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 An SF6 arc extinction sensor (AES) has the advantages of wide measurement, high sensitivity, 
and strong anti-interference ability, and has a wide range of applications in high-voltage 
substations. To effectively monitor and control SF6 gas in substation mechanical equipment, we 
have designed an SF6 AES based on non-dispersive IR (NDIR). However, in the actual 
measurement, temperature and air pressure differences in the environment affect the detection 
accuracy of the device, and an appropriate method of eliminating the measurement error caused 
by changes in the environment is required. In this paper, we propose the use of a gray wolf 
optimization-radial basis function (GWO-RBF) neural network to compensate for the 
measurement error caused by temperature and pressure changes. The experimental results show 
that the SF6 concentration error after the GWO-RBF algorithm is ±15 ppm in the concentration 
range of 0–2000 ppm and the full-scale error is 0.75%. Compared with uncompensated data and 
radial basis function (RBF) compensation methods, the proposed GWO-RBF algorithm 
effectively enhances the measurement accuracy and stability of the AES, allowing its volume 
and cost to be reduced.

1. Introduction

 Because of its excellent chemical stability, good insulation, and arc extinction properties, SF6 
gas is as ideal insulation and arcing medium after air and insulating oil, and it is widely used in 
high-pressure electric power equipment, including circuit breakers and transformers. The use of 
SF6 in power devices is effective for reducing the volume and failure rate of the 
equipment.(1) However, in the operation of high-pressure electric power equipment, SF6 gas is 
easily decomposed by a high-temperature arc or spark discharge, generating a variety of toxic 
and harmful substances. These substances may corrode metals used in the power equipment, 
which can accelerate the degradation of the insulation, reduce the insulation strength, reduce the 
electrical performance of the equipment, and even endanger the lives of power maintenance 
personnel in severe cases.(2) Therefore, accurate, convenient, and rapid measurement of the SF6 
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gas concentration is conducive to maintaining the safe operation of power equipment and 
ensuring the safety of operators.
 Currently, the main approaches for detecting the SF6 gas concentration include electronic 
capture, laser imaging, the use of a high-pressure negative current, an electrochemical method, 
UV ionization, and a non-dispersive IR absorption method.(3–5) Moreover, non-dispersive IR 
(NDIR)-based gas detection applies the feature absorption peak at 10.55 μm in the IR band 
waveband corresponding to SF6 gas molecules to achieve the quantitative detection of SF6 gas 
concentrations in combination with the Lambert–Beer (LB) law. This approach has the 
advantages of a long service life and high stability, detection accuracy, and detection speed. 
However, the detection accuracy of an NDIR SF6 arc extinction sensor (AES) is reduced by 
changes in the surrounding environmental air pressure in actual application. Two compensation 
schemes are mainly used to eliminate the effects of environmental pressure fluctuations on an 
NDIR-based SF6 AES. First, a formula-based method, i.e., a least-squares iterative method, is 
used to determine the correlation coefficient of the fitting formula, establish a mathematical 
model, and realize air pressure compensation for the SF6 AES.(6) However, this method uses the 
coefficient calibration method after data acquisition, making the calculation process complicated. 
Second, a constant-voltage compensation method is used to eliminate the measurement error of 
the AES caused by the variation of air pressure, i.e., the hardware circuit module allows the 
pressure of the detection environment air to maintain a dynamic balance. However, this method 
requires an additional hardware circuit in the system, which not only increases the power 
consumption and manufacturing cost but also reduces the reliability of the devices.(7)

 In this paper, we propose the use of a software-based algorithm, i.e., the gray wolf 
optimization-radial basis function (GWO-RBF) neural network algorithm, to compensate for 
changes in the air pressure and temperature of a SF6 gas concentration detecting device. By 
using the absolute error between the measured data and the predicted value, we demonstrate that 
the GWO-RBF neural network algorithm can eliminate the deviation of the detected value due to 
changes in the environmental temperature and air pressure, and improve the detection accuracy 
of the SF6 AES.

2. Testing Principle of NDIR

 The spectrum line of many asymmetric diatoms and polyatomic gas molecules is in the IR 
band, and when IR radiation of different wavelengths passes through the gas medium to be 
tested, the gas molecules selectively absorb the energy of the specific band. If the energy is 
exactly equal to the difference between the two energy levels of the gas molecule, the 
corresponding energy level transition is triggered and the corresponding absorption peak 
appears in the characteristic spectrum.(8) SF6 gas has strong absorbance at a wavenumber of 947 
cm−1 (10.55 μm wavelength) according to the HITRAN database, and its absorption line is 
shown in Fig. 1.
 The measurement accuracy of an NDIR-based SF6 AES is mainly based on the following two 
aspects. The ideal gas state equation is defined as
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 PV M R T= ⋅ ⋅ , (1)

where P is the pressure of the ideal gas, V is the amount of the ideal gas, M is the molar mass of 
the ideal gas, R is the ideal gas constant, and T is the absolute temperature of the ideal gas. The 
volume of the tested SF6 gas changes with P, resulting in a loss of measurement accuracy. On the 
other hand, fluctuations of the air pressure change the range of IR light wavelength coverage of 
the light source, which affects its luminescence strength and causes a measurement error of the 
sensor.
 For wavelength λ, Iin (λ) represents the initial light intensity, and the interaction between gas 
molecules and IR light causes the attenuation of IR light intensity to Iout (λ). The decrease in the 
light intensity follows the LB law,(9) which is expressed as

 ( ) ( ) CL
out inI I e−= µλ λ . (2)

Here, μ is the absorption coefficient of the IR light at the corresponding wavelength, C is the 
concentration of the gas to be tested, and L is the optical path length of the IR light through the 
gas. In the measurement, the gas to be tested strongly absorbs the IR light in the measurement 
channel, whereas there is no absorption of the IR light in the reference channel. From Eq. (2), the 
output light intensity of the measured channel can be obtained as

 ( ) ( ) m C Lm m
out inI I e− ⋅ ⋅= µλ λ . (3)

 The output light intensity of the reference channel is

 ( ) ( ) r C Lr r
out inI I e− ⋅ ⋅= µλ λ . (4)

Fig. 1. SF6 gas absorption spectrum.
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 In the experiment, the optical paths of the measured channel and reference channel originate 
from the same light source, and the initial light intensities in the two channels are almost equal, 
i.e., ( ) ( )m r

in inI I≈λ λ . By dividing Eq. (3) by Eq. (4), the concentration C of the tested gas can be 
obtained as

 [ ]
( )
( )

1 ln
m
out
r

r m out

I
C

L I
=

−
λ

µ µ λ
. (5)

 The differential detection technique can obtain the concentration of the gas to be tested 
because both the measured optical path and the reference optical path are in the same analysis 
chamber and detection environment, and the use of the reference optical path effectively 
eliminates external factors such as light source jitter and optical device contamination, and 
improves the detection accuracy and stability of the SF6 AES.(10)

3. SF6 AES

 The performance of the SF6 AES is closely related to the optical path structure, which 
directly affects the measurement accuracy of AES.(11,12) Therefore, the employed optical path 
structure is a single chamber with a dual wavelength as shown in Fig. 2. After the IR radiation 
emitted by the wide-spectrum IR light source passes through the analyzing gas chamber, the SF6 
gas under test passes through a reference filter with λr = 3.95 μm and a measured filter with λm = 
10.55 μm, and is received and analyzed at a double-element thermal release detector (e.g., 
PYS3228TC/G7.4/G20). The SF6 gas has no effect on the absorption of IR radiation of 
wavelength I (λr), and its output electrical signal does not contain information on the SF6 gas 
concentration. However, the SF6 gas strongly absorbs IR radiation of wavelength I (λm), and the 
intensity of its output electrical signal is closely related to the SF6 gas concentration.

Fig. 2. (Color online) Gas detection model.
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4. GWO-RBF Neural Network Compensation Algorithm

4.1 GWO algorithm

 The GWO algorithm is a novel intelligent optimization algorithm that simulates the 
population system, hunting process, and predation behavior of the gray wolf.(13) It is assumed 
that a wolf group consists of 5 to 12 gray wolves, in which the adaptivity can be divided into four 
levels, α, β, δ, and η. In the predatory process, α, β, and δ wolves continuously pursue prey while 
changing their positions, and the remaining gray wolves η follow the α, β, and δ wolves. The 
optimized solution is the specific location of the prey. Owing to the uncertainty of the position of 
each gray wolf, the distance between each gray wolf and the prey is expressed as

 ( ) ( ) ( )D t p t X t= σ ⋅ − , (6)

where t is the number of iterations, and p(t) and X(t) define the positions of the prey and the gray 
wolf at iteration t, respectively. In addition, σ = 2A, where A is a random number in [0,1]. The 
positions of the gray wolves Xα (0), Xβ (0), Xδ (0), and Xη (0) are randomly initialized then updated 
as follows:

 ( ) ( ) ( ) ( )
( ) ( ) ( )

( )

1 ,
2 ,

2 2 ,

X t p t A t D t
A t a t a t

ta t
max


 + = − = ⋅ −
   = −    

Β

( ) ( ) ( ) ( )
( ) ( ) ( )

( )
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 + = − = ⋅ −
   = −    

Β  (7)

where B is a random number in [0,1] a(t) is the convergence factor, and max is the maximum 
number of iterations. For the α, β, and δ wolves, the following equations are satisfied:
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From Eq. (8), the location of a η gray wolf in the next generation is defined as

 ( ) 1 2 31
3

X X XX t + +
+ =η . (9)
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4.2 RBF algorithm

 Owing to its strong nonlinear mapping ability and excellent generalization capacity, the RBF 
neural network is applied to compensate for data collected by gas sensors. Its principle is based 
on the organization structure and operation mechanism of the human brain, and a large number 
of interconnected processing units are used to simulate and explore the intelligent technology of 
the human brain structure and function.(14,15) The RBF neural network consists of three parts: 
the first layer is an input layer, the second layer is a hidden layer, in which the number of nodes 
is determined according to the optimization needs, and the third layer is an output layer, whose 
output vector is Y, i.e., the value predicted by a sensor after processing by a neural network. The 
structure of the RBF neural network is shown in Fig. 3.
 The Gaussian function is selected as the excitation function of the RBF neural network, 
which can be defined as

 ( ) 2
2

1exp
2 p iR dist x c = − − 

 θ
, (10)

where θ is the variance of the Gaussian function, xp is the neural network input sample, ci is the 
node center of the hidden layer, and p ix c−  defines the Euclidean norm. The orthogonal least-
squares algorithm is used as a training algorithm for the RBF neural network, and the number of 
nodes in the hidden layer is determined by the gradual growth method. The output function of 
the j ( j = 1, 2, ..., m)th node is expressed as

 ( ) 2
2

1exp
2 p ij x c = − − 

 
ϕ

θ
. (11)

 Finally, the following RBF neural network model is applied to the pressure compensation of 
an SF6  AES:

Fig. 3. (Color online) RBF neural network structure.
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 ( )
1

m

i ij
j

y j W
=

= ⋅∑ϕ , (12)

where m is the number of nodes in the hidden layer (experimentally determined to be 15 in this 
study) and Wij is the connection weight between the hidden layer and the output layer.

4.3 GWO-RBF neural network algorithm

 The convergence speed of the RBF neural network is low, making it easy for it to fall into a 
local minimum value. Therefore, we use the GWO algorithm to strengthen the global search 
capability. As shown in Fig. 4, the positions of the gray wolves serve as the weight of the RBF 
neural network, the GWO algorithm performs several iterations, and the position of the prey is 
updated by the algorithm, i.e., the threshold of the RBF neural network is constantly updated, 
allowing global optimal results to be calculated. The steps of the algorithm are as follows:
Step 1: Select appropriate training data. In this paper, the output voltage ratio of the measured 
channel to the reference channel, the gas concentration data, the corresponding air pressure, and 
the temperature are employed as the training data.
Step 2: Construct the RBF neural network model. The number of input layers is n and the 
number of hidden layers is m, in which the number of neuron nodes is q (q n m a= + + ,

[ ]1,10a∈ ). a is a constant in [1,10] and is set to 5 after multiple trials, for which the convergence 
speed and fitting accuracy are highest.
Step 3: Initialize the GWO optimization algorithm.  The optimal positions Xa, Xβ, and Xδ in the 
current iteration are initialized.

Fig. 4. (Color online) Flowchart of hybrid GWO-RBF neural network.
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Step 4: Calculate the fitness value of each individual. The weight and threshold of the RBF 
neural network are the objects used to solve the GWO algorithm. The sum of the errors of each 
neural node of the RBF neural network is used as the fitness function of the positions of 
individuals in the GWO optimization algorithm to obtain the position with the current best 
fitness value.
Step 5: When the number of iterations reaches the upper limit, the GWO optimization algorithm 
ends, and the best initial weight and threshold of the RBF neural network are obtained.
Step 6: The RBF neural network performs network training and performance evaluation 
according to the weight and threshold optimized by the GWO algorithm, and finally obtains the 
prediction results.

5. Results and Discussion

 In the establishment of the GWO-RBF neural network, we used MATLAB simulation 
software to update the individual positions in the GWO algorithm until the number of iterations 
reached the set value. As shown in Fig. 5, the optimal fitness value was achieved within 500 
iterations during temperature compensation, and after 500 iterations, the fitness value was close 
to zero, thus demonstrating the potential of the GWO to find the best initial weight and threshold 
of the RBF neural network.(16) The relationship between the iteration number and fitness value 
during air pressure compensation over 500 iterations is also shown in Fig. 5.

5.1 Data collection

 We performed an experiment in which SF6 with a concentration of 2000 ppm is mixed with 
99.9% purity N2. Under the standard atmosphere, the gas entered the gas chamber through the 
flow meter, and then the homogeneous gas mixture   entered the SF6 AES. The initial 

Fig. 5. (Color online) Relationship between iteration number and fitness value.
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concentration of gas was 0 ppm, and the SF6 gas of 2000 ppm required for the experiment was 
obtained by adjusting the flow rate of the flow meter. The AES sensor was placed in the 
temperature test chamber and pressure test chamber for data collection.
 During the acquisition of data for temperature compensation, the temperature of the test 
chamber was sequentially adjusted to 10, 15, 20, 25, 30, 35, and 40 ºC. At each temperature, 
different concentrations of gas were transferred into the SF6 AES chamber, then the voltages of 
the measured channel and reference channel were recorded after 3 min. Data were acquired 10 
times for each air temperature and concentration, and the average value was taken.
 During the acquisition of data for air pressure compensation, the air pressure in the laboratory 
was adjusted to 100 kPa. At each air pressure, different concentrations of gas were input into the 
AES sensor, then data were recorded after 3 min.  Data were acquired 10 times for each air 
temperature and concentration, and the average value was taken.

5.2 Compensation analysis

 The compensation of the temperature and air pressure was performed using the acquired 
data, where 20 and 15 data sets were collected as samples, respectively, and the compensation 
neural network was constructed. The effect of the ambient temperature and pressure on the gas 
concentration was clearly reduced after compensation and the measurement accuracy of the 
sensor was improved, indicating effective compensation.
 During the temperature compensation, the collected 20 sets of data were first processed. The 
output voltage ratio of the measured channel to the reference channel of the AES and the 
corresponding temperature value were used as the input variables of the GWO-RBF neural 
network, and the SF6 gas standard concentration was given as the output vector; thus, a neural 
network structure with two inputs and a single output was constructed. After the prediction by 
the GWO-RBF neural network, the output vector was a concentration value. The gas 
concentration curves before and after the temperature compensation are shown in Fig. 6. The 

Fig. 6. (Color online) Results of temperature compensation.
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data collected from the 1200 ppm concentration were compensated by the RBF neural network 
and the GWO-RBF neural network and compared with the data without temperature 
compensation. The black curve in Fig. 6 shows the concentration without uncompensated data; 
when the environmental temperature was continuously increased, the measured concentration 
gradually increased. The red curve shows the concentration with compensation of the RBF 
neural network; it can be seen that the concentration offset was appropriately reduced. The blue 
curve shows the concentration with compensation of the GWO-RBF neural network. It can be 
seen from Fig. 6 that the concentration offset of the GWO-RBF neural network was significantly 
reduced, and the slope of each concentration curve is almost zero. During the entire temperature 
change, the offset of the gas concentration was no more than ±15 ppm. The GWO-RBF neural 
network can provide more effective compensation and higher measurement accuracy than the 
cases of RBF compensation and no compensation of the data.
 When compensating for the air pressure, the 15 acquired data sets were first preprocessed to 
obtain the data used to train the GWO-RBF neural network, and a neural network for air 
pressure compensation was constructed. The structure was the same as that of the temperature 
compensation network, with two inputs and a single output. After the input data were processed 
by the GWO-RBF neural network, the gas concentration after air pressure compensation was 
output. Figure 7 shows the concentration curves of 1200 ppm SF6 gas before and after 
compensation. As can be seen from Fig. 7, without air pressure compensation, there is a small 
difference between the measured SF6 gas concentration at 100 kPa and the actual value. As the 
air pressure increases, the offset of the measured value gradually increases. Upon the air 
pressure compensation of the GWO-RBF neural network, the measured value of the gas 
concentration is significantly reduced, and the offset of the gas concentration does not exceed 
±15 ppm. Compared with the compensation by the RBF neural network, the compensation by the 
GWO-RBF neural network is more accurate in the entire concentration range and the 
compensation is more effective.

Fig. 7. (Color online) Measured concentration for the different algorithms.



Sensors and Materials, Vol. 34, No. 7 (2022) 2551

5.3 Stability test

 We also tested the stability of an SF6 AES. The SF6 AES was placed in a constant-pressure 
test chamber with the initial air pressure set to 100 kPa. The stability of the AES output results 
was monitored using SF6 gases with concentrations of 3250 and 6520 ppm. Figure 8 shows the 
stability test results for the two concentrations of SF6 gases over 150 min. For both concentrations, 
the fluctuation of the result output by the SF6 AES was small and the error was less than ±400 
ppm, indicating the stability of the AES.

6. Conclusions

 The measurement accuracy of an SF6 AES is susceptible to changes in the temperature and 
air pressure. In this study, we used a GWO-RBF neural network to compensate for the 
differences caused by fluctuations in the temperature and air pressure. Owing to the high 
convergence speed of the GWO, its strong global search performance, and its ability to avoid 
falling into a local optimum, the GWO was combined with the RBF neural network to overcome 
its shortcomings. Compared with the traditional hardware-based circuit compensation method, 
the proposed compensation method is the more stable and effective, and it is conducive to the 
miniaturization of the AES. The experimental results show that the offset of the gas 
concentration based on the compensation method is ±15 ppm in the SF6 concentration range of 
0–2000 ppm. The full-scale error was 0.75%, which means that the GWO-RBF neural network 
can use the temperature and air pressure for effective compensation in the gas detection process, 
greatly reducing the effects of temperature and air pressure on the measurement accuracy of the 
SF6 AES.

Fig. 8. (Color online) Results of stability test of hybrid GWO-RBF neural network.
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