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 There is growing demand for high-definition maps to improve the stability of current 
autonomous driving technology. However, the current process for building high-definition maps 
involves	 a	 high	 proportion	 of	 manual	 labor	 for	 digitizing	 and	 structural	 editing,	 making	 it	
difficult	to	maintain	road	conditions	that	frequently	change.	Moreover,	as	the	quality	of	a	high-
definition map varies with the skill of the person creating it, it is difficult to achieve consistency. 
Accordingly, in this study, we propose a methodology that extracts areas of road lane markings 
from	point	clouds	acquired	by	mobile	mapping	systems.	The	methodology	uses	a	deep	learning	
model to predict the color type of road lane markings, then automatically generates a high-
definition map layer. Positioning accuracy and vector structuring tests were performed to verify 
the usability of the road lane marking vector data generated using the proposed methodology. In 
the	positioning	accuracy	test,	the	maximum	error	for	the	horizontal	and	vertical	positions	was	
within	0.2	m	and	the	root	mean	square	error	at	the	95%	confidence	level	was	within	0.1	m	for	the	
original and generated vector data. In the vector structuring test, both study areas showed a high 
structuring	accuracy	of	85%	or	more.

1. Introduction

 Current autonomous driving technology relies on vehicle sensors such as cameras and GPS. 
However, to increase stability, there is a growing need for high-definition maps when the sensors 
fail	to	recognize	the	environment. High-definition maps provide road data such as lanes, signs, 
and road facilities necessary for autonomous driving based on precise 3D positioning 
information.(1,2)	Building	 a	 high-definition	map	 requires	 the	 collection	 of	 high-precision	 data	
through	mobile	mapping	systems	(MMSs)	that	combine	various	sensors,	followed	by	digitizing	
and structural editing.(3)	However,	as	digitizing	and	structural	editing	require	significant	manual	
labor, there are time and cost limitations for constructing road maps nationwide.(4) To solve this 
problem,	public	and	private	organizations	have	launched	joint	projects	to	build	high-definition	
maps	in	Korea;	however,	the	quality	of	high-definition	maps	depends	on	the	skill	of	the	person	
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creating them.(5) Therefore, there is a need for technologies that can automatically build high-
definition maps as an alternative to traditional manual construction systems.
 Existing studies on building high-definition maps to support autonomous driving have 
applied	 a	 variety	 of	 techniques.	 High-definition	 maps	 are	 typically	 built	 through	 MMS	
surveying;	however,	to	address	the	limitations	of	MMS	equipment	such	as	occluded	areas	and	
GPS multipath, which mainly occur in urban areas with a high density of high-rise buildings, 
researchers have conducted studies on generating basic data to construct high-definition maps 
by matching aerial photos with MMS data.(6,7) There have also been studies on detecting and 
classifying	road	lane	markings	by	combining	spatial	data	acquired	through	monocular	cameras	
(e.g., MMS, black box) with AI to automate manual high-definition map construction 
systems.(8–10)	 In	 addition,	 researchers	 have	 proposed	 a	 technique	 that	 automatically	 detects	
spatial relationship errors such as self-overlapping, vertex overlapping, and unclosed polygons to 
inspect high-definition maps.(11)

 Most research on high-definition maps has been focused on automating their inspection or 
generating	 basic	 data	 using	 aerial	 photos	 to	 supplement	 the	 limitations	 of	MMS	 equipment,	
whereas	 there	has	been	 insufficient	 study	on	 automating	 the	digitizing	 and	 structural	 editing	
processes.	 Furthermore,	 research	 on	 automating	 digitizing	 and	 structural	 editing	 has	mainly	
involved detecting and classifying road lane markings through an image-based deep learning 
model using color information. However, as color is sensitive to brightness, detection of the 
object	 of	 interest	 is	 limited	when	 the	 collected	 point	 clouds	 between	 two	 consecutive	 tracks	
differ	in	brightness.	Accordingly,	in	this	study,	we	focused	on	road	lane	marking	objects,	which	
are	 essential	 for	 autonomous	driving	 and	 consume	 the	most	 time	 in	 digitizing	 and	 structural	
editing.	The	purpose	of	this	study	was	to	automate	the	digitizing	and	structural	editing	of	road	
lane markings using a deep learning model that extracts the area of the road lane marking based 
on	point	clouds	acquired	by	an	MMS	and	is	trained	using	not	only	color	information	but	also	
geometric information.

2. Methodology and Materials

2.1 Methodology

	 The	objectives	of	this	study	can	be	divided	into	three	detailed	steps	as	shown	in	Fig.	1.
	 The	goal	of	 the	first	step	 is	 to	 link	a	point	cloud	acquired	via	an	MMS	and	 the	converted	
intensity image to extract the area of the road lane marking, for which ground point classification, 
image reclassification, and polygon classification are performed.
 The goal of the second step is to extract only the point cloud corresponding to the road lane 
marking in the original point cloud based on the area of the road lane marking extracted in the 
first step and automatically classify the color of the road lane marking using a deep learning 
model.
	 The	goal	of	the	third	step	is	to	automate	the	digitizing	and	structural	editing	processes	based	
on the road lane marking’s area information and color types predicted through the deep learning 
model.	To	draw	the	road	lane	markings,	automatic	digitizing,	centerline	extension,	and	direction	
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setting are performed, and the color information predicted through deep learning is input as 
attributes to automatically generate the road lane marking layer.

2.2 Study areas

 Figure 2 shows the study areas, which were general roads of eight lanes or more in Seongnam-
si,	Gyeonggi-do.	Study	area	A	is	an	inclined	road	in	an	urban	center	containing	zigzag	lanes	that	
indicate a low speed. Study area B is a curved road containing reversible lanes for U-turns and 
left turns through the median. Table 1 shows the area and number of points of the two study 
areas.
	 The	input	data	used	in	the	study	consisted	of	point	clouds	acquired	in	March	2020	using	a	
Pegasus:Two Ultimate MMS (Leica). The data contains 3D coordinates (XYZ), color information 
(RGB),	 and	 intensity	 information	 (I).	The	horizontal	 and	vertical	 collection	 accuracies	 of	 the	
point	clouds	acquired	by	the	MMS	are	2	and	1.5	cm,	respectively,	and	the	point	density	of	the	
two study areas is approximately 2100 points/m2 or more.

3. Application and Analysis

 A Python script was developed to automate the proposed methodology for extracting the road 
lane	marking	areas	and	digitizing	and	structural	editing	of	the	road	lane	markings.	Spatial	data	
analysis and data format conversion were performed using various libraries, such as the ArcPy 
library in the commercial software ArcGIS Pro 2.6.0, WhiteboxTools, CloudCompare, and 
Scikit-learn, which has a K-nearest neighbors algorithm.

Fig.	1.	 Methodology	of	automatic	digitizing	and	structural	editing	of	road	lane	markings	for	high-definition	maps.
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3.1 Extraction of road lane marking areas

	 The	point	clouds	acquired	by	the	MMS	contain	ground	points	such	as	roads	and	non-ground	
points such as buildings and trees.(12)	Since	the	road	lane	markings	(the	objects	of	interest)	are	on	
the	ground,	an	adaptive	TIN	(ATIN)	filtering	technique	that	removes	non-ground	points	using	
Delaunay triangulation was used, and its results are shown in Fig. 3.
 To efficiently remove asphalt from the road, the information of the ground points remaining 
after ground filtering was converted into an image, and the image was reclassified. A previous 
study reclassified the image using its RGB color and intensity information; however, as RGB 
color information is sensitive to light, the asphalt was not effectively removed when there was a 
large difference in brightness between the tracks in the MMS data collection environment.(9) As 
a	solution	to	this	problem,	utilizing	the	fact	 that	 the	road	markings	have	higher	intensity	than	
asphalt,	 in	 this	 study,	we	reclassified	 the	 images	on	 the	basis	of	 the	normalized	 intensity	and	
generated outline vector data of the road markings through contouring as shown in Figs. 4(a) and 
4(c).(13) In	 the	generated	road	markings,	 there	are	polygonal	objects	such	as	arrows	and	 linear	
objects	such	as	road	lane	markings.	To	classify	only	the	linear	objects,	 the	number	of	 interior	
angles	 greater	 than	 180°	 was	 identified;	 if	 an	 object	 had	 two	 or	 more	 such	 angles,	 it	 was	
classified	as	a	candidate	polygonal	object,	and	if	the	ratio	of	the	length	to	the	area	of	the	polygon	
was	smaller	than	a	certain	threshold,	it	was	determined	to	be	a	polygonal	object	and	removed.	
The	classified	linear	objects	are	shown	in	Figs.	4(b)	and	4(d).

Fig. 2. (Color online) (a) Study area A and (b) study area B.

(a) (b)

Table 1
Characteristics of study areas.
Study area Road characteristics Number of lanes Area (m) Number of points
A Inclined 10 70 × 201 32760415
B Curved 10 62 × 295 37869029
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(a) (b)

(c) (d)

Fig. 3. (Color online) (a) Side view of original point clouds of study area A, (b) side view of original point clouds of 
study area B, (c) side view of ground points of study area A, and (d) side view of ground points of study area B.

(a) (b)

(c) (d)

Fig.	4.	 (Color	 online)	 (a)	 Extracted	 contours	 in	 study	 area	A,	 (b)	 classified	 linear	 objects	 in	 study	 area	A,	 (c)	
extracted	contours	in	study	area	B,	and	(d)	classified	linear	objects	in	study	area	B.
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3.2	 Classification	of	road	lane	marking	types

 To automate the structural editing of the road lane markings, the color (white, blue, yellow) 
type was predicted using a deep learning model. PointNet was selected for the deep learning 
model, which uses not only color information but also geometric information for training.(14) 
PointNet has a disadvantage that it takes a longer time to train than the image-based deep 
learning model due to its large amount of training data, but it has the advantage of being able to 
train in a simple and unified structure by using the point cloud as input data. Table 2 shows the 
training data and parameters used to train the deep learning model.
 The PointNet model was trained with 40 repetitions, resulting in a training accuracy of 
99.977%.	For	the	test	dataset	of	the	PointNet	model,	the	point	cloud	corresponding	to	the	road	
lane markings extracted from the original point cloud based on the area generated in the first 
step was input. Figure 5 shows the color type prediction results for the two study areas using the 

Table 2
Training data and parameters of PointNet model.

Training dataset Batch	size EpochWhite Blue Yellow
1498 531 2764 24 40

Fig. 5. (Color online) (a) RGB image of study area A, (b) result of prediction of study area A, (c) RGB image of 
study area B and (d) result of prediction of study area B.

(a) (b)

(c) (d)
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pre-trained	model.	The	prediction	accuracies	were	89.326	and	80.150%	for	study	areas	A	and	B,	
respectively, indicating that there is no problem with classification of color type. As the results 
predicted	by	the	PointNet	model	are	stored	as	normalized	XYZ coordinates, absolute orientation 
was performed to restore the original coordinate system.

3.3 Automation of road lane marking digitizing and structural editing

 After classifying the road lane marking types based on the PointNet model, the classified 
color types and height information were converted into images to draw the centerlines. The 
centerlines of the road lane markings were then drawn using the thinning method based on the 
color	type	images,	and	the	color	type	attributes	of	the	linear	objects	were	input	through	a	spatial	
join.(15)	As	the	linear	objects	generated	on	the	basis	of	the	color	type	images	are	2D,	they	were	
converted	into	3D	objects	 through	3D	interpolation	using	height	 images.(16) Next, to show the 
continuity of the road lane markings, the centerline that connects the centers of the broken and 
solid lines was extended.
 We confirmed that the line extension tool provided by ArcGIS Pro expands not only the lanes 
on	the	same	line	but	also	adjacent	lanes,	causing	vectorization	errors.	Therefore,	in	this	study,	
we proposed an algorithm that selects and expands the lane that is larger than the predefined 
angle	 threshold	after	calculating	 the	 slope	between	 the	 start	point	and	end	point	of	 the	query	
object	and	the	start	point	of	the	adjacent	object	using	the	geometry	of	the	linear	object	as	shown	
in Fig. 6. After extending the line, the length information and color-type information were 
combined to automatically input attributes necessary for the road lane marking layer as 
stipulated by the National Geographic Information Institute. Finally, to set the vehicle direction 
to northbound or southbound, the northbound and southbound directions of the centerline were 
first set, and the directions of the remaining lanes were determined on the basis of the 
southbound centerline. Figure 7 shows the road lane marking layers automatically generated 
using the proposed methodology. As shown in Fig. 7(a), even though study area A was inclined, 
the road lane marking layer was generated in three dimensions, and the attributes of the selected 
bus-only	lane	object	were	input	according	to	the	high-definition	map	construction	manual:	the	

Fig.	6.	 (Color	online)	Line	extension	algorithm	using	the	geometry	of	the	linear	object.
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type attribute was a blue single solid line (type:311) and the kind attribute was the bus-only lane 
(kind:504). As shown in Fig. 7(b), even though study area B was a curved road, the road lane 
marking layer was drawn according to the road’s characteristics, and the attributes of the 
selected	centerline	object	were	input	as	follows:	the	type	attribute	was	a	yellow	single	solid	line	
(type:111) and the kind attribute was a centerline (kind:501).

3.4	 Verification	of	road	lane	marking	layer	usability

 To verify the usability of the road lane marking layers automatically generated using the 
proposed	methodology,	we	examined	whether	they	satisfied	the	quality	test	standards	published	
by the National Geographic Information Institute.(17)	For	the	quality	tests,	positioning	accuracy,	
object	validation,	geometric	integrity,	and	vector	structuring	tests	were	performed.
 To inspect positioning accuracy, four comparison points were set for each study area, and the 
horizontal	and	vertical	positions	of	the	vector	data	generated	on	the	basis	of	the	original	point	
cloud	 were	 compared.	 In	 accordance	 with	 quality	 test	 standards	 published	 by	 the	 National	
Geographic Information Institute in Korea, one comparison point per kilometer was set to 
determine the positioning accuracy, then the coordinates were compared. All the study areas 
were within 300 m, but four comparison points were set to perform a more accurate positioning 
accuracy test. Table 3 shows the results of the positioning accuracy test. The maximum error for 
the	horizontal	and	vertical	positions	was	within	0.2	m	and	the	root	mean	square	error	(RMSE)	at	

(a)

(b)

Fig. 7. (Color online) Road lane marking layers of (a) study area A and (b) study area B.
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the	95%	confidence	level	was	within	0.1	m,	indicating	that	the	positioning	accuracy	criteria	were	
satisfied.
	 Table	4	shows	the	results	of	the	object	validation	test,	where	the	numbers	of	omitted	objects,	
geometric	 type	errors,	and	description	position	errors	were	analyzed.	The	 test	 results	 showed	
that	most	of	the	omitted	road	lane	marking	objects	were	lanes	located	at	the	edge	of	the	road,	
such as bus-only and parking lanes, and had a low density. Geometric-type errors can be 
analyzed	by	determining	the	number	of	polygonal	objects	included	due	to	errors	among	the	road	
lane	 markings,	 which	 are	 linear	 objects.	 Study	 area	 A	 included	 two	 arrows	 and	 one	 object	
outside the road surface, while study area B included left-turn and U-turn arrows whose line 
portions	were	classified	as	linear	objects.	In	the	description	position	test,	no	errors	were	detected	
in study areas A and B.
 The geometric integrity test identifies whether there are multi-parts, vertex overlaps, and so 
forth. No errors occurred in study area A, indicating its suitability, whereas in study area B, one 
error	occurred	where	the	road	lane	marking	objects	intersected.
 The vector structuring test is used to inspect the attributes of vector data and was performed 
by	categorizing	the	data	by	type	and	kind	attributes,	which	are	essential	attributes	for	road	lane	
markings. Table 5 shows the structuring accuracy and Kappa coefficients for type and kind 
attributes in study areas A and B. According to the vector structuring test, the structuring 
accuracy	of	both	study	areas	was	at	least	85%,	and	the	Kappa	coefficient,	which	measures	the	
agreement	between	the	actual	type	and	the	type	input	as	the	attribute,	was	at	least	80%.	Hence,	
the usability of the vector data generated using the proposed methodology was verified.

Table 3
Positioning accuracy test for each study area using comparison points.
Study area Min error Max error Average error RMSE

A Horizontal 0.0220 0.0830 0.0548 0.0610
Vertical 0.0005 0.0044 0.0023 0.0030

B Horizontal 0.0264 0.0926 0.0588 0.0634
Vertical 0.0010 0.0077 0.0045 0.0051

Table 4
Results	of	object	validation	test	for	each	study	area.

Study 
area

Number of 
original road 

lane markings

Number of 
extracted road 
lane markings

Extraction 
rate	(%)

Number of 
omitted road 

lane markings

Omission rate 
(%)

Geometric 
type errors

Description 
position errors

A 181 167 92.27 14 7.73 3 0
B 253 230 90.91 23 9.09 2 0

Table 5
Vector structuring test for each study area.
Study area Attribute Structuring	accuracy	(%) Kappa	coefficient	(%)

A Type attribute 87.879 82.790
Kind attribute 90.909 87.372

B Type attribute 88.136 82.619
Kind attribute 89.831 84.068
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4. Conclusions

 We proposed a methodology to automatically generate road lane marking layers by combining 
spatial	 data	 and	 a	 deep	 learning	 model	 based	 on	 point	 clouds	 acquired	 by	 an	 MMS.	 The	
following conclusions were drawn.
 First, rather than using the original point clouds to extract the areas of the road lane markings, 
the	non-ground	points	were	removed,	and	only	about	2%	of	the	original	point	cloud	was	applied	
to the deep learning model through image reclassification and polygon classification, thus 
improving efficiency.
 Second, we proposed a methodology that uses a deep learning model to automate the 
structural editing of road lane markings. It adopted the PointNet model, which uses not only 
color information but also geometric information for training, thus enabling the attribute 
information to be automatically used as the input. In a vector structuring test, study areas A and 
B	both	yielded	good	results	with	structuring	accuracy	of	85%	or	more.
	 Third,	we	proposed	a	methodology	for	digitizing	and	extending	the	centerline	by	combining	
the area and predicting the color type of the road lane marking. To verify the usability of the 
automatically	generated	road	lane	marking	layers,	we	analyzed	whether	they	met	the	quality	test	
criteria for high-definition maps. In the generated vector data, the maximum error for the 
horizontal	and	vertical	positions	was	within	0.2	m	and	the	RMSE	at	the	95%	confidence	level	
was within 0.1 m, indicating that the positioning accuracy criteria were satisfied.
 The proposed methodology was used to automate some high-definition map construction 
targets, thereby resolving the inconvenience of manual construction. Future research on 
expanding the scope of targets that can be automatically constructed will facilitate the 
construction and updating of high-definition maps for national roads.
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