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	 Reducing greenhouse gas emissions is an imperative of climate policy worldwide. The 
transport sector accounts for a large proportion of CO2 emissions; therefore, the development of 
eco-driving has become a critical topic in the study of fuel efficiency and environmental 
protection. Although considerable research has been carried out on cars, there has been little 
research involving large vehicles. In this study, second-generation on-board diagnostics (OBD-
II) was used to sense and collect the driving data of cars and light-duty buses. These data were 
then used for predicting real-time fuel consumption by using deep learning methods and a fuel 
efficiency driving analysis system for both large and small cars. The prediction results 
demonstrated a correlation coefficient of approximately 90% with actual data and confirmed the 
applicability of the system to different vehicle types. This system can be integrated with 
professional driver training centers to improve training quality and promote the development of 
eco-driving.

1.	 Introduction

	 The reduction of atmospheric greenhouse gases is a major goal of international climate 
policies. The 2015 United Nations Framework Convention on Climate Change achieved a 
milestone with the Paris Agreement, a framework for lowering Europe’s greenhouse gas 
emissions by 32% by 2030.(1) The transport sector accounts for nearly a quarter of global CO2 
emissions (21–25%).(2) Statistics by Taiwan’s transportation department in 2019 indicated that a 
single large vehicle emitted, on average, approximately 43.4 metric tons of CO2 in that year, 
considerably higher than the 2.5 metric tons emitted by single small cars, and that the total 
emissions of large vehicles comprised approximately 25% of total CO2 emissions in the transport 
sector.(3) These numbers demonstrate that commercial large vehicles still account for a 
considerable proportion of emissions in the transport sector. A recent trend is eco-driving,(4) a 
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method of driving that minimizes environmental impact. Eco-driving can effectively reduce 
greenhouse gas emissions by approximately 30%(5) and fuel consumption by 10–15%.(6–11)

	 Sanguinetti et al. proposed six aspects of eco-driving: driving, cabin comfort, trip planning, 
load management, fueling, and maintenance.(12) They pointed out that gentle driving, speed 
control, the use of heat dissipation and air conditioning, and the choice of route affect fuel 
consumption. Accordingly, to achieve eco-driving, the factors that affect fuel consumption must 
first be determined. To decrease fuel consumption, drivers should avoid excessive changes in 
acceleration and deceleration and minimize their frequency of gear changes.(11,13–16) On the basis 
of driving parameters such as car speed and engine rotational speed, Jachimczyk et al. 
categorized different driving styles as ordinary, calm, aggressive, and unnatural. They 
determined that aggressive and unnatural driving greatly increase both fuel consumption and 
accident rates.(17)

	 Current research on eco-driving, in addition to raising awareness of fuel-efficient driving,(18) 
has mostly involved the development of software and hardware devices to assist driving. These 
typically involve the use of on-board diagnostics (OBD) to sense and export data from the 
electronic control unit (ECU) to a backend database for analysis. For instance, Yao et al. 
analyzed the external factors affecting fuel consumption and safety by using driving data 
collected from taxi drivers and calculated a safety index that considered speed and longitudinal 
and lateral acceleration. They improved the evaluation algorithm by adding a vehicle lateral 
control index.(19) Magana and Munoz-Organero proposed the use of genetic algorithms, fuzzy 
logic, and clustering algorithms to analyze fuel consumption among small cars and used 
gamification to encourage eco-driving by drivers; their results demonstrated an average 11% 
decrease in fuel consumption.(6) Meseguer et al. used second-generation OBD (OBD-II) to 
collect speed, acceleration rate, engine rotational speed, mass flow, manifold absolute pressure, 
and intake air temperature to determine driving styles and route types and demonstrate the 
relationship between behavior and fuel consumption, which can be used to decrease fuel 
consumption and greenhouse gas emissions.(5) Jiménez-Palacios proposed the concept of 
vehicle-specific power to calculate the fuel consumption and greenhouse gas emissions of 
vehicles. Their model considers air resistance, acceleration rate, rolling resistance, slope, and 
vehicle load on the basis of kinetic and potential energy.(20) As can be seen from these studies, 
using vehicle data to promote eco-driving is the current mainstream in research.
	 Research on the use of artificial neural networks (ANNs) in cars to assist eco-driving has 
also become popular. However, research on ANNs and eco-driving in large vehicles is less 
common. Furthermore, there has been no research involving models that predict the fuel 
consumption of both large and small cars. In this study, we developed an ANN model based on 
the OBD-II system that can predict the fuel consumption of both large and small cars.
	
2.	 Materials and Methods

2.1	 System and hardware devices

	 Figure 1 shows a schematic of the system developed in this study. An integrated OBD-II 
module receives the driving data of large and small cars during the driving process, then 
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transmits the data via Bluetooth to a smartphone. The data are then relayed to the backend 
database, which stores the driving data. The data are subsequently used in deep learning to 
analyze and predict fuel consumption.
	 Figure 2 depicts the OBD-II module, which was built using a PIC18F46K80 microprocessor. 
To ensure that the system can be adapted to multiple car models and communicate with large and 
small cars, the OBD-II module was integrated with the CAN BUS protocol. The vehicle’s 
driving data are transmitted via Bluetooth to a phone and computer terminal.

2.2	 User interface

	 Our newly designed graphical user interface (GUI) is presented in Fig. 3. The upper half is 
the settings zone, and the lower half is the display zone. Block 1 allows the selection of the driver 
and vehicle. Block 2 allows the selection of the COM port connection; if the connection is 
normal, the icon will change from blue to green. Block 3 displays six types of inefficient 
behaviors: excessive vehicle speed, excessive rotational speed, excessive idling, too low gear, 
rapid acceleration or deceleration, and use of air brakes. If an inefficient behavior is detected, the 
signal turns red. We also integrated multiple vehicle parameters with deep learning to determine 
real-time fuel consumption during driving, which is displayed as a bar gauge to alert the driver 
of excessive fuel consumption. 

2.3	 Experimental routes

	 The purpose of the study was to verify the accuracy of the system’s fuel consumption 
predictions for different vehicle models and routes. The test cars were cars and a light-duty bus. 
The two test routes both included flat roads and mountain roads (Fig. 4). The car route was used 
when testing the system during its initial development and was 12.3 km in length, consisting of 
3.9 km of flat roads and 8.4 km of inclined mountain roads. The bus route was the test route used 
by the Central Region Training Center of the Directorate General of Highways, R.O.C., to train 
professional drivers applying for class II large passenger vehicle licenses; the route was 11.8 km 
long and comprised 2 km of flat roads and 9.8 km of gentle mountain roads.

Fig. 1.	 (Color online) System schematic.
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Fig. 2.	 (Color online) OBD-II module.

Fig. 3.	 (Color online) GUI.

Fig. 4.	 (Color online) Driving routes.
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2.4	 Data collection and preprocessing

	 Table 1 presents the data collected in this study, which included data from three cars and one 
bus. The data from these four vehicles were used as the training data for the ANN; subsequently, 
one car and the bus were selected to produce the testing data. The driving parameters were 
variables that influenced fuel consumption or reflected driving conditions (Table 2). The seven 
identified variables were engine displacement, engine coolant temperature, engine load, engine 
rotational speed, weight of rotation, vehicle speed, and throttle position.

	 In this study, fuel consumption was calculated as
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where RPMWeightavg and FuelFactor were defined numerically in our previous work.(21) ELavg 
is the OBD output of the engine load, ED is the vehicle’s rated engine displacement in cubic 
centimeters, and t is the duration of fuel consumption calculated in seconds.
	 The data must undergo preprocessing, which involves normalization to standardize the scales 
of different input parameters, before it is input into the ANN model for training. The formula 
used for normalization was 
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where N is the normalized value, n is the prenormalized value, and Imin and Imax are the minimum 
and maximum values of the parameter, respectively.

Table 1
Vehicle models used in experiment.
Brand Module Base curb weight (kg) Engine torque Engine displacement (c.c.) Fuel factor
Toyota COASTER 5400 40.5 kg·m/1800 rpm 4009 1
Mazda Mazda 3 1370 21.7 kg·m/4000 rpm 1999 0.87
Mitsubishi Lancer 1.8 1400 17.9 kg·m/4200 rpm 1798 1.17
Toyota Vios 1080 14.3 kg·m/4200 rpm 1496 1.48

Table 2
ANN input parameters.
Parameter Unit Range of parameter
Engine displacement c. c. 0–16384
Engine coolant temperature ℃ −40–215
Engine load % 0–100
Engine rotational speed RPM 0–16384
Weight of rotation 2–100
Vehicle speed km/h 0–255
Throttle position % 0–100
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2.5	 ANN models and processing procedures

	 An ANN-based vehicle data model was proposed in this study. Neural networks (NNs) have 
already been widely used to establish complex relationships between inputs and outputs. The 
three models used in this study were the feed-forward backprop (FFB), Elman backprop, and 
layer recurrent (LR) models. Elman NNs(21) and LRNNs(22) are  recurrent NN (RNN) structures. 
RNNs have a context layer that can treat the current status as the input of the next unit time; 
consequently, continuous information changes are recorded in the network, improving prediction 
accuracy. The model framework is depicted in Fig. 5. The main RNN equation is expressed as
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where sm (t − 1) is the status output of the previous unit time, Ii (t) is the input, vim and win are 
their respective weights, and g is the sigmoid function.
	 The activation function is a nonlinear function, which is defined by specifying its range 
according to the NN weighted value, then repeatedly superimposing the range until the NN can 
obtain the data characteristics. In this study, the following logistic sigmoid function was used: 
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	 The model was trained using a PC equipped with an Intel Xeon Gold 5220R (2.20 GHz) CPU, 
a Microsoft Windows 10 for Business operating system, 16 GB RAM, and a graphics card with a 
normal module (NVIDIA, RTX-2080Ti 8 GB). The analysis software used was MATLAB 
(MathWorks, Inc., Natick, MA, USA). To ensure that the models could be compared, the models 
were configured using the same numbers of layers and neurons. The training function was 
TRAINLM, and the activation function was TANSIG, which is the aforementioned sigmoid 
function. The final step was to validate the prediction results by using three indicators commonly 

Fig. 5.	 (Color online) Recurrent NN.



Sensors and Materials, Vol. 34, No. 6 (2022)	 2473

used to evaluate model effectiveness: root mean squared error (RMSE), normalized root mean 
square error (NRMSE), and the correlation coefficient (γ):
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	 Here, n is the data length, yi is the raw data, and ŷi is the outcome of the NN prediction.

3.	 Results

	 Figure 6 depicts line graphs of predicted instantaneous fuel consumption versus driving time. 
As shown in Fig. 6(a), as the car drove along flat roads (approximately 0 to 950 s), the FFB line 
(orange) exhibited the greatest error and the LR line exhibited the second greatest error. As the 
car traveled along the mountain roads (950 to 1600 s), the FFB had a lower prediction accuracy 
than the other two models; during the frequent accelerations and decelerations on mountain 
roads, FFB was prone to overestimation in its predictions. The discrepancies between the two 
RNNs were small. These traits are reflected in Table 3.

Fig. 6.	 (Color online) Calculated instantaneous fuel consumption (blue) versus FFB model (orange), Elman NN 
(yellow), and layer NN model (grey) predictions: (a) Mitsubishi car and (b) Toyota light-duty bus.

(a)
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	 As shown in Fig. 6(b), as the bus traveled along flat roads (approximately 0 to 300 s), the 
three models exhibited greater errors than those for the car but maintained a certain level of 
correlation. Among the three models, the Elman model showed the best performance. The fuel 
consumption was greater while traveling along the mountain roads (approximately 350 to 1050 s 
and after 1450 s), and the two RNN models were clearly more capable than FFB in keeping up 
with the changes in fuel consumption. Fuel consumption was lower during and after the 
downhill portion of the mountain roads (approximately 1050 to 1450 s) due to frequent braking, 
and the two RNN models also demonstrated more accurate correlations than FFB in this period. 
FFB also showed greater errors in fuel consumption prediction than the other models during 
uphill driving.
	 In this study, the prediction error for cars was greater than that in prior research,(21) mainly 
because the bus we used did not contain ECUs such as for the battery voltage or ignition timing. 
The different training datasets may have also reduced the fuel consumption predictions for small 
cars. Furthermore, to facilitate comparisons between large and small cars, the number of input 
parameters was reduced (Table 2). According to our result, the Mitsubishi Lancer had relatively 
high correlations (data not shown); therefore, it was used as the small car for comparison with 
the bus. 

Table 3
Comparison of predictions of vehicle fuel consumption for previous system(21) and two RNN models.
Vehicle type Lancer(21) Lancer COASTER
NN model FFB LR Elman FFB LR Elman FFB LR Elman
RMSE 9.742 6.637 4.077 22.182 12.401 10.754 85.427 42.767 44.449
NRMSE N/A 0.167 0.092 0.08 0.619 0.31 0.324
γ 0.793 0.977 0.97 0.753 0.897 0.91 0.427 0.931 0.911

(b)

Fig. 6.	 (Continued) (Color online) Calculated instantaneous fuel consumption (blue) versus FFB model (orange), 
Elman NN (yellow), and layer NN model (grey) predictions: (a) Mitsubishi car and (b) Toyota light-duty bus.
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	 According to Table 3, among the three models, the Elman model displayed the smallest errors 
in its predictions for cars; its RMSE was 10.7542, its NRMSE was 0.0804, and its γ was 91.01%. 
The LR model had the second-best performance, with an RMSE of 12.4008, an NRMSE of 
0.0917, and γ of 89.71%. The worst-performing model was FFB, with an RMSE of 22.1815, an 
NRMSE of 0.1669, and γ of 75.33%. Although the car parameters were less favorable than those 
in other studies, the results displayed similar trends to those in other studies, and the two RNN 
models exhibited robust prediction performance, with the best performance from the Elman 
model. Among the bus results, the FFB model had the worst performance of the three models, 
with an RMSE of 85.4273, an NRMSE of 0.619, and γ of 42.73%. The other two RNN models 
had similar RMSE values (Elman = 44.4489; LR = 42.7666) and correlations (Elman: γ = 91.1%; 
LR: γ = 93.1%). Consequently, applying the two RNN models improved the performance of the 
fuel consumption predictions.
	 Figure 7 shows an image of the bus on the road. If the driver neglects to change gears, 
resulting in an overly high rotational speed and overly low power output, the GUI signals turn 
from blue to red. This immediately alerts the driver that their driving style is inefficient. 
Simultaneous deep learning calculations convert the instantaneous fuel consumption to a bar 
gauge that enables the driver to improve their driving behaviors.

4.	 Discussion

	 The goal of this study was to promote the application of eco-driving assistance systems to 
more vehicle types on the basis of previously developed general-purpose OBD-II systems. 
Driving data from cars and a bus on two different routes were used as ANN training datasets for 
predicting and analyzing fuel consumption for different car and route types. Fuel consumption 
predictions involving different vehicle models and routes demonstrated strong correlations with 
actual fuel consumption, with a correlation coefficient as high as 90%. The results indicate that 
the system proposed in this study is applicable to both large and small cars and can obtain robust 
fuel consumption predictions for both vehicle types. In the future, this system can be applied to 
larger vehicles.

Fig. 7.	 (Color online) Actual driving image and GUI.
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	 As depicted in Fig. 6, for both vehicle types, better results were obtained with the RNN 
models (i.e., the Elman model and LR model) than with the FFB model. These results are similar 
to the car fuel consumption predictions in a previous study,(12) indicating that RNN models are 
more suitable for the prediction and analysis of fuel consumption. The bus fuel consumption 
predictions in this study were similar to those of Xu et al.,(23) who found that frequent 
acceleration and deceleration was the main cause of increased fuel consumption and also 
reduced the performance of fuel consumption prediction. Conversely, in this study, driving at 
lower and more stable engine speeds led to lower error values in fuel consumption predictions, 
as can be seen in Fig. 6. Although the FFB predictions for buses were considerably inferior to 
those for cars, the FFB is a critical basic NN model and therefore a major reference model for 
comparison. We plan to test and validate our proposed system by using more vehicle types (such 
as large passenger cars and trailers) to improve the performance of fuel consumption prediction 
and to analyze and broaden the application scope of the system.
	 According to the outcomes illustrated in Fig. 6, while driving on mountain roads, the car and 
bus demonstrated visible discrepancies in their fuel consumption changes [950–1600 s in 
Fig. 6(a) and from 350 s in Fig. 6(b)]. A possible reason may be differences in the slope between 
the two routes along the mountain roads. The car gained 37 m altitude per kilometer along the 
mountain roads, whereas the bus gained 19.3 m altitude per kilometer (Fig. 4). Furthermore, the 
bus has a greater load-bearing capacity and can be expected to demonstrate smaller changes in 
engine load than a car, even on mountain roads with similar slopes. Therefore, different cars will 
exhibit different changes in fuel consumption under the effects of different slopes. In the future, 
a gyroscope sensor can be added to detect the slope and achieve more accurate fuel consumption 
prediction.
	 The bus route used in this study was the training route used to train professional drivers by 
the Central Region Training Center of the Directorate General of Highways, R.O.C. The 
proposed system can be used at the training center to facilitate the acquisition of eco-driving 
behaviors in professional drivers. It can also produce reports for students and coaches to assess 
learning progress.

5.	 Conclusions

	 The collection of driving data is essential to the development of eco-driving and vehicle 
safety. In this study, OBD-II was used to sense and collect real-time driving data from cars and a 
light-duty bus. The data were then used in deep learning systems for predicting real-time fuel 
consumption and in an energy-saving driving analysis system for both large and small cars. 
Among the three ANN models used in this study, the RNN (i.e., Elman and LR) predictions 
demonstrated correlation coefficients of approximately 90% with the actual data. The results 
verified the applicability and feasibility of the system to different vehicle types. The system can 
be used to assist professional driver training in the future and advance the development of eco-
driving.
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