
2625Sensors and Materials, Vol. 34, No. 7 (2022) 2625–2635
MYU Tokyo

S & M 2995

*Corresponding author: e-mail: kemyoung@nsu.ac.kr
https://doi.org/10.18494/SAM3872

ISSN 0914-4935 © MYU K.K.
https://myukk.org/

Automatic Construction of Road Lane Markings 
Using Mobile Mapping System Data

In-Ha Choi and Eui-Myoung Kim*

Department of Spatial Information Engineering, Namseoul University,
91, Daehak-ro, Seonghwan-eup, Seobuk-gu, Cheonan, Chungcheongnam-do 31020, Korea

(Received February 22, 2022; accepted April 26, 2022: online published, May 30, 2022)

Keywords:	 high-definition maps, deep learning, road lane marking, digitizing, structural editing, quality 
test

	 There is growing demand for high-definition maps to improve the stability of current 
autonomous driving technology. However, the current process for building high-definition maps 
involves a high proportion of manual labor for digitizing and structural editing, making it 
difficult to maintain road conditions that frequently change. Moreover, as the quality of a high-
definition map varies with the skill of the person creating it, it is difficult to achieve consistency. 
Accordingly, in this study, we propose a methodology that extracts areas of road lane markings 
from point clouds acquired by mobile mapping systems. The methodology uses a deep learning 
model to predict the color type of road lane markings, then automatically generates a high-
definition map layer. Positioning accuracy and vector structuring tests were performed to verify 
the usability of the road lane marking vector data generated using the proposed methodology. In 
the positioning accuracy test, the maximum error for the horizontal and vertical positions was 
within 0.2 m and the root mean square error at the 95% confidence level was within 0.1 m for the 
original and generated vector data. In the vector structuring test, both study areas showed a high 
structuring accuracy of 85% or more.

1.	 Introduction

	 Current autonomous driving technology relies on vehicle sensors such as cameras and GPS. 
However, to increase stability, there is a growing need for high-definition maps when the sensors 
fail to recognize the environment. High-definition maps provide road data such as lanes, signs, 
and road facilities necessary for autonomous driving based on precise 3D positioning 
information.(1,2) Building a high-definition map requires the collection of high-precision data 
through mobile mapping systems (MMSs) that combine various sensors, followed by digitizing 
and structural editing.(3) However, as digitizing and structural editing require significant manual 
labor, there are time and cost limitations for constructing road maps nationwide.(4) To solve this 
problem, public and private organizations have launched joint projects to build high-definition 
maps in Korea; however, the quality of high-definition maps depends on the skill of the person 
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creating them.(5) Therefore, there is a need for technologies that can automatically build high-
definition maps as an alternative to traditional manual construction systems.
	 Existing studies on building high-definition maps to support autonomous driving have 
applied a variety of techniques. High-definition maps are typically built through MMS 
surveying; however, to address the limitations of MMS equipment such as occluded areas and 
GPS multipath, which mainly occur in urban areas with a high density of high-rise buildings, 
researchers have conducted studies on generating basic data to construct high-definition maps 
by matching aerial photos with MMS data.(6,7) There have also been studies on detecting and 
classifying road lane markings by combining spatial data acquired through monocular cameras 
(e.g., MMS, black box) with AI to automate manual high-definition map construction 
systems.(8–10) In addition, researchers have proposed a technique that automatically detects 
spatial relationship errors such as self-overlapping, vertex overlapping, and unclosed polygons to 
inspect high-definition maps.(11)

	 Most research on high-definition maps has been focused on automating their inspection or 
generating basic data using aerial photos to supplement the limitations of MMS equipment, 
whereas there has been insufficient study on automating the digitizing and structural editing 
processes. Furthermore, research on automating digitizing and structural editing has mainly 
involved detecting and classifying road lane markings through an image-based deep learning 
model using color information. However, as color is sensitive to brightness, detection of the 
object of interest is limited when the collected point clouds between two consecutive tracks 
differ in brightness. Accordingly, in this study, we focused on road lane marking objects, which 
are essential for autonomous driving and consume the most time in digitizing and structural 
editing. The purpose of this study was to automate the digitizing and structural editing of road 
lane markings using a deep learning model that extracts the area of the road lane marking based 
on point clouds acquired by an MMS and is trained using not only color information but also 
geometric information.

2.	 Methodology and Materials

2.1	 Methodology

	 The objectives of this study can be divided into three detailed steps as shown in Fig. 1.
	 The goal of the first step is to link a point cloud acquired via an MMS and the converted 
intensity image to extract the area of the road lane marking, for which ground point classification, 
image reclassification, and polygon classification are performed.
	 The goal of the second step is to extract only the point cloud corresponding to the road lane 
marking in the original point cloud based on the area of the road lane marking extracted in the 
first step and automatically classify the color of the road lane marking using a deep learning 
model.
	 The goal of the third step is to automate the digitizing and structural editing processes based 
on the road lane marking’s area information and color types predicted through the deep learning 
model. To draw the road lane markings, automatic digitizing, centerline extension, and direction 
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setting are performed, and the color information predicted through deep learning is input as 
attributes to automatically generate the road lane marking layer.

2.2	 Study areas

	 Figure 2 shows the study areas, which were general roads of eight lanes or more in Seongnam-
si, Gyeonggi-do. Study area A is an inclined road in an urban center containing zigzag lanes that 
indicate a low speed. Study area B is a curved road containing reversible lanes for U-turns and 
left turns through the median. Table 1 shows the area and number of points of the two study 
areas.
	 The input data used in the study consisted of point clouds acquired in March 2020 using a 
Pegasus:Two Ultimate MMS (Leica). The data contains 3D coordinates (XYZ), color information 
(RGB), and intensity information (I). The horizontal and vertical collection accuracies of the 
point clouds acquired by the MMS are 2 and 1.5 cm, respectively, and the point density of the 
two study areas is approximately 2100 points/m2 or more.

3.	 Application and Analysis

	 A Python script was developed to automate the proposed methodology for extracting the road 
lane marking areas and digitizing and structural editing of the road lane markings. Spatial data 
analysis and data format conversion were performed using various libraries, such as the ArcPy 
library in the commercial software ArcGIS Pro 2.6.0, WhiteboxTools, CloudCompare, and 
Scikit-learn, which has a K-nearest neighbors algorithm.

Fig. 1.	 Methodology of automatic digitizing and structural editing of road lane markings for high-definition maps.
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3.1	 Extraction of road lane marking areas

	 The point clouds acquired by the MMS contain ground points such as roads and non-ground 
points such as buildings and trees.(12) Since the road lane markings (the objects of interest) are on 
the ground, an adaptive TIN (ATIN) filtering technique that removes non-ground points using 
Delaunay triangulation was used, and its results are shown in Fig. 3.
	 To efficiently remove asphalt from the road, the information of the ground points remaining 
after ground filtering was converted into an image, and the image was reclassified. A previous 
study reclassified the image using its RGB color and intensity information; however, as RGB 
color information is sensitive to light, the asphalt was not effectively removed when there was a 
large difference in brightness between the tracks in the MMS data collection environment.(9) As 
a solution to this problem, utilizing the fact that the road markings have higher intensity than 
asphalt, in this study, we reclassified the images on the basis of the normalized intensity and 
generated outline vector data of the road markings through contouring as shown in Figs. 4(a) and 
4(c).(13) In the generated road markings, there are polygonal objects such as arrows and linear 
objects such as road lane markings. To classify only the linear objects, the number of interior 
angles greater than 180° was identified; if an object had two or more such angles, it was 
classified as a candidate polygonal object, and if the ratio of the length to the area of the polygon 
was smaller than a certain threshold, it was determined to be a polygonal object and removed. 
The classified linear objects are shown in Figs. 4(b) and 4(d).

Fig. 2.	 (Color online) (a) Study area A and (b) study area B.

(a) (b)

Table 1
Characteristics of study areas.
Study area Road characteristics Number of lanes Area (m) Number of points
A Inclined 10 70 × 201 32760415
B Curved 10 62 × 295 37869029
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(a) (b)

(c) (d)

Fig. 3.	 (Color online) (a) Side view of original point clouds of study area A, (b) side view of original point clouds of 
study area B, (c) side view of ground points of study area A, and (d) side view of ground points of study area B.

(a) (b)

(c) (d)

Fig. 4.	 (Color online) (a) Extracted contours in study area A, (b) classified linear objects in study area A, (c) 
extracted contours in study area B, and (d) classified linear objects in study area B.



2630	 Sensors and Materials, Vol. 34, No. 7 (2022)

3.2	 Classification of road lane marking types

	 To automate the structural editing of the road lane markings, the color (white, blue, yellow) 
type was predicted using a deep learning model. PointNet was selected for the deep learning 
model, which uses not only color information but also geometric information for training.(14) 
PointNet has a disadvantage that it takes a longer time to train than the image-based deep 
learning model due to its large amount of training data, but it has the advantage of being able to 
train in a simple and unified structure by using the point cloud as input data. Table 2 shows the 
training data and parameters used to train the deep learning model.
	 The PointNet model was trained with 40 repetitions, resulting in a training accuracy of 
99.977%. For the test dataset of the PointNet model, the point cloud corresponding to the road 
lane markings extracted from the original point cloud based on the area generated in the first 
step was input. Figure 5 shows the color type prediction results for the two study areas using the 

Table 2
Training data and parameters of PointNet model.

Training dataset Batch size EpochWhite Blue Yellow
1498 531 2764 24 40

Fig. 5.	 (Color online) (a) RGB image of study area A, (b) result of prediction of study area A, (c) RGB image of 
study area B and (d) result of prediction of study area B.

(a) (b)

(c) (d)



Sensors and Materials, Vol. 34, No. 7 (2022)	 2631

pre-trained model. The prediction accuracies were 89.326 and 80.150% for study areas A and B, 
respectively, indicating that there is no problem with classification of color type. As the results 
predicted by the PointNet model are stored as normalized XYZ coordinates, absolute orientation 
was performed to restore the original coordinate system.

3.3	 Automation of road lane marking digitizing and structural editing

	 After classifying the road lane marking types based on the PointNet model, the classified 
color types and height information were converted into images to draw the centerlines. The 
centerlines of the road lane markings were then drawn using the thinning method based on the 
color type images, and the color type attributes of the linear objects were input through a spatial 
join.(15) As the linear objects generated on the basis of the color type images are 2D, they were 
converted into 3D objects through 3D interpolation using height images.(16) Next, to show the 
continuity of the road lane markings, the centerline that connects the centers of the broken and 
solid lines was extended.
	 We confirmed that the line extension tool provided by ArcGIS Pro expands not only the lanes 
on the same line but also adjacent lanes, causing vectorization errors. Therefore, in this study, 
we proposed an algorithm that selects and expands the lane that is larger than the predefined 
angle threshold after calculating the slope between the start point and end point of the query 
object and the start point of the adjacent object using the geometry of the linear object as shown 
in Fig. 6. After extending the line, the length information and color-type information were 
combined to automatically input attributes necessary for the road lane marking layer as 
stipulated by the National Geographic Information Institute. Finally, to set the vehicle direction 
to northbound or southbound, the northbound and southbound directions of the centerline were 
first set, and the directions of the remaining lanes were determined on the basis of the 
southbound centerline. Figure 7 shows the road lane marking layers automatically generated 
using the proposed methodology. As shown in Fig. 7(a), even though study area A was inclined, 
the road lane marking layer was generated in three dimensions, and the attributes of the selected 
bus-only lane object were input according to the high-definition map construction manual: the 

Fig. 6.	 (Color online) Line extension algorithm using the geometry of the linear object.
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type attribute was a blue single solid line (type:311) and the kind attribute was the bus-only lane 
(kind:504). As shown in Fig. 7(b), even though study area B was a curved road, the road lane 
marking layer was drawn according to the road’s characteristics, and the attributes of the 
selected centerline object were input as follows: the type attribute was a yellow single solid line 
(type:111) and the kind attribute was a centerline (kind:501).

3.4	 Verification of road lane marking layer usability

	 To verify the usability of the road lane marking layers automatically generated using the 
proposed methodology, we examined whether they satisfied the quality test standards published 
by the National Geographic Information Institute.(17) For the quality tests, positioning accuracy, 
object validation, geometric integrity, and vector structuring tests were performed.
	 To inspect positioning accuracy, four comparison points were set for each study area, and the 
horizontal and vertical positions of the vector data generated on the basis of the original point 
cloud were compared. In accordance with quality test standards published by the National 
Geographic Information Institute in Korea, one comparison point per kilometer was set to 
determine the positioning accuracy, then the coordinates were compared. All the study areas 
were within 300 m, but four comparison points were set to perform a more accurate positioning 
accuracy test. Table 3 shows the results of the positioning accuracy test. The maximum error for 
the horizontal and vertical positions was within 0.2 m and the root mean square error (RMSE) at 

(a)

(b)

Fig. 7.	 (Color online) Road lane marking layers of (a) study area A and (b) study area B.
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the 95% confidence level was within 0.1 m, indicating that the positioning accuracy criteria were 
satisfied.
	 Table 4 shows the results of the object validation test, where the numbers of omitted objects, 
geometric type errors, and description position errors were analyzed. The test results showed 
that most of the omitted road lane marking objects were lanes located at the edge of the road, 
such as bus-only and parking lanes, and had a low density. Geometric-type errors can be 
analyzed by determining the number of polygonal objects included due to errors among the road 
lane markings, which are linear objects. Study area A included two arrows and one object 
outside the road surface, while study area B included left-turn and U-turn arrows whose line 
portions were classified as linear objects. In the description position test, no errors were detected 
in study areas A and B.
	 The geometric integrity test identifies whether there are multi-parts, vertex overlaps, and so 
forth. No errors occurred in study area A, indicating its suitability, whereas in study area B, one 
error occurred where the road lane marking objects intersected.
	 The vector structuring test is used to inspect the attributes of vector data and was performed 
by categorizing the data by type and kind attributes, which are essential attributes for road lane 
markings. Table 5 shows the structuring accuracy and Kappa coefficients for type and kind 
attributes in study areas A and B. According to the vector structuring test, the structuring 
accuracy of both study areas was at least 85%, and the Kappa coefficient, which measures the 
agreement between the actual type and the type input as the attribute, was at least 80%. Hence, 
the usability of the vector data generated using the proposed methodology was verified.

Table 3
Positioning accuracy test for each study area using comparison points.
Study area Min error Max error Average error RMSE

A Horizontal 0.0220 0.0830 0.0548 0.0610
Vertical 0.0005 0.0044 0.0023 0.0030

B Horizontal 0.0264 0.0926 0.0588 0.0634
Vertical 0.0010 0.0077 0.0045 0.0051

Table 4
Results of object validation test for each study area.

Study 
area

Number of 
original road 

lane markings

Number of 
extracted road 
lane markings

Extraction 
rate (%)

Number of 
omitted road 

lane markings

Omission rate 
(%)

Geometric 
type errors

Description 
position errors

A 181 167 92.27 14 7.73 3 0
B 253 230 90.91 23 9.09 2 0

Table 5
Vector structuring test for each study area.
Study area Attribute Structuring accuracy (%) Kappa coefficient (%)

A Type attribute 87.879 82.790
Kind attribute 90.909 87.372

B Type attribute 88.136 82.619
Kind attribute 89.831 84.068



2634	 Sensors and Materials, Vol. 34, No. 7 (2022)

4.	 Conclusions

	 We proposed a methodology to automatically generate road lane marking layers by combining 
spatial data and a deep learning model based on point clouds acquired by an MMS. The 
following conclusions were drawn.
	 First, rather than using the original point clouds to extract the areas of the road lane markings, 
the non-ground points were removed, and only about 2% of the original point cloud was applied 
to the deep learning model through image reclassification and polygon classification, thus 
improving efficiency.
	 Second, we proposed a methodology that uses a deep learning model to automate the 
structural editing of road lane markings. It adopted the PointNet model, which uses not only 
color information but also geometric information for training, thus enabling the attribute 
information to be automatically used as the input. In a vector structuring test, study areas A and 
B both yielded good results with structuring accuracy of 85% or more.
	 Third, we proposed a methodology for digitizing and extending the centerline by combining 
the area and predicting the color type of the road lane marking. To verify the usability of the 
automatically generated road lane marking layers, we analyzed whether they met the quality test 
criteria for high-definition maps. In the generated vector data, the maximum error for the 
horizontal and vertical positions was within 0.2 m and the RMSE at the 95% confidence level 
was within 0.1 m, indicating that the positioning accuracy criteria were satisfied.
	 The proposed methodology was used to automate some high-definition map construction 
targets, thereby resolving the inconvenience of manual construction. Future research on 
expanding the scope of targets that can be automatically constructed will facilitate the 
construction and updating of high-definition maps for national roads.
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