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 Because teachers in colleges and universities generally do not know the number of students 
in their classes, they spend considerable time monitoring student attendance, reducing the 
teaching time. In this study, we investigated a new method for effectively monitoring the 
attendance of students in classes of colleges and universities. When students enter a classroom at 
our campus, they must store their cellphones in a pouch containing multiple pockets that is hung 
from a wall of the classroom. These cellphone storage hanging pockets (abbreviated to cellphone 
pockets) have become a necessary tool for students to store cellphones and not only improve the 
efficiency of studying in the classroom, but are also convenient for teachers to check student 
attendance at the start of classes. We investigated a template matching method for efficiently 
finding the attendance of students using cellphone pockets. We used images of cellphone pockets 
as the input images for template matching to find the grids of the cellphone pockets with no 
cellphones. This enabled teachers to use the serial numbers of the cellphone pocket grids with no 
cellphones to identify the absent students.

1. Introduction

 An image is an entity obtained by observing objectives on various observation systems, and 
it can directly or indirectly act on the human eye to generate vision. In the transmission and 
exchange of information, an image is an important communication medium, and the color and 
grayscale are key factors that determine the expressiveness of an image.(1,2) In the human visual 
system, color is an important factor affecting visual effects. Since human eyes are much less 
sensitive to grayscale images than color images, for some grayscale images, such as IR images, 
scientific images, and magnetic resonance images, many researchers aim to transfer grayscale 
images to color images to enhance visual effects. These transfer techniques of image colorization 
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currently rely strongly on human interaction.(3,4) To convert a grayscale image into a color 
image, the traditional method is to use pseudo-color processing to map each of the grayscale 
levels of a black-and-white image to the assigned color.(5–7) That is, by establishing a one-to-one 
correspondence between a grayscale image and a color image, the grayscale image can be 
automatically converted into a color image. The advantages of this method are that it is fast and 
simple, and it does not change the information content of the processed image. However, the 
colorization effect is blunt and unnatural, and the application scope is limited.
 Ruderman et al. proposed a method to convert a set of spectral natural images into long-, 
medium-, and short-wavelength cone spaces. This means that the different channels in the color 
space are orthogonal to each other, so that the color value of each channel is changed 
independently.(8,9) Reinhard and Pouli proposed a color transfer algorithm based on this anti-
correlation Lαβ color space, by which the color of an image can be changed, and the color-
changed image can retain its original shape and match the color of the reference image.(10) Welsh 
et al. subsequently proposed a method to improve this algorithm, enabling it to be used for 
grayscale images.(11) By this method, a color image can be processed as a reference image to 
colorize grayscale images and convert them into color images.
 When students enter a classroom at our campus, they must store their cellphones in a pouch 
containing multiple pockets called a cellphone storage hanging pocket (cellphone pocket 
hereafter) that is hung from a wall of the classroom. An algorithm based on the algorithms 
mentioned above was proposed for the automatic detection of student attendance in the 
classrooms of a college or university by judging whether the cellphone pocket grids were empty 
or not from input images of the pocket. The proposed method was based on the template 
matching method and it was mainly used to compare the similarity between template images and 
actual images. The template matching method is commonly used with different sensing 
technologies. For example, Thanh et al. presented an enhanced template matching method that 
combined both orientation and spatial information in an effective and simple way, which was 
used to detect cars, humans, and maple leaves from images.(12) Xiao et al. presented an integrated 
method to analyze videos to monitor structural health and to enhance the accuracy of the vision-
based structural responses. This method used template matching algorithms with a subpixel 
method.(13) Han proposed a template matching vision sensor system that easily detected different 
types of objects without prior training and also increased the reliability of template matching.(14) 
Chen and Zhang used a feature-weighted template matching method to design a banknote 
character identification algorithm.(15) In practical applications, the template matching method is 
simple to operate and can ensure a high recognition rate. The novelty of this paper is that we 
used the template matching method and took images of cellphone pockets in college and 
university classrooms as input images to match template images. Then, a system for the 
automatic detection of student attendance in college and university classrooms was investigated. 
Because the investigated system senses the cellphone numbers in the grids of the cellphone 
pocket, in this paper, we report an application of a smart sensing system and related technologies.



Sensors and Materials, Vol. 34, No. 7 (2022) 2823

2. Processing in Automatic Detection of Attendance

2.1 Pretreatment of cellphone pockets

2.1.1 Collection of images of cellphone pockets

 There are many methods of obtaining the images of cellphone pockets, the most direct being 
to use a cellphone to take photographs or to download images from websites that sell cellphone 
pockets. To reduce the difficulty of preprocessing and obtain better template images, we used 
images of cellphone pockets downloaded from websites, thus avoiding the uneven illumination 
resulting from photographing cellphones. In this study, we assume that the maximum number of 
students in a class is 54; therefore, a cellphone pocket with 54 grids was chosen. Note that the 
collected images of cellphone pockets needed to be divided into a template image and an input 
image. We made a template for each grid of the cellphone pocket. To achieve a high accuracy 
rate after template matching, a score of least than 0.7 after template matching was necessary for 
the input images of the grids of the cellphone pocket for them to be stored in the cellphone. 
Owing to the uniqueness of the template image, it must be ensured that the input images and 
template images are of the same type of cellphone pocket to improve the success rate of template 
matching. The template image and input image of the cellphone pocket are respectively shown in 
Figs. 1(a) and 1(b). We found that these images meet the above requirements.

2.1.2 Grayscale processing

 Grayscale images can characterize most of the features of RGB (red, green, blue) images with 
less data than that for images that do not use grayscale processing. Common grayscale 

Fig. 1. (Color online) (a) Template image and (b) input image.

(a) (b)
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transformation methods include the maximum grayscale method, average grayscale method, 
weighted average grayscale method, and Open Source Computer Vision Library (OpenCV) 
grayscale processing method. The maximum grayscale method uses the maximum value of the 
R, G, and B components of each pixel in a color image as the grayscale values of the image:

 f(x, y) = max(R(x, y), G(x, y), B(x, y)). (1)

 The average grayscale method uses the average value of the R, G, and B components of each 
pixel in a color image as the grayscale values of the image:

 f(x, y) = (R(x, y), G(x, y), B(x, y))/3. (2)

 The weighted average grayscale method assigns different weights to the R, G, and B 
components of each pixel  in a color image to obtain more suitable grayscale values of the image. 
Since the human eye is most sensitive to green and least sensitive to blue, the G component has 
the highest weight and the B component has the lowest weight. The formula used is

 f(x, y) = 0.30R(x, y) + 0.59G(x, y) + 0.11B(x, y). (3)

 When OpenCV is used for grayscale processing and the imread() method is used to transfer 
an image, since the images read by OpenCV are in RGB format, it is necessary to convert the 
images into RGB format and then perform a grayscale transformation. The grayscale processing 
by OpenCV can generally add the parameter zero to imread() in the read images. It can also use 
cvtColor to perform grayscale processing to obtain a grayscale image. Figures 2(a) and 2(b) 
show the template matching image (denoted as LA) and input image LA, respectively.

Fig. 2. (Color online) (a) Template grayscale image LA and (b) input grayscale image LA.

(a) (b)
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2.1.3 Image binarization

 Image binarization is the technology of converting a grayscale image into a black-and-white 
image. This process essentially reduces the amount of information contained within an image 
from 256 shades of gray to two values, black and white, corresponding to a binary image. After 
the image is binarized, there are only two clean values in the entire image, making it very 
suitable for contour detection in this study. After calculating the contour, graphic processing can 
be performed, such as drawing the contour of the image, enhancing the sharpness of the edge of 
an image, emphasizing the contour of an image, and adding shadows to an image according to 
the contour. Therefore, this is a very important technology, and its operation with other functions 
can achieve many effects.
 To further extract the reverse control area of the cellphone pocket from the image, the 
maximum class difference method (Otsu method) was used to binarize the grayscale image LA 
to obtain the binary image LB.(16) This is because the Otsu method can traverse all possible 
threshold values to obtain the best threshold values. However, this method is sensitive to noise 
due to the uneven illumination of images. Such noise distorts or deforms images of the cellphone 
pocket and affects the extraction of image data. The top-hat reconstruction method is a nonlinear 
filter based on a morphological operation that can perform noise suppression, feature extraction, 
and image segmentation.(17) Top-hat reconstruction can eliminate the above shortcomings of the 
Otsu method; thus, it is necessary to carry out top-hat reconstruction of the grayscale image LA 
and binary image LB. The transformation formula used in top-hat reconstruction is

 Top_hat(A) = A – RA(AθB), (4)

where RA(AθB) represents the result of the open operation. In addition, the gaps between the 
cellphone pocket grids must be used as boundaries in the following investigation; thus, the 
obtained LB image must also undergo a color-flipping step for subsequent segmentation. Figures 
3(a) and 3(b) show the grayscale image LA and binary image LB, respectively.

Fig. 3. (a) Grayscale image LA and (b) binary image LB.
(a) (b)
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2.1.4 Contour detection

 The next step is to perform feature extraction on the binary image LB to identify the area of 
the cellphone pocket. Generally speaking, there are other foregrounds around the cellphone 
pocket, which will affect the feature extraction of the cellphone pocket. In addition, every grid of 
the cellphone pocket is connected to the others. To recognize the cellphone pocket image as a 
region, morphological operations must be performed on the image, such as a closing operation, 
expansion, and maximum filtering. By adjusting the relevant parameters, we can ensure that the 
region of the cellphone pocket becomes a single area. The basic principle of the closed operation 
of the morphology comprises the operations of swelling and then corrosion, which help to close 
small holes inside the foreground objects and remove small black spots on the objects. Figure 4 
shows that black spots in the foreground are partially removed after the morphological operation, 
but the foreground does not become perfectly white. Because the cellphone pocket was 
successfully converted into a single area, no additional computing resources were necessary to 
make the entire region white.
 The next step is performed for contour detection, where the principle is to hollow out the 
internal points. For example, if there are 3 × 3 rectangular points in the original image, then the 
point in the middle can be removed, so that the “circle of points” remains outside and forms 
outlines (B1, B3, and B4 in Fig. 5). Therefore, the boundaries and connected domains in an image 
can form a topological graph.
 The contour detection is used to detect the binarized edge image, and the four borders of the 
image constitute its frame. Generally, the frame of an image is defined by the zero pixels. The 
area occupied by the connected zero pixels in an image is called the zero-connected component, 
and the one-connected domain is obtained in the same way. If there is a zero-connected domain 
S containing the frame of the image, then S is called the background. The pixel in the ith row 
and jth column is represented by (i, j), and the pixel value is represented by f{i, j}. This image can 

Fig. 4. (a) Template LB image after morphological operation and (b) input LB image after morphological 
operation.

(a) (b)
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then be represented by F = { f{i, j}}. When 4(8) is used to denote the connectivity of a pixel, if the 
pixel has a value of one, it means that 4(8) is connected; if the pixel has a value of zero, it means 
that 8(4) is connected. Next, it is necessary to find the boundary points to obtain the contour. In 
the case of 4(8) being connected, if a one-pixel point (i, j) has a zero-pixel point (p, q) in its eight-
connected domains, then this one-pixel point is called a boundary point. The above descriptions 
are used to find the junction of the one-connected domain [the parent set of (i, j)] and the zero-
connected domain [the parent set of (p, q)], and the one-pixel point on the boundary line is 
recognized as the boundary point.
 By examining an image after the morphological operation, we found that only one contour 
exists. In OpenCV, the function cv2.findContours() is used to find the contour of an image. For 
further processing, we must also visualize the contour. The function cv2.drawContours() can 
draw contours in the target image. Because drawing a contour in the original image will change 
its characteristics, we use the img.copy() method to make a copy of the image and then draw the 
contour.
 From Fig. 6, one can see that the identification of the contour is very accurate. As mentioned 
above, even if there are other contours, they will not affect the extraction of the contour of the 
cellphone pocket. To extract this contour, the cv2.boundingRect() function is first used to find 
the minimum rectangle of the contour. To simplify the processing of the cellphone pocket, the 
template LB image and input LB image are processed directly. This processing method has a 
similar effect to that of processing the original cellphone pocket. The cv2.boundingRect() 
function returns a list [(x1, y1, w1, h1), (x2, y2, w2, h2), (x3, y3, w3,h3), …, (xi, yi, wi, hi)], each of 
which is a tuple comprising the abscissa coordinate, ordinate coordinate, width, and height of the 
smallest rectangle of each contour.
 The next step is to find the smallest rectangle of the contour of the cellphone pocket and 
extract it from the LB image. The basic idea of finding the smallest rectangle of the contour is to 
find its appropriate width and height. According to the LB image, the aspect ratio of the 
cellphone pocket is about 1:2, then we can define the aspect ratio as α = hi/wi. We set α ∈ [1.8, 
2.1] as the screening condition, and the image matrix is used to filter out the LB image of the 
contour of the cellphone pocket, as shown in Fig. 7.

Fig. 5. Topological relationship of LB image.
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3. Results and Discussion

3.1 Image segmentation

 Image segmentation is the main problem in image recognition. To carry out image 
segmentation and obtain each cellphone pocket grid with a separately marked serial number (i.e., 
student number) as a template, we use bar graphs to process the binary image of the template to 
achieve image segmentation.

Fig. 7. (a) Template contour of the binarized grayscale image LB and (b) input contour of the binarized grayscale 
image LB.

(a) (b)

Fig. 6. (Color online) (a) Contour of the template image and (b) contour of the input image.
(a) (b)
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3.1.1 Statistical image with black spots in each row 

 In this step, the number of black spots in each line of the binarized greyscale image LB is 
counted. If the number of black spots in a line is much larger than that in surrounding lines, it 
can be seen as a dividing line of the cellphone pocket grid. In this way, we distinguish each line 
of the cellphone pocket more effectively than by using contour detection to extract images of the 
cellphone pocket grid. The key steps in counting the number of black spots in the binarized 
greyscale image LB are to find and record the number of black spots, draw the corresponding 
bar graph, and then segment each cellphone pocket grid using the peak of the bar graph. The key 
code is listed below:

Count the number of black values (0) in each row
 hd = []
 for row in range(rows):
  res = 0
  for col in range(cols):
   if threshold[row][col] == 0:
    res + = 1
  hd.append(res)

3.1.2 Plot black-spot bar graph

 When the data in the barh() function of the matplotlib.pypolt model is called for drawing, the 
data in hd[ ] is taken as the target value, the coordinate point of each action of the LB image is 
used to plot the bar graph, and Fig. 8(a) is obtained. In Fig. 8(a), although the peaks and troughs 
can be distinguished, it is not easy to find the coordinates defining the boundary of the cellphone 
pocket grid. Therefore, the trough is subjected to a zeroing process. Figure 8(a) shows the trough 
in the bar graph without the zeroing process, and Fig. 8(b) shows the trough in the bar graph with 
the zeroing process. When hd[i] ≤ 200, we set hd[i] = 0 to obtain the results in Fig. 8(b).

Fig. 8. (Color online) (a) Trough in the bar without zeroing process and (b) trough in the bar with zeroing process.

(a) (b)
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3.1.3 Horizontal divisions of cellphone pocket

 As shown by the processed bar chart in Fig. 8(b), the black rectangles are next to each other, 
their heights in each row are similar, and they form a large rectangular bar. There is also a space 
between each large rectangular bar. These spaces can be roughly divided into two categories: 
very narrow spaces whose width is similar to that of a large rectangular bar (referred to as the 
small-space rectangular bar group) and very wide spaces with a width of about 100 pixels 
(referred to as the large-space rectangular bar group). By comparing Figs. 6(b) and 8(b), we can 
roughly analyze the information conveyed by these large rectangular bars. We found that the 
small-space rectangular bar group represents the entrance of each grid of the cellphone pocket, 
whereas the large-space rectangular bar group represents the rectangular frame where the 
number of the cellphone pocket grid is located. Figure 8(b) also shows some special rectangular 
bars, for example, a rectangular bar whose longitudinal axis close to zero is very thin and is a 
rectangular bar group with no small spaces. Therefore, it is neither the grid entrance of the 
cellphone pocket nor the rectangular frame where the number of the cellphone pocket is located.
 Comparing Figs. 6(b) and 8(b), we conclude that the thin strip is the bottom frame of the 
cellphone pocket. In addition, there is a special small-space rectangular bar group close to the 
vertical coordinate of 780. Our analysis suggests that it represents the area of the text “mobile 
phone pocket”, which is located at the top of the cellphone pocket. The next step is to find the 
horizontal coordinates at which the grids of the cellphone pocket are divided, the result of which 
is shown in Fig. 9. The coordinates of the rectangular bars must satisfy the following: the upper 
side of the rectangular bar is empty (0) and the lower side is also empty (0). The two ordinates 
form the coordinates of a large rectangular bar, but these coordinates are not those of the 
segmentation images. For the segmentation images, the trough boundary of the bar can be used 

Fig. 9. Template image of the divided cellphone pocket., for Nos. (a) 1–30 and (b) 31–54.

(a) (b)
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as the coordinates. Note that it is necessary to filter the coordinates of the trough with width less 
than 50 pixels, because they cannot be the width of the cellphone pocket grid. The key codes and 
coordinates are as follows:

# find the interval that is not zero
 position = []  # record coordinates
 reg = []
 for i in range(rows-1): # traverse each row
  if hd[i] == 0 and hd[i+1]!= 0:
   reg.append(i)
  if hd[i]!= 0 and hd[i+1] == 0:
   reg.append(i)
  if len(reg) == 2:
   if (reg[1] - reg[0]) >= 50: # Filter the coordinates whose trough width is less than 50 
pixels
    position.append(reg)
    reg = []
   else:
    reg = []
Boundary coordinates of the troughs: [[49, 109], [129, 190], [212, 272], [296, 354], [377, 435], 
[459, 516], [538, 599], [622, 679], [703, 758]]

 Next, we obtain the image segmentation coordinates of the trough boundary coordinates 
from the image LB of the template cellphone pocket shown in Fig. 6(b). Then, the cellphone 
pocket is divided horizontally with the dividing coordinate points as the boundary, and nine 
lines of grids are obtained from the cellphone pocket. This also ensures the complete interception 
of the entrance image of the grids on the cellphone pocket. The key code is described below:

# split into nine lines
Group = [] # Store the coordinates of each row of grids on the cellphone pocket
for i in position:
 group = threshold[i[0]-18:i[1],:] # Coordinate area shrinks
 Group.append(group)
 plt.imshow(group,cmap = ‘gray’)
plt.show()

3.1.4 Statistical image with black spots in each column

 When the grids of the nine rows of the cellphone pocket are traversed, we count the black 
spots in each column. The key point is that we use the coordinates of each column to traverse the 
black spots of each row and count the records. Because the process is similar to that of statistical 
imaging for each line, little analysis is required in this step.
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3.1.5 Plot black-spot bar charts

 Next, we call the barh() function in the matplotlib.pypolt module to plot the black-spot bars. 
The method is similar to that in Sect. 3.1.2, and we obtain the bar with the trough not subjected 
to zeroing processing, as shown in Fig. 10(a). From Fig. 10(a), we find that although the peak and 
the trough can be distinguished, it is difficult to find the coordinates of the dividing lines of the 
cellphone pocket grids. Therefore, the trough is reset to zero. As shown in Fig. 10(b), the result of 
processing is a group of seven small-space rectangular bars. Comparing this result with Fig. 9, it 
can be seen that the large rectangular bars represent the division lines of each cellphone pocket 
grid.

3.1.6 Longitudinal divisions of cellphone pocket

 As shown in Fig. 10(b), if each rectangular bar satisfies the two coordinates that are empty on 
the left and empty on the right, then the edge coordinates of binarized greyscale image LB are 
obtained, and they are recorded as the coordinates of division points. When the binarized 
greyscale image LB is used to divide the cellphone pocket horizontally with the dividing 
coordinates as the boundary, then we obtain six-column grids in the cellphone pocket (the 
process is similar to that in Sect. 3.1.3). Next, we traverse the cellphone pocket grids on each row 
to perform the above operations, and 54 trough boundary coordinates are obtained. The trough 
boundary coordinates are defined as the image segmentation coordinates and they are saved in 
the list “position”, and the cellphone pocket is divided horizontally with the segmentation 
coordinate points as the boundary line. Some of the results are displayed in Fig. 11.

3.2 Save templates

 Next, the obtained 54 grids of the cellphone pocket are saved and set as the templates, where 
image annotation is a key part of setting the template. Here, the method of loop traversal is used 
to realize this function, and the order is defined as

Fig. 10. (a) Trough for the bar without zeroing processing and (b) trough for the bar with zeroing processing.
(a) (b)
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 order = i(count(col)) + j + 1, (5)

where i represents the serial number of each element in the group (i.e., the coordinate serial 
number of the cellphone pocket grid in each row), j represents the serial number of each element 
in the position (i.e., the coordinate serial number of each cellphone pocket grid), and count(col) 
indicates the number of cellphone pocket grids in each row (six in this study). The template 
images must also be of the same size. Here, we set the size of each template image to 60 × 70 
pixels for the subsequent template matching. The key code is listed below:

for j, loc in enumerate(position): # loc represents image segmentation coordinate
 col_group = g[:, loc[0]:loc[1]] # all sizes are set as (60, 70)
 col_group = cv2.resize(col_group, (60,70))
 if not os.path.exists(‘template’):
  os.mkdir(‘template’)
 cv_show(“, col_group)
#  plt.imshow(col_group, cmap=‘gray’) 
#  plt.show()
 cv2.imwrite(‘template’ + ‘./img{}.jpg’.format(i × (len(position))+ ( j+1)), col_group)

3.3 Template matching process

3.3.1 Preprocessing the input image

 To finish the template matching process, the input image requires preprocessing, as described 
above, and image segmentation. The segmentation of the input images is basically the same as 
that of the template images. The principle of template matching technology is used to compare 
the similarity between the template image and the input image. However, the template matching 
process cannot be performed directly to segment the cellphone pocket grids (input image), and 
further processing is required. To improve the recognition accuracy, it is necessary to further 
process the input images of the divided grids. Figure 12(a) shows the normalized model of a 
template image, and Figs. 12(b) and 12(c) show the normalized models of the input images. From 
the images, we find that the input image in Fig. 12(b) will reduce the recognition success rate, 
making it necessary to convert the standardized model of Fig. 12(b) into the standardized model 
of Fig. 12(c) to improve the recognition accuracy. The process of code conversion is as follows:

Fig. 11. (Color online) Screenshots of some results. For Nos. (a) 18, (b) 01, (c) 22, and (d) 54.  

(a) (b) (c) (d)
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for r in range(rows):
for c in range(cols):
 if col_group[5:15,15:46].mean() >=100:
  if np.hstack((col_group[5:15,:10],col_group[5:15,49:-1])).mean() <= 180:
   col_group[r][c] = 0

3.3.2 Template matching process

 The template matching process is used to find the positions of template images in a larger 
image. We use the basic principles of the template matching process and improve it to 
automatically evaluate student attendance in a college classroom based on the cellphone pocket. 
First, we slide the template images onto the input images and then compare the similarity 
between the images. Since our template image is of a single cellphone pocket grid rather than the 
whole cellphone pocket, the size of the template images is the same as that of the input images. 
Therefore, the comparison between a template image and an input image does not require an 
input image to be slid on a sample image; it is only necessary to directly compare the two 
images. We found that the similarity was very high. To reduce the similarity, we change the 
region of the template image and use the entrance of the cellphone pocket grid as the matching 
area of the template image, then the new template image is compared with the input image.
 The matchTemplate method provides many different matching methods, and we use the 
TM_CCORR_NORMED method to calculate the normalized correlation; a normalized 
correlation closer to 1 suggests greater similarity between two objects. In this study, when the 
normalized correlation is closer to 1, it is more likely that there is no cellphone in the cellphone 
pocket of the input image, that is, the student is absent. Therefore, the loop traverse and 
matchTemplate method in OpenCV are used to achieve template matching between the template 
images corresponding to the cellphone pocket grid and the input images. The matching scores 
are stored in the SCORE list and are used as probabilities that the cellphone is not placed in the 
cellphone bag grids. After the matching score in the SCORE list is found, the relationship 
between the number of students and the number of cellphone pocket grids is considered. Under 
normal circumstances, absent students are a minority and the number of students in the class 
will not exceed 54. Therefore, we only need to find the serial number of a cellphone pocket with 
a high matching score and save it. When there are exactly 54 students in the class, no further 

Fig. 12. Comparison of the standardized models. (a) The normalized model of a template image, (b) and (c) the 
normalized models of the input images.

(a) (b) (c)
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processing is required. When the number of students is less than 54, it is necessary to consider 
marking the excess cellphone pocket grids as empty instead of absent.

3.4 Absentee list

3.4.1 Student list

 In this study, a class in a university having 50 students was used as an example to demonstrate 
the effectiveness of the automatic detection system for student attendance. In this class, 
excluding students on leave and transfer students, there are 47 students. The teacher can set the 
corresponding marks for the three excluded students (Nos. 43–45), so that when traversing the 
serial numbers (student numbers) of the cellphone pocket grids, these students are removed from 
the absentee list.

3.4.2 Absentee list

 The SCORE list has already been obtained. This list holds the score of each cellphone pocket 
(the probability that the cellphone pocket cell has no cellphone). After traversing each element of 
the SCORE list, 0.71 is used as the judgment condition (the value can be adjusted as necessary). 
If an element is greater than 0.71, then one is added to its serial number, and the change is saved 
to the abLt list; because the serial number list starts at zero, it is necessary to add one to the 
serial number to ensure that the serial number of the list corresponds to that of the cellphone 
pocket grid. The key code is listed below:

# Find the numbers of absent students
abLt = []
for i, c in enumerate(SCORE):
 if c >= 0.71:
  abLt.append(i+1)

 Through this process, the abLt list is obtained. Although one may think that the information 
saved in this list is the absentee list, we found that the abLt list also saves the serial numbers of 
students who have transferred or dropped out or are on leave. The empty elements include the 
transfer student and students on leave, and some of the numbers for the class are larger than 50. 
Therefore, we must remove these empty elements from the abLt list. The first step is to compare 
the elements in the abLt list with the largest student number in the class. Any elements in the 
abLt list that are greater than the largest student number must be removed. The second step is to 
directly remove the elements of the serial numbers marked above for transfer students and 
students on leave, after which the remaining elements in the abLt list are the absent list. The 
absent students found from the input images were [11, 14, 19, 22, 26, 28, 35, 38, 40, 41, 42, 47, 
48]. By comparison with the student number list, we found that No. 21 is also absent. Thus, we 
obtained a recognition accuracy of 92.3% for the automatic detection system for student 
attendance. 
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4. Conclusions

 We investigated a template matching method based on template matching of the input images 
of cellphone pockets in colleges and universities, so as to automatically monitor attendance in 
college classrooms and prevent students from missing classes. Our proposed method can also 
prevent the misjudgment of absences of students who have transferred school or been given 
permission for leave. To automatically monitor attendance, the teacher takes an image of a 
cellphone pocket containing cellphones as the input image. Then the uploaded database is used 
to find absent students and the results are returned. A class in a university having 50 students 
was used as an example to demonstrate the effectiveness of the automatic detection system for 
student attendance. Thirteen students were absent according to the automatic detection system, 
whereas the actual number of absent students was 14, corresponding to a high recognition 
accuracy of 92.3% for the automatic detection system.
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