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 Highly accurate personal identification systems are required in many different recognition 
situations. In this study, the Mel-frequency cepstrum coefficient was used to extract the features 
of speakers. The aim of this study was to identify different speeches in different noisy 
environments. A maximum likelihood estimation method based on noise probability was 
proposed to enhance the recognition effects of the Gaussian mixture model of different speeches 
from mixed noise speech signals. Experimental results indicated that the method had high 
recognition results under various noise conditions. The recognition results of the proposed 
method in different noise environments were superior to those of a method using only one type 
of noise for modeling. Experimental results obtained from some unspecified speakers showed 
that three different languages (Mandarin, English, and Cantonese) were effectively identified.

1. Introduction

 Language is the most direct and effective communication method and tool for human beings 
because it is efficient, accurate, convenient, and natural. With the rapid development of society, 
many types of machines now participate in human production and social activities; therefore, 
improving the communication between people and machines and enhancing people’s ease with 
operating machines have become increasingly important. Each person has distinctive phonetic 
characteristics that are difficult to imitate by other people. The acquisition of voice signals is 
convenient and simple, and the cost of voice capture equipment or systems is low. Voices not 
only have the characteristics of portability, uniqueness, and memorability, but also allow the use 
of simple and noncontact equipment for data acquisition.  Other biological characteristics do not 
have these characteristics, and speaker recognition is also known as voice print recognition.
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 The recognition of different speakers and languages is an important branch of speech 
processing. Speaker recognition encompasses two fundamental tasks: speaker verification and 
speaker identification. Speaker verification is the task of determining the contents of speech 
from a set of speakers or known voices. Speaker identification is the task of determining whether 
the person is who they claim to be. Thus, to identify unknown speakers who do not match any of 
the models during the training processes, the investigation of an additional decision method or 
technology is necessary.(1)

 Speaker recognition technologies have shown promising application prospects and made 
major progress, but many problems remain to be solved. Currently, a quiet environment is 
usually necessary for speakers to train recognition systems. This is because in a noisy 
environment, the recognition performance of recognition systems markedly deteriorates, and 
recognition systems can exhibit better recognition performance in a quiet environment. For 
example, Wu and Wang proposed a robust feature parameter whose recognition accuracy 
reached 95% in a quiet environment, but when a noise with a signal-to-noise ratio (SNR) of 18 
dB was added, the recognition accuracy dropped to about 60%.(2) Robust endpoint detection is 
one of the most important areas of speech recognition processing, and feature parameters 
obtained from endpoint detection have very high sensitivity to the training environment. An 
effective endpoint detection algorithm can not only reduce the noise obtained from silent 
segmentation, but also reduce the processing time. In the past, a noise-free environment has 
usually been necessary to process the traditional endpoint detection algorithm, resulting in 
processing for voice recognition having low robustness to noise.(3) Thus, an urgent task is to find 
a feature parameter that is robust in noisy environments and can sufficiently specify the 
characteristics of speech.
 Cantonese is a language spoken by a large number of people, mainly in Guangdong Province, 
Macao, Hong Kong, Hainan, and Guangxi in southern China and also in overseas Chinese 
communities in Southeast Asia, North America, Singapore, Australia, and elsewhere. The first 
novelty of this study was that an algorithm for recognizing Cantonese was investigated. Among 
the research on speech recognition technologies, the development of speaker recognition systems 
having strong robustness to noise has played an important role. We propose a new algorithm that 
is robust in a noisy environment, for example, a voice mixed with the sound of flowing water or 
a thunderstorm. Another novelty of this study is that we evaluated the voice recognition rates of 
a speaker recognition system under noiseless and noisy environments with different types of 
noise and with three different languages (Mandarin, English, and Cantonese). Simulation and 
experimental results verified that the proposed algorithm has good recognition performances for 
the three languages in the presence of differently impulsive noises.

2. Speaker Recognition System

 A flow chart of the investigated speaker recognition system is shown in Fig. 1. The input 
speeches were sampled and converted to digital signals. The digital signals were input in the 
system and were subjected to classification and training phases. In the classification phase, the 
input speech was compared with stored reference models to identify the speech. In the training 
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phase, reference models were trained for each registered speaker who provided samples of their 
speeches.

2.1 Feature extraction

 The features of digital signals were extracted to convert the waveforms of the speech signals 
to a set of features for further recognition processes. Mel-frequency cepstrum coefficients 
(MFCCs) are defined as the coefficients collected from a Mel-frequency cepstrum (MFC). The 
feature vectors were extracted from the digital signals of the input speech in the format of 
MFCCs.(4,5) MFCCs were chosen because they are based on the perceptual characteristics of the 
human auditory system.(6,7) A block diagram of the MFCC feature extraction process is shown 
in Fig. 2. In the first step, speeches are sampled and converted to digital format, and they are 
used as input signals. Then, a Hamming window is applied to the digital speech signals, and this 
process divides the input signals into frames of samples. Each frame is windowed to minimize 
the discontinuity of the signal at the beginning and end of each frame. The fast Fourier transform 
(FFT) is used to convert each frame of samples from the time domain into the frequency domain. 
Then, filter banks are used to convert the frequency scale from hertz to the Mel-scale, with the 
frequency spaced linearly at lower frequencies and logarithmically at higher frequencies, then 
the logarithm is taken. The purpose of this stage is to capture the phonetically important 
characteristics of speech in a manner that reflects the human perceptual system.

2.2 Gaussian mixture model
 
 A Gaussian mixture model (GMM) is a probabilistic model, and within an overall population, 
it can represent normally distributed subpopulations. GMM-based classifiers show good 
performance in many applications, including speech processing applications.(8–11) Therefore, 
GMMs are used as the basis of both the classification and training processes to classify the 
speakers based on the probability that the test data originated from each speaker in the set.(12)

2.2.1 Training phase
 
 A GMM is essentially a multidimensional probability function. In the training phase, the 
GMM is established for each target speaker’s speech. Several Gaussian functions are used as a 

Fig. 1. Flow chart of speaker recognition system.
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linear weighting to fit the probability distribution of the target speaker’s speech feature vector o. 
For each speaker, a statistical model in the set is denoted by λ. For instance, the set of speaker s 
with size S is written as

 { }, ,    1, 2, , ; 1, 2, , ,s i i iw i M s Sλ µ σ= = =   (1)

where, w, μ, and σ are the weight, mean, and diagonal covariance, respectively, and M is the 
number of GMM components. If the parameter set of a GMvM value with mixing degree M is λ, 
then λ can be used to represent a GMM value, and a linear combination of P single Gaussian 
distributions can be used to describe the Mth-order GMM values as follows:
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where wi and o are the mixed weights of the ith component and the F-dimensional acoustic 
characteristic vector, respectively, and wi is the prior probability of the given component. Note 
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 Establishing a GMM value for speakers involves estimating the parameters of GMM values 
through processing the data of the target speakers. Maximum likelihood estimation (MLE) is a 
common method used to estimate the parameters.(13,14) We use the estimate–maximize (EM) 

Fig. 2. Block diagram of MFCC feature extraction.
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algorithm to find the MLE values from the GMM value. The training phase consists of two 
steps, initialization and the EM algorithm. The initialization step provides the initial estimations 
of the mean values for each Gaussian component in a GMM value. The EM algorithm 
recomputes the weights, covariances, and means of each component in a GMM value. Each 
iteration of the algorithm provides more accurate estimations of all three parameters. Two steps 
are performed to find the best parameters:
1. E-step:
 x is assumed to be observable and generated by a probability distribution, and x is referred to 
as incomplete data. We denote the complete data set as z = (x, i) and assume that the joint density 
function is

 ( ) ( ) ( ) ( )| , | | , | .p z p x i p i x p xλ λ λ λ= =  (5)

 Then, an auxiliary function is defined as
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2. M-step:
 To estimate , ,andi i iw µ σ , the derivatives of the auxiliary function are taken with respect to 

, ,andi i iw µ σ  to estimate the ith weight:
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The new estimations of the mean values can be written as
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and the new estimations of the diagonal elements of the ith covariance matrix can be written as
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2.2.2	 Classification

 To classify the input digital signals, we assume that there are N target speakers, each of whom 
is represented by a GMM value, denoted by { 1 2, , , Nλ λ λ }, and { 1 2, , , To o o } is used to 
recognize the observed feature sequence of speech. In this speaker recognition system, it is 
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necessary to identify the contents of speakers from speeches. This means that when the posterior 
probability of O for each GMM value is calculated, the speakers with the maximum posterior 
probability are determined to be those to which speech O belongs. Therefore, for each s in the 
speaker set, the classification system is used to find S in Eq. (1), and ( | )np Oλ  is maximized 
using the equation
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The recognition result is defined by the maximum posterior probability criterion and expressed 
as
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3. Experimental Results and Discussion
 
3.1 Speech model

 The language database used as the references was recorded in an interference-free and quiet 
environment. The sampling frequency used was 11.025 kHz with mono recording and 16-bit 
quantization. The entire database included 50 Cantonese speakers, and all speakers spoke 
standard Cantonese. Speech acquisition was divided into test speech and training speech, and 
the speakers read Chinese text aloud using normal speech. After the voices were recorded, they 
were stored in the form of a .wav file, and a specified folder was used to save them. The training 
time of each speech was 30 s and the test time of each speech was 10 s. In this experiment, we 
first used different MFCC dimension numbers to test the recognition rate of clean speech, then 
we added a single background noise. Finally, we tested the recognition rates of three different 
languages (Mandarin, English, and Cantonese) in a noiseless environment.

3.2 Clean voice waveform and spectrum

 Figure 3 shows that the clean voice waveform and spectrum are distributed in the low-
frequency region. In Fig. 4, the recognition rates with different Gaussian and MFCC dimension 
numbers are compared. When the Gaussian number was 2, the recognition rate had the lowest 
value but the recognition time was also shortest. The recognition rate increased from 82 to 91% 
and the recognition time fluctuated around 1.0 ± 0.05 s as the MFCC dimension number 
increased from 2 to 12. When the Gaussian number was 4, the recognition rate increased from 
86 to 96% and the recognition time fluctuated around 2.2 ± 0.1 s as the MFCC dimension 
number increased from 2 to 12. When the Gaussian number was 8, the recognition rate increased 
from 93% to close to 100% and the recognition time fluctuated around 4.5 ± 0.15 s as the MFCC 
dimension number increased from 2 to 12. To obtain a high recognition rate, the Gaussian 
number and MFCC dimension number should be set to 8 and 12, respectively.



Sensors and Materials, Vol. 34, No. 7 (2022) 2815

3.3 Mixed noise waveforms and spectra

 In a practical environment, a speech signal is often disturbed by different types of background 
noise, which cannot be controlled and can seriously affect the performance of an ideal 
recognition system. Usually, the background noise is an additive signal, and the collected signals 

Fig. 4. (Color online) Curves of recognition rates and recognition times of clean voice with different Gaussian and 
MFCC dimension numbers.

Fig. 3. (Color online) Clean voice waveform and spectrum.
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are the sum of a real speech signal and background noises. In this study, three types of noise 
signals, a thunderstorm, the noise of flowing water, and a thunderstorm together with the noise 
of flowing water, were used in the experiment. The noise signals with SNRs of 10 dB were 
incorporated into the recorded speech signals to generate noisy speech signals. Figures 5(a) and 
5(b) display the waveforms and spectra of the mixed signals with the flowing water and 
thunderstorm noises. The waveform distribution of both noises in Fig. 5(a) was centered around 

Fig. 5. (Color online) Mixed different noise waveforms and spectra. (a) Mixed with flowing water noise. (b) Mixed 
with thunderstorm noise.

(a)

(b)
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Fig. 6. (Color online) Curves of recognition rates with different noise conditions and MFCC dimension numbers.

0. The noise spectra were distributed in the high-frequency band: at around 3–6 Hz in Fig. 5(a) 
and 4–8 Hz in Fig. 5(b). Comparison of the results in Figs. 3 and 5 shows that the waveforms and 
spectra of the voice after mixing with the noises are markedly different from those of the clean 
voice.
 As can be seen from Fig. 6, the recognition rate for the signal with the flowing water noise 
increased from 68 to 82% as the MFCC dimension number increased from 2 to 12 and that for 
the signal mixed with the thunderstorm noise increased from 64 to 78%. The recognition rate for 
the signal with both the flowing water and thunderstorm noises increased from 58 to 72% as the 
MFCC dimension number increased from 2 to 12. The recognition rate in the single-noise 
environment was lower than that in the clean speech environment, and the recognition rate was 
further reduced when both noises were mixed with the speech. Also, the lower the MFCC 
dimension number, the lower the recognition rate. These results show that the feature extraction 
of the speech signal is directly related to the MFCC dimension number, and the more accurate 
the feature extraction is, the higher the speech recognition rate will be.

3.4	 Recognition	rates	for	three	different	languages

 The GMM speaker recognition model is currently the basic speaker recognition model, and 
the MFCC dimension number is the most widely used feature parameter in speech recognition, 
which can improve the recognition performance of a system, especially in an environment 
without noise. Therefore, we collected 50 samples of Mandarin speech and 50 samples of British 
English speech for speech recognition. As can be seen from the three broken lines in Fig. 7, the 



2818 Sensors and Materials, Vol. 34, No. 7 (2022)

recognition rate of Mandarin was slightly lower than those of English and Cantonese when the 
MFCC dimension number was 4 or less. When the MFCC dimension number was greater than 4, 
the recognition rate of Mandarin was higher than those of English and Cantonese; when the 
MFCC dimension number was 12, the recognition rates of Mandarin and English reached about 
100%. It can be concluded that the speaker recognition system designed in this experiment is 
very effective for a small database of speaker speech.

4. Conclusions

 In this study, we proposed a speaker recognition system to enhance the recognition rates of 
different languages under noiseless and different noise environments. To obtain a high 
recognition rate, the Gaussian number and MFCC dimension number should be set to 8 and 12, 
respectively. For different Gaussian numbers, the recognition rates of the clean voice increased 
and the recognition time showed no apparent fluctuation as the MFCC dimension number 
increased from 2 to 12. The recognition rates for the signals mixed with different noises (flowing 
water and/or thunderstorm noise) increased with the MFCC dimension number. The recognition 
rate of Mandarin was slightly lower than those of English and Cantonese when the MFCC 
dimension number was less than 4, and when the MFCC dimension number was 12, the 
recognition rates of Mandarin and English reached about 100%. In the future, once the 

Fig. 7. (Color online) Curves of recognition rates for different languages.
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recognition effect of the investigated software has been further strengthened, we will import it 
into the hardware circuit design of a field-programmable gate array and realize applications to 
recognize different languages under a greater range of noise conditions.
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