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 In this study, we present a new dataset for managing asphalt pavement surfaces, especially 
for crack detection. To achieve this goal, we installed a multi-sensor system on the mobile 
mapping system (MMS) and obtained real-time RGB and IR images, and then the geometric 
constraint method was applied to find corresponding feature points to spatially register these 
images. Finally, three environmental data consisting of temperature, humidity, and wind speed 
are added to the images according to time and location. These data are integrated according to 
the proposed database model. The proposed system was tested and the databases were 
constructed for our experiment site, namely, the Capital Region First Ring Expressway in 
Goyang-si, Gyeonggi Province, South Korea. A total of 800 multi-sensorial images were 
collected from the expressway. The developed database can be used to train deep learning 
networks so that it will support detecting road signs or damage on asphalt surfaces.

1. Introduction

 Recently, advances in machine learning or deep learning have accelerated the construction of 
public datasets, such as ImageNet,(1) PASCAL VOC,(2) KITTI,(3) and COCO.(4) However, the 
public datasets built so far consist of daily images, and there is a lack of data for specific 
purposes, such as facility diagnosis and road surface condition assessment. Furthermore, 
because conventional datasets are composed of only visible images consisting of RGB channels, 
they are not suitable for detecting irregular objects from asphalt surfaces, which are difficult to 
distinguish on the basis of only color information. Hence, several studies have presented public 
datasets that provide conventional RGB images and infrared (IR) thermal images 
simultaneously.(5,6) These datasets consist of images taken by RGB and IR cameras installed on 
driving vehicles so that they can be used to classify surrounding objects when operating 
autonomous vehicles. However, there is still a lack of image data that include vertically 
photographed road surfaces to detect road surface damage more intuitively. The lack of such 
public datasets has been a major obstacle in developing a technique to detect damage on the 
asphalt surface using deep learning. In this study, therefore, we install regular cameras and an 

mailto:jaekang.lee@kict.re.kr
https://doi.org/10.18494/SAM3731
https://myukk.org/


2616 Sensors and Materials, Vol. 34, No. 7 (2022)

IR camera simultaneously on the bottom part of a mobile mapping system (MMS) to obtain 
image data. We perform the automatic registration of the image data; then, the sensor data from 
the MMS’s global positioning system (GPS) and an inertial measurement unit (IMU) and the 
environmental data about temperature, humidity, and wind speed are integrated into the above 
image data according to location and time.

2. Literature Review

2.1 MMS image dataset

 Recently, owing to the advancement of deep learning technology, the need for public datasets 
for learning and verification of deep learning models has emerged. However, since most public 
datasets consist of general photos, they are difficult to use for detecting damage on road surfaces 
using deep learning. To this end, several researchers published road image datasets taken by 
MMS. Fritsch et al. presented a novel open-access dataset and benchmark for a road area 
collected from MMS, called the KITTI-ROAD dataset.(7) The KITTI-ROAD dataset consists of 
600 frames that are extracted from the original KITTI dataset.(3) The dataset also has color 
stereo images, laser scans, and GPS information. More recently, Maddern et al. have introduced 
a hand-annotated MMS image dataset called Oxford Robotcar Dataset.(8) The Oxford Robotcar 
Dataset collected from six cameras mounted on the vehicle, along with LIDAR, GPS, and INS. 
The dataset was used to detect road boundaries.(9) In addition, Brostow et al. presented a high-
definition video dataset taken from CCTV-style cameras installed in a car, named CamVid.(10) 
The CamVid dataset contains 32 semantic classes. However, most road image datasets consist of 
images facing the front of a car, so that they can be used to detect pedestrians and objects around 
the road for autonomous driving. Therefore, to more precisely detect damage on the road surface, 
a new image dataset obtained by photographing the road surface vertically is needed.

2.2 IR thermography dataset

 Until now, IR thermography datasets have been mainly used to detect and track humans in 
images.(11,12) Park et al. proposed a method that uses a dataset of IR closed-circuit television (IR 
CCTV) images captured at high angles to train a deep learning network and detect humans.(13) 
Ligocki et al. presented a dataset composed of images recorded by RGB and IR cameras 
installed on the ceiling of MMS.(14) The dataset consists of 67 video image data captured in 
different environments and weather conditions, and the total road length in the video recording 
was 375 km. Krišto and Ivašić-Kos also presented a dataset consisting of 7412 thermal images 
that captured movements of various people and used it to detect people in the images.(12) The 
images were captured using long-wavelength IR (LWIR), and like other datasets, they were 
captured in various environments and weather conditions. As such, most thermal image datasets 
have been created to train deep learning networks to detect humans. Thus, the optical lenses are 
facing forward, and consequently, the field of view is inadequate for detecting damage on road 
surfaces. Golrokh et al. proposed a method that combines thermal and visible images captured 
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perpendicular to road surfaces.(15) The method combines the data taken from stationary sensors, 
which have a higher quality than the images captured in real time by MMS, but it may not be 
adequate because the amount of data obtained over time is significantly insufficient. 
Furthermore, thermal images may vary greatly depending on the surrounding environmental 
factors such as temperature and humidity. In this study, therefore, we obtain real-time images 
while driving through a sensing system installed at the bottom part of the MMS and divide them 
into time-series image data to enhance the quality of data. Table 1 shows the comparison of the 
existing MMS datasets. 

2.3 Registration of RGB and IR images

 Various methods to geo-register RGB and IR images have been developed so far. Various 
studies have used, as the most simple and intuitive method, the registration of two images by 
calculating the transformation parameters between images when the internal/external parameters 
of cameras and the phase difference between sensors are known.(16) An image registration 
method of the images using an image feature matching method has also been used in various 
studies.(17–19) Recently, as the development of machine learning methods has accelerated, 
registration methods of images obtained from multiple sensors have been proposed.(20–22) These 
methods train the model by inputting RGB and IR images simultaneously to extract semantic 
information, on the basis of which image registration is performed. However, although the image 
registration methods described above work well when the scale or field of view is very similar 
between the images, it is difficult to perform the image registration when they are geometrically 
deformed or distorted. Particularly, in the case of cameras mounted on the lower part of the 
MMS, images are often distorted and out of focus, and consequently, there are many difficulties 
in applying the above methods as they are. 
 Therefore, in this study, we use the geometric constraint method that randomly selects three 
matching point pairs in the two images and measures the ratio of the corresponding line segment 
lengths according to the coordinates of the three feature points.(17) On the basis of the ratio, the 
three most similar feature point matching pairs are obtained to be used for affine geometric 
deformation to perform the image registration.

Table 1 
Comparison of MMS datasets.

KITTI-ROAD Oxford Robotcar 
Dataset CamVid Our dataset

# of images 600 62605 700 800
Image resolution 
(IR camera) 800 × 400 1280 × 960 960 × 720 1624 × 1236

(640 × 512)

Sensing 
data

RGB ○ ○ ○ ○
LiDAR ○ ○ × ×
IR × × × ○
GPS ○ ○ × ○
Weather condition × × × ○
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3. Dataset

3.1 Data acquisition equipment

 In this study, the data were obtained through the scalable sensor platform attached to the 
lower part of the MMS equipment. The sensing system consists of RGB and IR sensors, GPS, 
and IMU, and the real-time data transmission is facilitated through network communication 
equipment. Furthermore, environmental factors such as temperature, humidity, and wind speed 
are obtained through the network communication equipment, and the time is synchronized 
between data through a GPS clock. Figure 1 and Table 2 show the sensing system used in this 
study.

3.2 Data acquisition section

 The test bed considered for this study is a 9 km section on the Capital Region First Ring 
Expressway in Goyang, Gyeonggi Province as shown in Fig. 2. The expressway is a circular 

Table 2 
Sensors used in this study.

Type Resolution Output data
2 × RGB camera Lynx camera 1624 × 1236 Three-channel (RGB) image
IR camera FLIR Tau 2 640 × 512 One-channel image

GNSS/INS Pos LV420 XY: 0.02m
Z: 0.05m

Three-dimensional 
coordinates

Fig. 1. (Color online) Multi-sensor system installed on MMS.
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beltway around Seoul that connects satellite cities around Seoul, including Goyang. Since the 
experimental section has been built for over 20 years, precise management of the pavement is 
required.

3.3 Data composition

 As described above, the dataset consists of RGB and IR video recording data, sensor data, 
and environmental data about temperature, humidity, and wind speed. The video data are 
divided into frame images of specific time according to the GPS time. Therefore, a pair of data 
consists of an RGB image, an IR image, environmental data, and location information data. In 
this study, the video dataset consists of GPS and IMU sensing data and RGB and IR video data; 
the image metafile dataset consists of the images constructed by dividing the video into one 
frame for a second, which are synchronized with the environmental data. Here, the values of 
temperature, humidity, and wind speed, which are environmental data, are stored in units of ℉, 
%, and m/s, respectively. Figure 3 shows sample data of the image dataset.

3.4	 Construction	of	registered	metafile	and	dataset

 In this study, we constructed a metafile by registering RGB and IR images and environmental 
data to provide more features to machine learning. The thermal and visible images output in the 
sensing system have different fields of view because they were captured at different positions, 
and the image resolution and internal expression parameters of cameras are also different. 
Furthermore, because the images were captured from the lower part of the MMS while driving, 
many images were distorted geometrically. In this study, therefore, we used a multi-modal image 
registration method to register the images outputted from different sensors. First, in the output 

Fig. 2. (Color online) Experimental area in this study.
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image pair, the RGB image is designated as a reference map, and the image is registered through 
the affine transformation of the IR image. The following equation shows the affine 
transformation:

 Pfixed = T ∙ Pmoving, (1)

where Pfixed denotes the pixels of the RGB image, and Pmoving denotes the pixels of the IR image. 
T denotes the affine transformation matrix, which is calculated as follows:

 T = R(θ) ∙ Sh(k) ∙ S(sx, sy) ∙ T(tx, ty), (2)

where R(θ) denotes the rotation matrix at an angle θ, Sh(k) denotes the shearing transformation, 
S(sx, sy) denotes the scale transformation for the x- and y-axes, and T(tx, ty) denotes the 
translation. Figure 4 shows the registered image metafile.
 The registered metafile is saved in the final form: three environmental data consisting of 
temperature, humidity, and wind speed are added to four channels, in which the IR intensity 
value is added to the RGB channels, forming seven channels in total. As described earlier, the 
dataset developed in this study is provided in two main forms (videos + sensing data, meta-
image file). First, the video dataset is classified into recording entity units, each stored in a 
separate folder. Figure 5(a) shows the structure of the video dataset. In the case of the meta-
image dataset, the RGB and IR images are captured at the same time as registered image and 
environmental data from a data set, respectively. Figure 5(b) shows the structure of the meta-
image dataset. Each individual dataset is compressed and provided in a .zip format. As described 
earlier, the registered meta-image file is saved as an h5 file that has seven channels.

Fig. 3. (Color online) RGB image and IR image data output.
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 In this study, we built an online database containing the datasets as shown in Fig. 6. The 
image data stored in the online database are visualized by time and section, and in addition, the 
environmental data and image processing results are also shown through visualization. The 
visualized image processing results show the RGB histogram for each section and the maximum/
minimum temperature in the IR image.

Fig. 5. Data structure of (a) video dataset and (b) meta-image dataset.

Fig. 4. (Color online) Meta-image dataset samples. (a) RGB images, (b) IR images, (c) registered images.

(a) (b) (c)

(a) (b)
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4.	 Conclusions

 In this study, we presented a new dataset for detecting damage on asphalt pavement surfaces. 
To achieve this goal, we installed a multi-sensor system on the MMS to record 9 km of the road 
surfaces while driving, and we synchronized the time between the multiple sensors using the 
GPS clock. The dataset provided in this study is mainly classified into a video dataset and a 
meta-image dataset. First, the video dataset provides the RGB camera and IR camera recordings 
and corresponding GPS data. The meta-image dataset, on the other hand, provides the basic 
RGB images and IR images, and the multi-channel registered images for the deep learning 
network training. The RGB and IR images were registered after performing affine transformation 
using a multi-modal non-rigid method. The dataset may be used to train deep learning networks, 
such as YOLO detectors, and we expect that it will be used mainly to detect road signs or 
damage on asphalt surfaces. The limitation of this study is that it provides image data for asphalt 
surfaces only. In a future study, therefore, we plan to obtain image data for concrete pavement 
surfaces and provide a registered dataset. Furthermore, we will provide a label file according to 
the COCO annotation style to increase the compatibility of the dataset with various deep 
learning networks.
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