictive system to generate the data required for 
predictive analysis.
 Table 2 shows the finally constructed relevant parameters of ANFIS for each rotation speed 
used in the Simulink simulation control and prediction system. Figure 9 shows the flow chart of 
the Simulink simulation control and prediction system. Figure 10 shows the main interface of the 
analog control and prediction system. The upper left corner of Fig. 10 determines the spindle 
speed and the lower-left corner determines the initial parameters of the spindle: thermal 
deformation in Z-direction, inlet coolant temperature, outlet coolant temperature, air 
temperature, and temperature difference between inlet and outlet coolants. The middle part is 
the ANFIS corresponding to the four speeds, and the right half gives the system prediction 
results.

Fig. 8. (Color online) Frequency, temperature difference, and deformation relationship.

Table 2
Final ANFIS model used in prediction system.
ANFIS category FIS generation method Number of rules Learning method RMSE R2

  2000 GP 2 Hybrid 5.365549 0.9044
  8000 GP 2 Hybrid 3.838200 0.7419
10000 GP 2 Hybrid 3.776320 0.6800
12000 GP 2 Hybrid 5.453666 0.8447
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Fig. 9. (Color online) Flow chart of Simulink simulation control and prediction system.

Fig. 10. Main interface of Simulink simulation control and prediction system.

3. Results and Discussion

 In addition to finding that increasing the number of data should reduce the recording 
frequency of repeated data, we found from the data collation before establishing the model that 



2460 Sensors and Materials, Vol. 34, No. 6 (2022)

unsteady data are linearly fitted to identify the reliability of the recorded data. Linear 
polynomials can identify the changing trend of the data; thus, we use the Curve Fitting Toolbox 
in MATLAB to identify the changing trend of the data, and we determine the frequency of each 
spindle speed before fitting. All the steady-state interval data are input into the toolbox, and the 
changing trend of the data is fitted to a curve to generate the reference equation. Fourier 
transform (FT) is used to perform most curve fitting operations.

3.1 Regulation of model construction methods

 By building the predictive model, we found that in ANFIS, for both the GP and SC methods, 
the type and complexity of the training data will directly affect the timing of using these 
methods, especially when the time series is used in the last stage. It is found that even if the same 
inference method is used, the same number of membership function rules of the FIS generated 
by the GP method and the FIS calculated by the SC method are used to generate the model and 
compare the RMSE. The results are nearly the same for the GP and SC methods. The RMSE 
used in the model construction has a significant reference value that can be used as an evaluation 
index. Although the RMSE value is a reference index for one of the mathematical models, it is 
based on the same type of data, and the evaluation index is calculated as a relative value. It is 
difficult to arbitrarily determine the efficiency of the model, and the practicability of the model 
must be determined through the actual implementation into the system and by observing the 
prediction status of the model.

3.2 Predicted results of control system

 The cooling pump frequency deduced by the predictive model in the analog control system is 
converted using the data recorded during the steady-state interval for each spindle rotation speed 
as a reference. In ANFIS, one set corresponds to five frequency classifications. The best 
reference value after frequency conversion is predicted by the system.
 Table 3 shows the frequency reference values predicted at 2000 rpm and the predicted cooling 
pump frequencies deduced by ANFIS in the analog control system for frequencies of 0, 20, 40, 
60, and 80 Hz. Then the frequency reference values use the measurement data recorded in the 
study to take the steady-state interval as the best reference value.
 From Table 3, when the spindle speed is 2000 rpm and the coolant pump operating frequency 
is set to 20 Hz, the input and output coolant temperatures of the spindle are 23.56 and 24.93 ℃, 
respectively. The temperature difference between the inlet and outlet coolants is 1.37 °C, which 

Table 3
Predicted frequency reference values for spindle rotation speed of 2000 rpm.
Frequency (Hz) Z (μm) Ti (℃) To (℃) Tair (℃) Td (℃)
0 4.62 24.36 24.46 26.68 0.10

20 4.29 23.56 24.93 26.92 1.37
40 5.04 23.84 24.19 26.81 0.35
60 5.39 23.84 24.43 26.80 0.59
80 5.77 23.88 24.29 27.10 0.41
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is the greatest temperature difference between the inlet and outlet coolants at this speed. Thus, 
the user can adjust the operating frequency of the coolant pump to 20 Hz when the spindle is 
rotating at 2000 rpm. With the operating frequency of 20 Hz at 2000 rpm, the thermal 
suppression effect is greatest, and 92.4% of the total heat is eliminated from the spindle.
 From Fig. 11(a), it can be seen that the greatest temperature difference is at the coolant pump 
frequency of 20 Hz. Thus, adjusting the coolant pump operating frequency to 20 Hz at 2000 rpm 
has the greatest thermal suppression effect.
 From Table 4, when the spindle speed is 8000 rpm and the coolant pump operating frequency 
is set to 40 Hz, the input and output coolant temperatures of the spindle are 27.95 and 30.44 ℃, 
respectively. The temperature difference between the inlet and outlet coolants is 2.49 °C, which 
is the greatest temperature difference between the inlet and outlet coolants at this speed. Thus, 
the user can adjust the operating frequency of the coolant pump to 40 Hz when the spindle is 
rotating at 8000 rpm. At 40 Hz, its thermal suppression effect is the greatest, eliminating 99.9% 
of the total heat of the spindle. It is also observed that if the coolant pump frequency is adjusted 
to 80 Hz, the inlet coolant temperature is higher than the outlet coolant temperature. It is inferred 
that, for an operating frequency of 80 Hz, heat dissipation from the coolant to the ambient 
appears and the cooling effect for the spindle is rather weak.
 From Fig. 11(b), it can be seen that the greatest temperature difference is at a coolant pump 
frequency of 40 Hz. Thus, adjusting the coolant pump operating frequency to 40 Hz at 8000 rpm 
has the greatest thermal suppression effect.

Fig. 11. (Color online) Predicted frequency reference values at a speed: (a) 2000 and (b) 8000 rpm.

Table 4
Predicted frequency reference values for spindle rotation speed of 8000 rpm.
Frequency (Hz) Z (μm) Ti (℃) To (℃) Tair (℃) Td (℃)
0 8.99 29.80 30.37 26.78 0.56

20 8.60 26.78 28.83 27.13 2.05
40 8.23 27.95 30.44 26.11 2.49
60 9.41 28.35 28.36 26.19 0.01
80 9.85 29.32 28.64 25.8 −0.67

(a) (b)
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Fig. 12. (Color online) Predicted frequency reference values at a speed: (a) 10000 and (b) 12000 rpm.

Table 5
Predicted frequency reference values for spindle rotation speed of 10000 rpm.
Frequency (Hz) Z (μm) Ti (℃) To (℃) Tair (℃) Td (℃)

0 17.47 19.27 22.59 24.43 3.32
20 16.44 21.02 24.54 23.8 3.52
40 15.25 24.09 28.23 28.20 4.14
60 18.38 18.41 22.48 24.55 4.06
80 19.31 19.08 22.46 24.49 3.38

 From Table 5, when the spindle speed is 10000 rpm and the coolant pump operating 
frequency is set to 40 Hz, the input and output coolant temperatures of the spindle are 24.09 and 
28.23 ℃, respectively. The temperature difference is 4.14 °C, which is the greatest temperature 
difference between the inlet and outlet coolants at this speed. Thus, the user can adjust the 
operating frequency of the coolant pump to 40 Hz when the spindle is rotating at 10000 rpm. 
With the operating frequency of 40 Hz at 10000 rpm, the thermal suppression effect is greatest, 
and 80.1% of the total heat of the spindle is eliminated.
 From Fig. 12(a), it can be seen that the greatest temperature difference is at the coolant pump 
frequency of 40 Hz. Thus, adjusting the operating frequency of the coolant pump to 40 Hz at 
10000 rpm has the greatest thermal suppression effect.
 From Table 6, when the spindle speed is 12000 rpm and the coolant pump operating 
frequency is set to 60 Hz, the input and output coolant temperatures of the spindle are 24.22 and 
28.38 ℃, respectively. The temperature difference between the inlet and outlet coolants is 
4.16 °C, which is the greatest temperature difference between the inlet and outlet coolants at this 
speed. Thus, the user can adjust the operating frequency of the coolant pump to 60 Hz when the 
spindle is rotating at 12000 rpm. With the operating frequency of 60 Hz at 12000 rpm, its 
thermal suppression effect is the greatest, and 60.2% of the total heat of the spindle is eliminated.

(a) (b)
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Table 6
Predicted frequency reference values for spindle rotation speed of 12000 rpm.
Frequency (Hz) Z (μm) Ti (℃) To (℃) Tair (℃) Td (℃)

0 33.31 25.58 26.92 25.42 1.64
20 32.69 24.06 26.47 25.35 2.40
40 31.63 24.44 27.08 25.44 2.64
60 30.56 24.22 28.38 25.42 4.16
80 34.30 24.33 26.67 25.36 2.34

 From Fig. 12(b), it can be seen that the greatest temperature difference is at the coolant pump 
frequency of 60 Hz. Thus, adjusting the operating frequency of the coolant pump to 60 Hz at 
12000 rpm has the greatest thermal suppression effect.
 Figure 13 illustrates the deviation between the experimental and predicted thermal 
deformations in the Z-direction. The thermal deformation predicted by this model is highly 

(d)(c)

(a) (b)

Fig. 13. (Color online) Deviation between experimental and predicted deformations in Z-direction: (a) 2000; (b) 
8000; (c) 10000, and (d) 12000 rpm.
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accurate at different spindle speeds, and the deviation is within the ranges of −0.099 to 0.679 μm 
at 2000 rpm, 1.069 to 4.745 μm at 8000 rpm, −0.35 to 1.79 μm at 10000 rpm, and −2.56 to −0.60 
μm at 12000 rpm.

4. Conclusions

 In this study, the thermal suppression method is used to reduce the influence of the thermal 
deformation effect, and ANFIS is used as a cooling control method to predict the change in the 
thermal state of the spindle at a given rotation speed. The GP and SC methods are used for 
inference in ANFIS. The hybrid and BP learning methods are used to carry out the network 
calculation of ANFIS. The above methods are combined for predictive modeling, and RMSE is 
used to evaluate the performance of the model to determine the learning conditions of the model 
giving the best prediction. Finally, the model in Simulink is used to simulate the control and 
prediction system to determine the optimal coolant pump operating frequency at the specified 
spindle speed and thermal state to achieve the greatest thermal suppression effect.
 The experimental results establish that the predictive model developed by the ANFIS control 
method is very efficient with prediction accuracy within 4.745 μm, and the simulation test also 
shows the feasibility of this method. The expected cost reduction and the accurate prediction of 
changes in the thermal state of the MT spindle indicate that this control method is feasible for the 
prediction and thermal suppression of MT spindles. The most suitable coolant pump frequencies 
at spindle speeds of 2000, 8000, 10000, and 12000 rpm to achieve the greatest spindle thermal 
suppression of the spindle are summarized below:
1. At a spindle speed of 2000 rpm, the coolant pump frequency should be adjusted to 20 Hz, 

which can reduce the total heat of the spindle by 92.4%.
2. At a spindle speed of 8000 rpm, the coolant pump frequency should be adjusted to 40 Hz, 

which can reduce the total heat of the spindle by 99.9%.
3. At a spindle speed of 10000 rpm, the coolant pump frequency should be adjusted to 40 Hz, 

which can reduce the total heat of the spindle by 80.1%.
4. At a spindle speed of 12000 rpm, the coolant pump frequency should be adjusted to 60 Hz, 

which can reduce the total heat of the spindle by 60.2%.
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