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	 With the increasing popularity of wireless sensor networks in the IoT and Industry 4.0 era, 
the security of networks is critical in transmitting data and information. To address this need, we 
propose an optimized method for hiding and extracting information from image data. For this 
method, we created algorithms for hiding and extracting information based on the histogram 
shift method. The algorithms were developed using chessboard- and column-type prediction 
methods. Five different prediction methods were tested in the development of the algorithms, 
and the test results showed that the chessboard-type methods yielded better results with images. 
Then, the optimized prediction method was tested for various images along with previous 
methods. The results show that the proposed method has better results in terms of bits per pixel 
and peak signal-to-noise ratio. The method can be applied to image transmission through a 
wireless sensor network and provides a basis for the development of further applications.

1.	 Introduction

	 A wireless sensor network (WSN) is designed to collect data from numerous wireless sensors 
in different locations. In many cases, the data must be visualized as various images, which 
requires information hiding technology to ensure security.(1) Thus, reversible information hiding 
and file encryption have attracted much research interest for security in exchanging information 
in WSNs. Reversible information hiding is an ideal solution for high-fidelity content. It has been 
commonly used to recover carrier signals from images, multimedia content, and communication 
systems. Reversible information hiding requires data concealing techniques, which have been 
extensively researched. In reversible information hiding, several processes are necessary: hiding, 
copyright recognition, tampering recovery, and retrieval. All the steps are carried out by a well-
designed algorithm. However, hiding information may distort the original information, causing 
the recovered information to be altered. Therefore, various methods for the complete retrieval of 
hidden information, such as distortion-free compression, differential expansion,(2,3) histogram 
shift,(4,5) block segmentation,(6) pixel differentiation,(7) different growth,(8,9) and recursive 
coding(10) methods, have been proposed.
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	 However, in many applications, the distortion metrics are position-dependent, which 
produces inconsistent results. Inconsistent distortion makes images easily embedded with 
confidential information that is difficult to recover. Under a multi-distortion index, the rate-
distortion problem of reversible information hiding is undesirable. Thus, a basic framework for 
estimating and matching the optimum matrix is required. In this study, we propose a new 
histogram shift method based on the optimum hiding method. Referring to Sachnev et al.,(11) a 
method for the optimal hiding of the difference of values from the original data was developed. 
The proposed method with two different techniques carries out a multilevel hiding strategy for 
high-quality images. 

2.	 Methods

2.1	 Hiding information

	 We developed a new histogram shift method based on the optimum hiding method of 
Sachnev et al.(11) The method is divided into two types (Fig. 1): column type and chessboard 
type. In the column type, the algorithm hides information in the upper and lower cells or the 
right and left cells in the same column or row, respectively, while in the chessboard type, 
information is hidden diagonally in the upper right and bottom left cells or in the upper left and 
bottom right cells (Fig. 2). These methods are used to enhance the hiding capacity by avoiding 

Fig. 1.	 Two different types of histogram shift method. (a) Column type. (b) Chessboard type.

Fig. 2.	 Two ways of hiding information in cells. (a, b) Column type. (c, d) Chessboard type.

(b)(a)

(b)(a) (d)(c)
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the undistorted original data. In the chessboard type, the cells in which information is hidden 
match the moves of a pawn, while in the column type, the cells in which information is hidden 
match the moves of a bishop. Each pixel value is predicted using the average value of surrounding 
pixels. The pixel value is divided into two parts. Only the exact part is predicted each time, with 
the first prediction in the black part. The average value of the surrounding pixels is used to 
predict the error value of the black part. When all pixel error values are calculated, the numbers 
of occurrences of pixel error values are counted in a histogram. The first step finds the two most 
frequent highs and their relative zeros in the histogram. The second step uses displacement to 
hide confidential information in the image. In the third step, if all hidden pixel values are hidden, 
the inverse operation is used to obtain a camouflaged image with hidden secret information. 
Personal information must be hidden. The information-hiding steps are completed until all 
confidential information is hidden in the image.

2.2	 Histogram shifting

	 To hide information in neighboring cells by histogram shifting, the indices of the peak value 
and zero must be defined. The histogram is created using the value differences of adjacent 
pixels. Then, the indices of the histograms have a peak (maximum) and zero value. The 
histogram with a certain range of indices is shifted to increase the value difference of all 
adjacent cells in the range by one. The peak value is adjusted to zero to embed data in the peak 
and neighboring cells.(12) As a result, the original peak value disappears in the histogram. 
Shifting the histogram allows underflow or overflow to be avoided when hiding information.(6) 

2.3	 Hiding algorithm

	 A simple prediction algorithm is described as follows. The algorithm places the peak value in 
the top cell and its vertically adjacent cell in column-type information hiding. Assuming that a 
cover image is an m × n gray cover image, Ii,j denotes the pixel values before histogram shifting, 
Ki,j is the overflow or underflow value, and K’

i,j denotes the pixel values of the embedded image 
data after being refined at location (i, j). If the regularity of each pixel value is less than 10000, 
the image data is ‘natural’. When the image is natural, we can assign a cell with the peak factor 
(the ratio of the maximum value to the root mean square value) and the cell to the left with the 
peak point to hide data. The peak point t is suitable for the peak factor, while the cell to the left is 
unsuitable. When the image is a medical image, we make one the highest of the peak point. The 
algorithm to assign cells with the peak factor and peak points is created as below. The output is a 
steganographic image K’’.

Step 1.	 Input the cover image I = {I0,0, I0,1, ..., I0,n−1, ..., I1,0, ..., Im−1,n−1}.
Step 2.	 Check each pixel value.
	 If p(i) < 10000, then the image is a natural image.
	 Else the image is a medical image,
	 where i ∈ (0, 255).
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Step 3.	 Predict each pixel Ki,j in the cover image and create prediction error value ei,j of linear 
predictor as follows:

	 (a)	 If i ≠ 0 and j = 0, then ei,j = Ki,j – Ki+1,j+1.
	 (b)	 Else i ≠ 0 and j % 2 = 0, then ei,j = Ki,j – int(average (Ki−1,j−1, Ki+1,j+1)).
Step 4.	 Create histogram h(x) from all predictive error values ei,j, where x ∈(−255, 255).
Step 5.	 Find the peak and zero points as follows:
	 If the image is a natural image, then find two pairs of peak and zero points (P1, Z1) and 

(P2, Z2) satisfying Z2 < P2 < P1 < Z1.
	 Else find one peak and zero pair (P1, Z1) satisfying P1 < Z1. 
Step 6.	 Shift the histogram as follows:
	 If the image is a natural image, then 
	 (a)	 e’i,j is set to ei,j + 1 if ei,j ∈ (P1 + 1, Z1 − 1),
	 (b)	 e’i,j is set to ei,j − 1 if ei,j ∈ (Z2 + 1, P2 − 1).
	 Else e’i,j is set to ei,j + 1 if ei,j ∈ (P1 + 1, Z1 − 1).
Step 7.	 Embed a medical record of illness as follows:
	 If the image is a natural image, then
	 (a)	 If the bit to be embedded is 0, e’i,j is set to ei,j,
	 (b)	 If the bit to be embedded is 1, e’i,j is set to ei,j + 1 and ei,j − 1, 
	 when ei,j is equal to P1 and P2, respectively.
	 Else	 (a)	 If the bit to be embedded is 0, e’i,j is set to ei,j,
			   (b)	 If the bit to be embedded is 1, e’i,j is set to ei,j + 1. 
Step 8.	 Convert each embedded predictive error value e’i,j into its embedded pixel value.
	 (a)	 If i ≠ 0 and j = 0, then K’i,j = e’i,j + Ki+1,j+1.
	 (b)	 If i ≠ 0 and j % 2 = 0, then K’i,j = e’i,j + int(average(Ki−1,j−1, Ki+1,j+1)).
Step 9.	 Predict each pixel Ki,j in the cover image and create prediction error value ei,j of linear 

predictor as follows:
	 (a)	 If i ≠ 0 and j % 2 = 1, then ei,j = Ki,j – int(average(Ki−1,j−1, Ki+1,j+1)).
	 (b)	 Else i ≠ 0 and j = 511, then ei,j = Ki,j – Ki−1,j−1.
Step 10.	 Create histogram h(x) from all predictive error values ei,j, where x ∈ (−255, 255).
Step 11.	 Find the peak and zero points as follows:
	 If the image is a natural image, then find two pairs of peak and zero points (P3, Z3) and 

(P4, Z4) satisfying Z4 < P4 < P3 < Z3.
	 Else find one peak and zero pair (P3, Z3) satisfying P3 < Z3.
Step 12.	Shift the histogram as follows:
	 If the image is a natural image, then 
	 e’i,j is set to ei,j + 1 if ei,j ∈ (P3 + 1, Z3 − 1),
	 e’i,j is set to ei,j − 1 if ei,j ∈ (Z4 + 1, P4 − 1).
	 Else e’i,j is set to ei,j + 1 if ei,j ∈ (P3 + 1, Z3 − 1).
Step 13.	 Embed a medical record of illness as follows:
	 If the image is a natural image, then
	 (a)	 If the bit to be embedded is 0, e’i,j is set to ei,j,
	 (b)	 If the bit to be embedded is 1, e’i,j is set to ei,j + 1 and ei,j − 1. 
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	 when ei,j is equal to P1 and P2, respectively.
	 Else	 (a)	 If the bit to be embedded is 0, e’i,j is set to ei,j,
			   (b)	 If the bit to be embedded is 1, e’i,j is set to ei,j + 1.
Step 14.	 Convert each embedded predictive error value e’i,j into its embedded pixel value.
	 (a)	 If i ≠ 0 and j % 2 = 0, then K’’i,j = e’i,j + int(average (Ki−1,j−1, Ki+1,j+1)).
	 (b)	 Else i ≠ 0 and j = 511, then K’’i,j = e’i,j + Ki−1,j−1.
Step 15.	 Output steganographic image K’’ and sequence of optimum hiding s and peak and zero 

points.

2.4	 Extraction algorithm

	 The embedded data expressed in the steganographic image K’’ is extracted by reversing the 
hidden data from the pixel values. The extraction and reverse algorithm is as follows. 

Step 1.	 Process each pixel of steganographic image K’’ from left to right and then from top to 
bottom by following Step 3 to Step 5 repeatedly.

Step 2.	 Check each pixel value.
	 If p(i) < 10000, then the image is a natural image.
	 Else the image is a medical image,
	 where i ∈(0, 255).
Step 3.	 Predict each pixel Ki,j in the cover image and create prediction error value ei,j of linear 

predictor as follows:
	 (a)	 If i ≠ 0 and j = 0, then ei,j = Ki,j – K’i+1,j+1.
	 (b)	 Else i ≠ 0 and j % 2 = 0, then ei,j = K’i,j – int(average(K’i−1,j−1, K’i+1,j+1)).
Step 4.	 If the image is a natural image, then 
	 Use the two pairs of peak and zero points (P3, Z3) and (P4, Z4) to extract the medical 

record and recover the prediction difference value into pixel values.
	 Else 
	 Use the pair of peak and zero points (P3, Z3) to extract the medical record and recover 

the prediction difference value into pixel values.
Step 5.	 Predict each pixel Ki,j in the cover image and create prediction error value ei,j of linear 

predictor as follows:
	 (a)	 If i ≠ 0 and j % 2 = 1, then ei,j = Ki,j – int(average (Ki−1,j−1, Ki+1,j+1)).
	 (b)	 Else i ≠ 0 and j = 511, then ei,j = Ki,j – Ki−1,j−1.
Step 6.	 If the image is a natural image, then
	 Use the two pairs of peak and zero points (P1, Z1) and (P2, Z2) to extract the medical 

record and recover the prediction difference value into pixel values.
	 Else 
	 Use the pair of peak and zero points (P1, Z1) to extract the medical record and recover 

the prediction difference value into pixel values.
Step 7.	 Output the original image and the medical record.
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2.5	 Prediction algorithm

	 For the reversibility of the proposed algorithms, a prediction algorithm is required to predict 
the difference of the retrieved data from the original data. The difference must be adjusted for 
the reversible information hiding process. In this study, we created an algorithm based on 
chessboard- and column-type information hiding. In the chessboard type, two prediction 
algorithms are used from the top cells to the bottom cells, while the second prediction method 
uses cells from the left to the right. The prediction algorithm carries out several interrelated 
actions at each stage for the optimized extraction of the hidden information. In this study, the 
algorithm was created with five different methods to find the ideal peak signal-to-noise ratio 
(PSNR).

3.	 Experimental Results

	 The proposed method is designed to ensure that the value difference of the cells in the 
steganographic image remains within ±1 to maintain the quality of the original image. The 
image quality is defined with PSNR, which pertains to a quality comparison between the 
original and hidden data. The higher the value of PSNR, the higher the quality of the hidden and 
extracted data. PSNR is defined as

	
2
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25510 logPSNR
MSE

 
= ×  

 
,	 (1)

where the mean square error (MSE) is calculated as
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Figure 3 shows the six grayscale images used in the experiment. We used 512 × 512 grayscale 
medical images in the experiment, which were obtained from computer tomography (CT) and 
magnetic resonance imaging (MRI).

3.1	 Chessboard- and column-type prediction methods

	 The bits per pixel (BPP) and PSNR of the aircraft image [Fig. 3(a)] were compared for 
different prediction algorithms. Each prediction algorithm chooses the optimal way of extracting 
data with the best PSNR. Five prediction methods were tested in the prediction algorithm, which 
were named CHLR, CHUB, COLR, COURBL, and COULBR. Among the chessboard-type 
methods, CHLR hides and extracts data from the left and right cells of the original cell, and 
CHUB from the upper and lower cells. Among the column-type methods, COLR hides and 
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extracts data from the left two cells, COURBL from the upper and lower cells, and COULBR 
from the right two cells. Table 1 shows a comparison of BPP and PSNR for each method. The 
optimized prediction algorithm chose the best values of BPP and PSNR at each level of 
prediction. At the first level of prediction, the values selected for each method are the largest 
BPP and PSNR, which were selected for the optimized prediction method.

(b)(a) (c)

(e(d) (f)

Fig. 3.	 Six images used in the experiment. (a) Airplane. (b) Boat. (c) Goldhill. (d) Lena. (e) Peppers. (f) Sailboat.

Table 1 
Comparison of BPP and PSNR of the aircraft image [Fig. 3(a)] for different prediction algorithms at different levels.

Level

Optimum 
program 

prediction
CHUB CHLR COLR COURBL COULBR

BPP PSNR BPP PSNR BPP PSNR BPP PSNR BPP PSNR BPP PSNR
1 0.37 49.02 0.37 49.02 0.35 48.99 0.35 48.30 0.29 43.59 0.30 44.17
2 0.62 44.19 0.57 43.90 0.55 43.99 0.54 43.17 0.46 40.56 0.46 40.68
3 0.81 41.12 0.72 40.53 0.69 40.87 0.69 40.32 0.59 38.29 0.59 38.32
4 0.95 37.84 0.84 38.02 0.81 38.09 0.81 37.66 0.70 36.19 0.69 36.31
5 1.06 35.89 0.94 36.53 0.92 36.41 0.92 35.91 0.79 35.09 0.78 34.99
6 1.16 34.28 1.03 35.08 1.00 34.94 1.00 34.41 0.87 33.80 0.86 33.73
7 1.25 32.98 1.10 33.93 1.08 33.77 1.08 33.34 0.93 32.64 0.94 32.81
8 1.33 32.18 1.17 32.94 1.15 32.93 1.15 32.42 0.99 31.87 1.00 31.96
9 1.41 31.29 1.24 31.99 1.21 31.87 1.21 31.46 1.05 30.99 1.05 31.12

10 1.48 30.56 1.29 31.02 1.27 31.14 1.26 30.60 1.10 30.09 1.10 30.36
11 1.54 29.86 1.35 30.19 1.32 30.42 1.32 29.84 1.15 29.36 1.14 29.51
12 1.60 29.40 1.39 29.48 1.36 29.72 1.36 29.03 1.20 28.78 1.19 28.90
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	 Table 2 presents the BPP and PSNR of the baboon image for each prediction method.(13) 
When PSNR is around 30, optimum hiding and extraction are enabled at the 10th level. For a 
complex image such as the baboon image, CHLR is regarded as the optimal method. The images 
extracted by CHUB and COLR have better BPP and PNSR values than those extracted by the 
other methods.
	 Table 3 shows a comparison of the BPP and PSNR of medical image M1 [Fig. 4(a)] for each 
prediction method. When PSNR is around 30, optimal prediction is enabled at the 16th level with 
BPP of 2.74. The chessboard-type methods CHUB and CHLR show better results than the 

Table 2 
Comparison of BPP and PSNR of the baboon image(13) for different prediction algorithms at different levels.

Level

Optimum 
program 

prediction
CHUB CHLR COLR COURBL COULBR

BPP PSNR BPP PSNR BPP PSNR BPP PSNR BPP PSNR BPP PSNR
1 0.15 48.48 0.09 48.32 0.15 48.48 0.15 41.30 0.07 41.06 0.07 40.45
2 0.27 43.06 0.16 42.84 0.27 43.06 0.27 37.36 0.14 38.11 0.14 38.06
3 0.37 39.93 0.22 39.78 0.37 39.93 0.37 36.17 0.20 36.59 0.19 36.30
4 0.46 37.80 0.27 37.29 0.46 37.80 0.45 35.26 0.25 35.02 0.24 34.84
5 0.53 36.09 0.32 35.61 0.53 36.09 0.53 34.04 0.29 33.72 0.28 33.53
6 0.60 34.60 0.37 34.24 0.60 34.60 0.59 32.76 0.33 32.74 0.32 32.68
7 0.66 33.13 0.41 32.80 0.66 33.13 0.65 31.82 0.37 31.72 0.36 31.64
8 0.72 31.95 0.44 31.71 0.72 31.95 0.71 30.96 0.40 30.87 0.39 30.78
9 0.78 31.05 0.48 30.82 0.78 31.05 0.76 30.46 0.43 29.97 0.42 29.95

10 0.83 30.36 0.51 29.92 0.83 30.31 0.81 29.57 0.46 29.24 0.45 29.22
11 0.87 29.68 0.54 29.24 0.87 29.52 0.86 28.87 0.49 28.48 0.48 28.46

Table 3 
Comparison of BPP and PSNR of medical image M1 [Fig. 4(a)] for different prediction algorithms at different levels.

Level

Optimum 
program 

prediction
CHUB CHLR COLR COURBL COULBR

BPP PSNR BPP PSNR BPP PSNR BPP PSNR BPP PSNR BPP PSNR
1 0.66 52.26 0.66 52.26 0.39 53.80 0.40 58.34 0.64 52.18 0.64 52.17
2 1.05 47.46 1.00 47.00 0.86 48.18 1.06 48.97 0.97 33.08 0.97 33.37
3 1.34 43.85 1.19 44.67 1.15 44.91 1.40 34.36 1.15 31.21 1.16 31.27
4 1.51 41.78 1.40 41.84 1.40 42.01 1.59 34.73 1.35 31.06 1.36 31.04
5 1.67 39.96 1.55 39.84 1.54 40.05 1.81 33.33 1.50 31.18 1.50 31.15
6 1.80 38.43 1.66 38.60 1.68 38.23 1.95 32.51 1.60 30.25 1.61 30.33
7 1.94 36.98 1.79 37.04 1.81 37.18 2.07 32.28 1.72 29.85 1.73 29.95
8 2.05 35.86 1.87 35.80 1.92 36.00 2.17 31.52 1.80 29.79 1.81 29.87
9 2.18 35.15 1.96 34.57 2.02 35.15 2.30 31.00 1.88 29.53 1.89 29.40

10 2.27 34.21 2.04 33.59 2.10 34.19 2.39 30.61 1.95 28.78 1.96 28.98
11 2.38 33.75 2.12 32.63 2.18 33.87 2.46 30.07 2.02 28.82 2.03 28.81
12 2.47 32.82 2.19 31.82 2.28 32.85 2.56 29.46 2.08 28.26 2.09 28.44
13 2.54 32.12 2.26 30.94 2.35 32.18 2.62 29.02 2.14 27.78 2.15 28.10
14 2.62 31.29 2.32 30.68 2.42 31.34 2.69 28.59 2.20 27.68 2.22 27.78
15 2.68 30.81 2.37 30.06 2.48 30.60 2.75 28.14 2.25 27.15 2.27 27.32
16 2.74 30.09 2.43 29.41 2.54 30.00 2.80 27.79 2.31 26.74 2.32 26.98
17 2.80 29.70 2.48 29.00 2.59 29.72 2.86 27.34 2.35 26.64 2.37 26.71
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column-type methods COURBL and COULBR for the image. For PSNR of around 30, 
COURBL and COULBR show the best results at the 7th level. 
	 Table 4 shows a comparison of BPP and PSNR of medical image M7 [Fig. 4(g)] for each 
prediction method. Optimized values of BPP and PSNR are found at the 6th level. The 
chessboard-type methods CHUB and CHLR show better results than the other column-type 
methods; among the column-type methods, COLR shows the best result but is still inferior to 
those of the chessboard-type methods. 

3.2	 Comparison with previous methods

	 The performance of the optimized prediction method in this study was compared with those 
of previous methods. Table 5 shows the BPP and PSNR of the hidden and extracted images for 
the methods of Ni et al.,(12) Tai et al.,(14) and Li et al.(7) and the proposed method. The results 
show that BPP for the proposed method is 8−26% higher than those for the other methods and 
PSNR is improved to 48.80, which is higher than that for the other methods. The chessboard-

Fig. 4.	 Nine medical images used in the experiment. (a)–(d) CT images; (e)–(i): MRI images. (a) M1, (b) M2, (c) 
M3, (d) M4, (e) M5, (f) M6, (g) M7, (h) M8, and (i) M9.

(b)(a) (c)

(e(d) (f)

(h(g) (i)
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type prediction algorithm was used for all images except Goldhill [Fig. 3(c)], which was hidden 
and extracted by the column-type algorithm.
	 Table 6 shows a comparison of the performance of the proposed algorithm with those of 
Fallahpour et al.’s three algorithms (GAP, Jiang, and MED). Except for the image of Goldhill, the 
images are hidden and extracted using the chessboard-type image. Compared with the three 
algorithms of Fallahpour et al., the proposed method has an 8−10% higher BPP, but the PSNR of 
the proposed method is similar to those of the other algorithms.
	 Table 7 shows a comparison of the results of the methods of Sachnev et al.,(11) Lee et al.,(15) 
and Zhao et al.(16) and the proposed method. In the medical images, there were many under- and 
overflows, which increased the computational load. The methods of Sachnev et al.(11) and Lee et 
al.(15) can deal with such an additional computational load, but that of Zhao et al.(16) shows 
underflows, which increased its computational load by 3%. The proposed method shows a much 
lower BPP and fewer overflows and an improved PSNR. 

Table 4 
Comparison of BPP and PSNR of medical image M7 [Fig. 4(g)] for different prediction algorithms at different 
levels.

Level

Optimum 
program 

prediction
CHUB CHLR COLR COURBL COULBR

BPP PSNR BPP PSNR BPP PSNR BPP PSNR BPP PSNR BPP PSNR
1 0.24 52.86 0.10 54.89 0.24 52.86 0.25 36.73 0.21 34.49 0.21 34.51
2 0.51 47.84 0.47 47.86 0.49 47.14 0.49 34.66 0.43 34.01 0.42 34.09
3 0.74 43.85 0.65 44.03 0.67 43.23 0.67 34.41 0.59 33.69 0.58 33.88
4 0.91 41.24 0.79 41.26 0.79 40.61 0.79 33.43 0.69 32.82 0.68 33.21
5 1.04 39.14 0.90 39.06 0.90 38.52 0.90 32.53 0.77 32.32 0.76 32.62
6 1.16 37.51 1.00 37.35 0.99 37.19 1.00 32.02 0.85 31.84 0.84 32.18
7 1.26 36.08 1.09 35.81 1.08 35.76 1.09 31.63 0.93 31.24 0.91 31.71
8 1.35 34.87 1.18 34.56 1.17 34.75 1.18 31.00 1.00 30.69 0.98 31.04
9 1.43 33.79 1.28 33.38 1.25 33.57 1.26 30.51 1.06 30.26 1.03 30.41

10 1.51 32.84 1.35 32.65 1.33 32.55 1.33 29.94 1.11 29.64 1.08 29.86
11 1.58 31.97 1.42 31.74 1.40 31.67 1.41 29.45 1.15 29.21 1.12 29.31
12 1.65 31.14 1.48 30.89 1.46 30.83 1.47 28.83 1.20 28.75 1.16 28.72
13 1.71 30.47 1.54 30.04 1.51 30.00 1.52 28.30 1.24 28.16 1.20 28.38
14 1.77 29.70 1.59 29.24 1.56 29.43 1.57 27.88 1.28 27.75 1.23 27.86

Table 5
Comparison of BPP and PSNR among different methods.
Image Ni et al.(12) Tai et al.(14) Li et al.(7) Proposed method

BPP

Airplane 0.07 0.25 0.3 0.37
Boat 0.04 0.17 0.19 0.26
Goldhill 0.02 0.13 0.19 0.24
Lena 0.02 0.18 0.23 0.38
Peppers 0.02 0.18 0.24 0.35
Sailboat 0.03 0.12 0.14 0.15
Average BPP 0.03 0.17 0.21 0.29

Average PSNR 48.3 48.79 48.47 48.80
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	 In Table 8, multilevel details and concealing contrasts of the images are compared for 
different methods in terms of BPP and PSNR.(4,6,7,17) The results compare the amount of 
embedding (BPP) between the proposed method and other methods when PSNR is approximately 
equal to 30. 

Table 8 
BPP and PSNR of multilevel details and concealing contrasts of images of different methods.
Images Lin and Hsueh(17) Zeng et al.(4) Li et al.(7) Hsiao et al.(6) Proposed method 
Airplane 1.40 1.29 1.19 1.09 1.54
Baboon 0.61 0.49 0.55 0.53 0.87
Boat 1.17 1.05 0.86 1.02 1.21
Goldhill 1.16 N/A 0.90 0.94 1.23
Lena 1.18 1.07 1.15 1.16 1.60
Pepper 1.23 0.95 1.07 1.16 1.48
Tiffany 1.27 1.20 1.05 1.21 1.33
Average capacity 1.14 1.01 0.97 1.02 1.32
Average PSNR 30.26 30.34 30.00 30.02 30.05

Table 6
Comparison of BPP and PSNR for the algorithms of Fallahpour et al.(13) and the proposed method.
Image GAP Jiang MED Our method

BPP PSNR BPP PSNR BPP PSNR BPP PSNR
Baboon 0.07 48.50 0.07 48.83 0.07 48.30 0.15 48.48
Barbara 0.18 49.00 0.17 48.50 0.17 48.55 0.20 48.60
Boat 0.22 49.20 0.20 48.60 0.20 48.63 0.26 48.75
Goldhill 0.16 48.90 0.15 48.50 0.15 48.50 0.24 48.50
Lena 0.22 49.20 0.21 48.80 0.21 48.68 0.38 49.05
Peppers 0.17 49.00 0.15 48.50 0.15 48.51 0.35 48.98
Zelda 0.22 49.20 0.19 48.60 0.20 48.61 0.27 48.77
Average 0.18 49.00 0.16 48.62 0.16 48.54 0.26 48.73

Table 7
Comparison of BPP, overflow, and PSNR of the medical images for the methods of Sachnev et al.,(11) Lee et al.,(15) 
and Zhao et al.(16) and the proposed method.
Medical 
image

Sachnev et al.(11) Lee et al.(15) Zhao et al.(16) Proposed method

BPP Overflow PSNR BPP Overflow PSNR BPP Overflow PSNR BPP Overflow PSNR
M1 0.00 0.73 53.47 0.00 0.73 49.59 0.40 0.34 56.14 0.66 0.06 52.26
M2 0.00 0.57 51.60 0.00 0.58 49.50 0.31 0.28 54.71 0.53 0.02 52.10
M3 0.00 0.56 51.53 0.00 0.56 45.70 0.35 0.28 54.66 0.10 0.01 59.87
M4 0.00 0.56 51.61 0.00 0.57 45.59 0.30 0.28 54.76 0.52 0.01 52.08
M5 0.16 0.23 49.21 0.16 0.23 49.77 0.34 0.12 52.33 0.22 0.00 57.83
M6 0.52 0.02 48.67 0.54 0.02 49.66 0.37 0.01 51.26 0.29 0.00 58.20
M7 0.00 0.28 49.14 0.00 0.28 49.12 0.20 0.14 52.60 0.24 0.00 52.86
M8 0.25 0.05 47.96 0.16 0.06 48.77 0.15 0.03 51.40 0.17 0.00 54.15
M9 0.55 0.00 48.55 0.59 0.00 49.63 0.39 0.00 51.14 0.30 0.00 57.95
Average 0.16 0.33 50.19 0.16 0.34 48.59 0.31 0.17 53.22 0.34 0.01 55.25
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4.	 Conclusions

	 We proposed an optimal prediction method based on the histogram shift method for reverse 
information hiding. Five prediction methods of the chessboard or column type were tested to 
obtain the optimized prediction algorithm. The chessboard-type methods showed better results 
than the column-type methods when testing for natural and CT medical images. When the 
hiding and extraction of image information of the optimized prediction method in this study 
were compared with those of previous methods, it was found that the proposed method generally 
showed better results for various images. The proposed algorithm hides and predicts images 
effectively, and is expected to be applied to WSNs because large amounts of image information 
are transmitted through WSNs. 
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