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 The warpage of ICs in IC packaging manufacturing causes the production of defective ICs 
that can short-circuit or malfunction, including those in sensor devices. Applicable research 
results that predict IC warpage using a neural network have not been many, although many 
technologies have been proposed to prevent the warpage. It is necessary to understand the 
properties of IC materials as each material has a different coefficient of thermal expansion 
(CTE) for predicting the occurrence of the warpage. To provide a means to predict the warpage, 
a neural network with fuzzy adaptive particle swarm optimization (FAPSO) is proposed in this 
study based on the proposed architecture of the neural network and the defined weights of each 
layer in the IC. As the three layers of epoxy molding compound (EMC), die, and substrate (SBT) 
in IC packaging have different CTEs, nine conditional variables, namely, die thickness, glass 
transition temperature (Tg), CTEs (α1, α2), filler size, filler content, total height, post mold cure 
(PMC) temperature, and PMC time, are defined for predicting the warpage, and their parameters 
are found for training the neural network. In the comparison of the actual and predicted data of 
the neural network with FAPSO, the correlation coefficient is 0.9878, and the similarity between 
the two data sets is 99.7% in training. After the training, the validation is carried out for six data 
sets, the result of which shows that the correlation coefficient (R2) is 0.8658 and the mean 
absolute percentage error (MAPE) is 29.74%, which is acceptable for applying the proposed 
neural network. The result of this study helps to improve the IC packaging process by preventing 
the warpage.

1. Introduction

 3C products (computer, communication, and consumer electronics) are found everywhere in 
our daily life, offering many conveniences. The increased use of mobile devices demands a rapid 
electronic product manufacturing process. Important components of electronic products are the 
CPU, memory, power management device, sensor device, communication module, IC, and so on. 
Among them, the IC is critical as it amplifies signals from the components and plays an 
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important role as switches to control their functions. It also affects the overall reliability of the 
components’ operation. 
 In manufacturing, the IC is soldered to the circuit board of the product, which is part of the 
surface mount technology (SMT). SMT refers to a technique by which electronic and electrical 
components are mounted on the surface of a printed circuit board (PCB). In SMT, high-
temperature treatment is required to solidify the solder paste, that is, reflow soldering. The 
operating temperature reaches 260 °C, which causes the ICs to warp owing to incomplete 
soldering. It is important to keep an appropriate distance between solder balls and the PCB as 
the distance affects the quality of soldering and the degree of warpage. Thus, how to prevent the 
warpage in the packaging process is important, as the warpage causes wastage of time, 
manpower, and money in SMT. Recently, many researchers have conducted studies on the 
simulation and improvement of IC warpage. Loh et al. defined failures for the IC warpage on the 
PCB as an open circuit and solder ridging.(1) Shen et al. indicated that the difference in the 
coefficient of thermal expansion (CTE) between the die and the PCB is the main cause of the 
reliability problem in the flip-chip.(2) Tang et al. proposed that package warpage largely depends 
on the CTE of the materials, cure shrinkage, and glass transition temperature (Tg), and suggested 
changing materials such as a flexible hardener to optimize the CTE to prevent the IC warpage.(3) 
Sun et al. stated that the degree of warpage can be calculated according to the Timoshenko–
Ehrenfest beam theory. However, they indicated that the actual occurrence is much more 
complicated than with the theory, so it is difficult to quantify the effects of design and materials 
on warpage.(4) Tzeng et al. proposed a smaller IC package size, a smaller solder ball, a thicker 
die, a thicker basic substrate, and a lower CTE in manufacturing plastic ball grid arrays (PBGAs) 
than in the conventional production design.(5) Tan et al. proposed that the filler of the sealant 
resin has a significant effect on warpage.(6) They claimed that plastic molds with a thicker thin 
fine-pitch ball grid array (TFBGA) improve warpage and solder ball stress. Thus, the higher the 
filler content, the more the warpages occur, whereas the warpages at different temperatures are 
not much different. Lin et al. considered that the effects of special additives on warpage are 
different and found that PCB design improves the degree of IC warpage by adjusting the 
thickness of the copper layer for example.(7) Wang et al. proposed that the die size is the main 
key factor, and a larger die size causes a greater warpage during thermal cycling in the eight-die 
package.(8) Thus, they suggested the asymmetrical material design of the lower layer on the 
PCB. Liu et al. studied the relationship between the different CTEs and mold thicknesses to 
simulate different warpages.(9) Ramirez et al. used different thicknesses and amounts of silicon 
dies to observe the behavior of the curvature for different packaging design parameters.(10) Kim 
et al. found that the built-in stress of copper, fiber-reinforced polymer (FRP), and solder resist 
(SR) affects the warpage of the IC package substrate at room temperature.(11) Wei et al. proposed 
reducing the CTE of the epoxy molding compound (EMC) and increasing the CTE of the core to 
effectively reduce product warpage.(12) Moran et al. used finite element analysis (FEM) coupled 
with direct optimization to reduce warpage in an AMB IC package.(13) Tan et al. proposed that 
during molding and post mold cure (PMC) processes, EMC will undergo polymerization 
conversion and chemical aging that will change its constitutive behavior and thus affect package 
warpage.(14)
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 On the basis of the previous research results, the IC warpage is considered to be caused by the 
different properties of materials such as glass transition temperature and CTE in IC packaging. 
Therefore, to prevent the IC warpage, it is necessary to have an accurate prediction model by 
considering the different properties of materials. The current method of analyzing and simulating 
the IC warpage is mainly to use FEM to simulate warpage, as the structure of an IC is complex 
and the influence factor has a nonlinear relationship with warpage, which is not a simple 
mathematical operation. Thus, we tried to use a neural network and a fuzzy particle swarm 
optimization algorithm to predict the degree of IC warpage after training the neural network 
with experimental data.
 Nowadays, as the product development cycle becomes rapidly shortened, the warpage needs 
to be prevented to keep up with the speed of the product development. Therefore, the proposed 
algorithm contributes to the improvement of the product development of mobile devices. The 
algorithm is also expected to be applied to other manufacturing processes.

2. Methods

2.1 Neural network

 A neural network is an artificial intelligence (AI) algorithm and helps to solve complex and 
nonlinear mathematical problems through training based on the neural network architecture. 
Figure 1 shows the architecture of a neural network with three layers, namely, an input layer, a 
hidden layer, and an output layer. The layers are connected by weights that are adjusted in the 
training of a neural network through the error back-propagation method. This method effectively 
defines the accurate weights, although it has a disadvantage of the local optimal solution.(15) In 
this study, the fuzzy particle swarm optimization algorithm is used to train the neural network 
for the optimal weights.

Fig. 1. Neural network architecture.
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2.2 Fuzzy adaptive particle swarm optimization (FAPSO)

 Optimization refers to finding the best solution to solve a complex problem. There are 
algorithms based on mimicking the biological behaviors of animals, such as the genetic 
algorithm,(16) immune algorithm,(17) ant colony optimization algorithm,(18) and particle swarm 
optimization (PSO) developed by Kennedy and Eberhart.(19) PSO is the most widely used among 
them, as the overall architecture is for simulating the collective foraging of birds or fish. It 
considers that the best solution is to find the exact location of food by a flock of birds or a school 
of fish in a certain space. All birds and fish do not know where the food is but in which area they 
currently are. The best strategy is to optimize the simplest and most effective way to reach food, 
as the whereabouts of food are searched and shared by birds closer to the food. Then, birds or 
fish move in the given direction to the food. While searching, an individual bird or fish adjusts 
its path according to the past and group experience, which is continuously updated until the best 
path is found. The mathematical expression of PSO is as follows. 

 ( ) ( ) ( )( ) ( ) ( )( )1 1 2 21i i ibest i ibest iv t wv c r P t x t c r G t x t+ = + − + −  (1)

 ( ) ( ) ( )1 1i i ix t x t v t+ = + +  (2)

Here, v is the velocity of a single particle (bird or fish), x is the position of a single particle, 
i = 1, 2, …, n, n is the total number of particles, t is the number of iterations, c1 and c2 are the 
acceleration constants, usually between 0 and 4, r1 and r2 are independent random numbers 
between 0 and 1, Pibest is the best position of a single particle, and Gibest is the current best 
position of all particles.
 Equation (1) reveals that the inertia weight w is a fixed value, and each weight of iteration is 
fixed during the iteration of calculation, which affects the speed of convergence. It is possible to 
search the food and expand the search area with a better solution, which is not affected by the 
experience of an individual particle (Pibest) and other particles (Gibest). However, if the weight is 
too large for the iteration to end, the particles do not converge. Therefore, many researchers 
propose different methods to adjust the weights to solve this problem.
 Shi and Eberhart proposed a fuzzy system to dynamically adapt to the weight of a PSO 
algorithm and to adjust the weight in a nonlinear manner.(20) The fuzzy system has two input 
variables, namely, the current best performance evaluation (CBPE) and the current weight w. 
Then, the output variable is the adjustment weight w′. To use CBPE as an input for a fuzzy 
system for various optimization problems, CBPE is converted into a standardized format. Then, 
the FAPSO algorithm becomes effective and the best for dynamic environments. The best result 
is obtained by FAPSO than by a linear decreasing method. Equation (3) describes how to obtain 
CBPE.

 min

max min

CBPE CBPENCBPE
CBPE CBPE

−
=

−
 (3)
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Here, NCBPE is standardized CBPE, CBPEmin is the current minimum CBPE, and CBPEmax is 
the current maximum CBPE. The integration of NCBPE, CBPEmin, and CBPEmax establishes 
fuzzy membership function variables as listed in Table 1. 
 On the basis of variables, a fuzzy rule is deduced as shown in Table 2. When NCBPE is low, 
w becomes low, and w′ becomes medium.

2.3 Neural network with FAPSO

 A neural network (Fig. 2) with the FAPSO algorithm has the structure shown in Fig. 3. The 
main structure is a neural network, and the PSO algorithm is used to adjust and optimize the 
weights of the neural network. The fuzzy theory is used to adjust the weights of the particles in 
the PSO algorithm in the connection layer.

Table 1
Weight-adjusted fuzzy membership function variables.

Input

NCBPE
Left triangle 0 0.06

Triangle 0.05 0.4
Right triangle 0.3 1

w
Left triangle 0.2 0.6

Triangle 0.4 0.9
Right triangle 0.6 1.1

Output w′
Left triangle −0.12 −0.02

Triangle −0.04 0.04
Right triangle 0 0.05

Table 2
Fuzzy rule of FAPSO in this study.

NCBPE Low Medium High
Low Medium Low Low

Medium High Medium Low
High High Medium Low

Fig. 2. (Color online) Neural network architecture design of this study.
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2.4 Neural network training 

 IC packaging is completed by bonding die and wires and sealing the layer of epoxy and the 
gold wire element (Fig. 4). The glue is a thermoset material that needs to be heated. Heating 
causes the warpage and shrinkage of the EMC and substrate (SBT) as shown in Fig. 5. Figure 6 
shows the different shrinkage rates of each layer of the IC according to the different CTEs (α1 
and α2) of the materials in the layers.
 To find the appropriate amount of sealer (molding compound), the control IC warpage is 
necessary to test for various sealer volumes, the thickness of the sealant, and the grain size of the 
filler. The appropriate baking time and temperature also need to be found. Under the same 
sealant thickness and substrate material, a thicker die layer and a larger sealant volume cause a 
higher shrinkage rate after sealing in the PMC process, which causes warpage (Fig. 7).
 Considering the factors that affect the occurance of warpage, the input data of the neural 
network, namely, CTE (α1), CTE (α2), filler content, and filler size (Figs. 8 and 9), are mainly for 
materials such as the sealant (Tg). Figure 10 shows the flow chart of how to train the neural 
network with FAPSO in this study. Sealing the IC package protects the die, gold wires, and other 
components after completing the die and wire bonding processes. As the sealant is a thermoset 
material, it needs to be heated.
 Through the experiment, the conditional variables in Table 3 are defined for training the 
neural network. In training data processing, the above input data are converted so that the values 
are in the range from −1 to 1.

 ( ) ( )max min min
min

max min

Y Y X X
Y Y

X X
− × −

= +
−

 (4)

Fig. 3. (Color online) Architecture of neural network combined with fuzzy particle swarm optimization.
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Fig. 5. (Color online) (a) IC warpage and shrinkage of layers with different materials. (b) 3D image of IC warpage.

(a) (b)

Fig. 6. (Color online) Shrinkage rates of materials 
with different CTEs at various temperatures.

Fig. 4. (Color online) Layers of different materials in IC package. 

Here, Ymax is the maximum value of the target value, Ymin is the minimum value of the target 
value, Xmax is the maximum value of the original value, Xmin is the minimum value of the 
original value, X is the original value, and Y is the converted value.
 As the value of the warpage is positive or negative, the activation function uses the tansig 
function with the value between −1 and 1 as shown in Eq. (5).

Fig. 7. (Color online) Warpage caused by different 
die thicknesses under different PMC conditions.
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 ( ) 2
2 1

1 xtansig x
e−

= −
+

. (5)

Then, the input and target value are converted into a value between −1 and 1 before being used 
for training the neural network. Finally, the parameters for training the neural network are set as 
shown in Table 4.

(a) (b)

Fig. 9. (Color online) Filler size with different sealants. (a) Smaller filler size. (b) Larger filler size.

Fig. 10. (Color online) Flow chart of training the neural network with FAPSO.

(a) (b)

Fig. 8. (Color online) Filler content with different sealants. (a) More filler content. (b) Less filler content.
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 A PSO algorithm has an adaptive function to calculate the value of each particle at the current 
position. When training the neural network, we set the adaptive function with the predicted 
values and their errors as shown in Eq. (6) to minimize the error value and make the target 
solution, E = 0.

 ( )2

1

1
2

k

k k
i

E d y
=

= −∑  (6)

Here, dk is the kth actual value and yk is the kth value calculated using the neural network.

3. Results and Discussion

 The FAPSO algorithm shows that the best cost decreases from 0.38 to 0.03 after 10 iterations, 
which clearly shows a convergence effect (Fig. 11). The weight is reduced from 1.0 to 0.4 after 10 
iterations, so the initial weight is converged after the iteration (Fig. 12).
 When comparing the actual and predicted data after training, the correlation coefficient (R2) 
between them is 0.9878, which indicates that the neural network has significant accuracy 
(Fig. 13). In the regression equation, the slope p1 is 0.9968. Thus, the actual and predicted data 
show 99.7% similarity. Thus, the trained neural network can be applied to the experiment for 
validating the effectiveness of the neural network with FAPSO in this study.

Table 4
Parameters set by fuzzy particle swarm algorithm.
Item Parameter setting
Number of variables 92
Maximum variable 4.2
Minimum variable −4.2
Total number of particles 300
Number of iterations 120
c1 0.9
c2 1.1
Weight 1

Table 3
Conditional variables for training the neural network.
Item Value
Die thickness (µm) 60−80
Tg (°C) 125−167
CTE α1 8−9
CTE α2 30−40
Filler size (µm) 30−55
Filler content (%) 75−88
Total height (µm) 840−880
PMC temp. (°C) 175−185
PMC time (h) 1.75−7.50

Fig. 11. (Color online) Iterative training result of FAPSO.
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 After the neural network is trained, six data sets are used to validate the neural network. The 
verification results are shown in Fig. 14. When comparing the actual and predicted data for the 
validation data sets, the correlation coefficient (R2) is 0.8658 and the slope p1 is 1.109. The result 
has more deviation between the actual and predicted data, but the mean absolute percentage 

Fig. 12. (Color online) Weight changes by each iteration.

Fig. 13. (Color online) Comparison of actual and predicted data with regression analysis. (a) Actual and predicted 
data after training. (b) Regression analysis result of the comparison in (a).

(a)

(b)
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Fig. 14. (Color online) Comparison of actual and predicted data of six data sets for validation of neural network 
with regression analysis. (a) Actual and predicted data of six data sets for validation. (b) Regression analysis result of 
the comparison in (a).

(a)

(b)

error [MAPE, Eq. (7)] is 29.74%. Considering the accuracy in Table 5, the value predicted using 
the proposed neural network with FPOS is within an acceptable range.

 
1

0% ˆ10 n
i i

ii

y yMAPE
n y=

−
= ∑  (7)

Here, yi is the actual value and ŷi is the predicted value.

Table 5
Prediction accuracy by MAPE.
MAPE (%) Accuracy
<10 Highly accurate forecasting
10–20 Good forecasting
20–50 Reasonable forecasting
>50 Inaccurate forecasting
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4. Conclusions

 To predict and prevent the IC warpage efficiently, a neural network with an FAPSO algorithm 
is proposed. FAPSO is used to predict the possible warpage in IC packaging for reducing the 
waste of time and resources due to the warpage. In this study, we establish the architecture of the 
neural network and define the weights of each layer. To optimize the weights, CBPE is used with 
FAPSO. Then, the architecture of the neural network combined with FAPSO is defined. 
Considering the three layers of EMC, die, and SBT in IC packaging and warpages due to 
different CTEs in each layer, we define the nine conditional variables to train the neural network, 
namely, die thickness, glass transition temperature (Tg), CTE (α1, α2), filler size, filler content, 
total height, PMC temperature, and PMC time. Then, the parameters are set for training the 
neural network. In training, 10 iterations (epochs) of training lead to the best cost and converged 
weights. In the comparison of the actual and predicted data in training, the correlation coefficient 
is 0.9878, and the similarity between the two data sets is 99.7%. After the training, FAPSO is 
applied to six data sets for its validation, and the result shows that the correlation coefficient (R2) 
is 0.8658 and the MAPE is 29.74%, which is acceptable for applying the proposed FAPSO. The 
proposed FAPSO in this study provides a way of improving the IC packaging process and is 
applied to other manufacturing processes.
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