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 Heart rate (HR) measurement by a wrist-worn device suffers from noises owing to body 
movement. Even though many researchers have proposed sophisticated methods for the 
compensation of noises in measurement, such noises corrupt the sensor data itself, leading to 
difficulty in compensation. In this paper, we design a method for estimating the reliability of HR 
measurement. Our design principle is based on the fact that the change in HR is correlated with 
the magnitude of body movement and the current HR. To model the correlation, we construct a 
modified Kalman filter that estimates the displacement of the HR from the statistical data of the 
HR measured by a precise heart rate sensor and the variance of acceleration measured by a 
wrist-worn device. Then, we define the reliability of HR measurement as the absolute error 
between the output of a modified Kalman filter and the HR measured by the wrist-worn device. 
For evaluation, we compare our method with conventional outlier removal and smoothing after 
compensation using one of the state-of-the-art methods based on deep learning. Our method 
successfully removes 18.9% of the measurements with low reliability while achieving a mean 
absolute error of 6.25 bpm, a superior value to the conventional methods, for a single subject. For 
multiple subjects, our method decreases the mean absolute error by 13.1% on average.

1. Introduction

 Wrist-worn devices such as smartwatches and smart wristbands have become popular, 
providing various smart applications in daily life. Specifically, most wrist-worn devices are 
capable of monitoring the heart rate (HR) for healthcare and sports. Various learning-based 
applications that need to collect physiological data including HR have been proposed.(1,2) In such 
applications, we may be able to accumulate big physiological data using the devices from many 
participants. In big data analysis, the reliability of the data is essential to develop machine-
learning-based applications because noisy data reduces performance. 
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	 To	measure	the	HR	by	wrist-worn	devices,	a	reflectance-type	photoplethysmography	(PPG)	
sensor	is	widely	used.	The	PPG	sensor	measures	intensity	changes	in	the	light	reflected	from	the	
skin.	These	PPG	signals	represent	the	changes	in	the	arterial	blood	volume	between	the	systolic	
and	diastolic	phases	of	a	cardiac	cycle.	However,	the	PPG	sensor	is	vulnerable	to	movement	of	
the wrist-worn device because the light intensity can change owing to the slight movement of the 
device. A problem is that when attempting to accumulate big data from many participants in 
daily life, it is difficult to check that they are wearing the devices correctly. The diversity of the 
device attachment leads to different levels of reliability of the measured data. Furthermore, even 
if the device is correctly attached, the measurement accuracy of the HR may be significantly 
reduced owing to motion artifacts(3,4) and intense exercise.(5) Therefore, the reliability of the 
collected physiological data is nonuniform, which is a serious problem in big data analysis.
 To remove noisy data, many researchers and analysts start with data cleansing(6–8) because 
noisy data commonly arises in big data analysis. Most existing approaches focus on outlier 
removal(9) based on statistics. However, they may incorrectly remove correct rare data, which is 
significant for some applications. To solve the problem, frequency-based data correction 
methods have been proposed,(4,10,11) where the key idea is identifying the frequency band from 
the acceleration spectrum generated by the user’s motion. Finally, the HR is corrected by 
removing	the	noise	induced	by	the	motion	from	the	PPG	spectrum.	As	a	state-of-the-art	method	
for the correction of HR measurement, a deep learning (DL)-based method has been proposed. 
Chung et al. combined long short-term memory (LSTM) and a convolutional neural network 
(CNN) for correction using acceleration intensity,(12)	where	a	PPG	spectrum	and	an	acceleration	
spectrum are input to the correction method. 
 However, we found a few cases where the accuracy is still low even if we apply the DL-based 
correction	method	to	the	PPG	signal	in	our	dataset	composed	of	HR	and	acceleration	time	series	
collected from running subjects wearing a tightly attached wrist-worn device. Correction 
failures occurred when the effect of motion artifacts was large due to factors such as high 
exercise	intensity.	In	such	cases,	the	HR	features	in	the	PPG	signal	are	much	smaller	than	other	
noises. This leads to a decrease in HR correction accuracy because HR features cannot be 
extracted	from	the	PPG	signal.	The	accuracy	also	decreased	when	there	was	an	overlap	between	
the acceleration frequency and HR frequency. Because motion artifacts usually have larger 
changes	in	the	PPG	signal	than	the	HR	in	the	frequency	domain,	the	overlap	causes	the	loss	of	
HR	features	in	the	PPG	signal.	In	addition,	when	participants	measure	data	by	themselves,	the	
accuracy of HR correction also depends on the sensing technology of the device.(13) Therefore, 
even if the DL-based correction method is applied, the HR measurement is not always correct.
 In this study, we aim to improve the accuracy of the whole dataset after data collection by 
estimating the reliability of the measured HR. An overview of the proposed method is illustrated 
in Fig. 1. We focus on the fact that the HR in the following state can be estimated from the 
current state, i.e., the exercise intensity and HR value. We use the variance of acceleration as an 
index of the exercise intensity because our preliminary experiment showed that we could 
distinguish between an exercise state and a nonexercise state where the HR transition differs. On 
the basis of this observation, we build an HR transition model through data collection by a 
precise HR sensor, i.e., an ECG-based HR sensor, during exercise. Our reliability estimation 
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method is based on how the corrected HR differs from the transition model. The estimated 
reliability is useful for accumulating reliable physiological big data or for notifying subjects who 
incorrectly wear their wrist-worn device. This paper is an extended version of our previous 
paper, which presented the design of the reliability estimation method with an initial evaluation 
for one subject.(14) In this paper, we report a further evaluation with 19 subjects to examine the 
performance of the proposed method for different subjects.
 For evaluation, we compare our method with conventional outlier removal(15) and smoothing 
after compensation using a state-of-the-art method based on DL. Our method successfully 
removed 18.9% of the measurements with low reliability while achieving a mean absolute error 
of 6.25 bpm, a superior value to the conventional methods, for a single subject. For multiple 
subjects, our method decreased the mean absolute error from 6.94 to 6.04 on average.

2. Related Work

	 As	 a	 noninvasive	 technique,	 wrist-worn	 devices	 utilize	 PPG,	 which	 leverages	 optical	
measurement to detect volumetric changes in blood circulation under the skin.(16) To investigate 
the accuracy of these devices relative to comparable medical-grade technology, many studies 
have compared the measurement accuracy with an ECG-based HR sensor.(5,17) Weiler et al. 
compared	 average	 HR	measurements	 of	 two	measurement	 technologies,	 i.e.,	 PPG	 and	 ECG,	
after an interval-style cardio-based workout.(17) They found that when the HR reached around 
155–160	bpm,	PPG	HR	readings	become	less	than	ECG	HR	readings	with	a	difference	of	5	bpm.	
Climstein et al. assessed the test–retest reliability of a smartwatch and compared its measurement 
with an ECG-based sensor when measuring HR during treadmill exercise with various 
intensities.(5) The result also showed that the HR measured by the smartwatch is less that of the 
ECG-based	sensor	when	the	HR	reached	around	150–180	bpm.	Their	results	showed	that	PPG-
based HR sensors embedded in wrist-worn devices are less reliable than ECG-based HR sensors 
when the HR is relatively high. Therefore, the reliability of the measurement of wrist-worn 
devices is important for data collection with small errors.

Fig.	1.	 Proposed	method.
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 To mitigate the effect of noise in the ECG signal, many researchers have focused on noise 
filtering. Eguchi et al. proposed an interbeat interval (RRI) outlier removal method for assessing 
the reliability of ECG signals collected by people in daily life.(18) Salai et al. proposed methods 
to remove outliers of RRI by finding abnormal values.(19) There are also methods to extract the 
HR from noisy ECG signals. Nakano et al. proposed a robust method to detect the instantaneous 
HR from noisy ECG signals utilizing a short-time autocorrelation technique.(20) Berwal et al. 
also proposed an efficient method for motion artifact removal from ambulatory ECG patterns to 
calculate RRI.(21)

	 On	 the	other	hand,	PPG	signal-based	HR	sensors	may	 include	noise	generated	by	motion,	
especially	 for	 a	 wrist-worn	 device.	 For	 robust	 PPG	 sensing,	 Lee	 et al. implemented a 
multichannel	 PPG	 sensor	 for	 accurate	 estimation	 during	 intensive	 exercise.(22)	 Also,	 a	 PPG	
measuring system based on multichannel sensors with multiple wavelengths was developed, 
which employed a motion artifact reduction algorithm.(23) However, the specialized sensor 
increases the cost of manufacturing and the size of the device. Also, the large sensor may be a 
burden for the user. Many studies to tackle this problem with a software-based solution have 
been reported. Zhang et al. shared an open dataset containing simultaneously measured 
acceleration	 and	 PPG	 signals	 during	 exercise.(24) This dataset facilitated research on HR 
estimation	from	PPG	signals.	Khan	et al.	proposed	rule-based	filtering	for	the	PPG	signal	from	
running subjects.(25) Fukushima et al. proposed an algorithm to estimate the HR using a wrist-
worn	PPG	sensor	for	running	subjects.(26) Also, Salehizadeh et al. proposed HR estimation from 
a	PPG	 signal.(27) Their methods were based on frequency analysis, in which motion artifacts 
from	the	power	spectrum	of	a	PPG	signal	are	rejected.
 A DL-based method has recently been proposed as a state-of-the-art method to estimate the 
HR	 from	 a	 PPG	 signal.(12) The DL-based method reduces the effect of body movement by 
focusing	 on	 the	 characteristic	 of	 PPG	 sensors	 using	 LSTM	 and	 CNN	 layers.	 However,	 as	
mentioned in Sect. 1, noise cancelation based on frequency analysis may inherently fail to cancel 
noise in some particular cases. The Kalman filter is applied to the estimated HR by removing the 
motion	artifacts	from	the	PPG	signal.(28,29) In these studies, there were many trials in which the 
HR	 could	 be	 measured	 accurately	 with	 the	 PPG	 signal.	When	 outliers	 hardly	 appear	 in	 the	
estimated HR or the error is relatively small, the HR can be satisfactorily corrected with a 
conventional simple Kalman filter. However, the filtering-based correction is inherently weak in 
the case of a sudden change in the time series. In addition, the Kalman filter cannot consider the 
absolute value of the previous state to correct the current state. For the correction of the HR, the 
current value can be used to estimate the HR in the next time step. For example, the HR may 
greatly increase at the beginning of exercise, i.e., a state that the HR is low during exercise.
 As mentioned above, frequency-based correction may not work well in particular scenarios. 
Also, filtering-based correction poorly corrects sudden changes. For machine learning, such 
corrections may reduce the performance of the model because they embed unnatural trends in 
the training data. To tackle this problem, we propose a reliability estimation method for 
removing unreliable data affected by noise. To estimate the reliability, Naeini et al. proposed a 
real-time	 PPG	 quality	 assessment	 approach	 using	 CNNs.(30)	 They	 estimated	 the	 PPG	 signal	
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reliability as a binary classification, i.e., reliable or unreliable. In this paper, we estimate the 
reliability of the HR measurement as a numerical value. Therefore, users can specify their own 
thresholds for filtering depending on their requirements.

3. Reliability Estimation Method

 We propose a reliability estimation method based on the Kalman filter to consider the change 
in the HR from the previous HR. We define the reliability as the difference between the 
measured HR and the filtered HR. In this study, we implemented an existing DL-based 
method(12) to estimate the HR under noise owing to motion artifacts instead of using the 
measured HR. The output of the DL-based method is hereinafter referred to as the estimated 
HR. The Kalman filter is often used for correcting observation errors. However, it cannot 
consider a complicated state transition of the HR. This is because the main parameters of the 
Kalman filter are the variances in the state equation and measurement equation. In addition, 
because the filter tends to be influenced by observations, it would be difficult to utilize it for the 
reliability estimation of observation values (i.e., HR). For example, if the HR is already high, it 
tends to increase slowly even during high-intensity exercise, which the Kalman filter cannot 
handle.
 Therefore, we design a modified Kalman filter to consider the relationship between the 
exercise intensity and the current HR as follows:

 ( )1  i i i
corr est gain base corrh h K h h −= + − , (1)

  
i
est

gain i
est v

pvK
v σ

=
+

, (2)

 ( )1 11i i i
est gain est wv K v σ− −= − + , (3)

where i
corrh  is the corrected HR at time step i, i

esth  is the HR estimated from 1i
corrh −  and the current 

exercise intensity, and baseh  is the last reliable measurement before time step i. The exercise 
intensity is determined from the acceleration. The intuition behind our design is that the change 
in HR in one time step is bounded given the current HR and exercise intensity.
 In this paper, we define transition states as six classes to represent the current HR and 
exercise intensity, and we design the modified Kalman filter on the basis of the conventional 
Kalman filter. We estimate the HR displacement from 1i

corrh −  to i
esth  on the basis of the classes. The 

variables i
gainK  and i

estv  are the Kalman gain used by our modified Kalman filter and the 
corrected variance of the estimation error of the HR, respectively.
 In our method, the initial value of i

estv  is σv. The parameters σv and σw are the variances of 
the noise of the measurement equation and state equation, respectively. We empirically set 
σv = 2.63 and σw = 498.8 through our preliminary experiment. The variable p is the likelihood of 
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the transition of the HR from the current time step to the next time step, whose definition is 
based on the HR change distribution in one time step in the preliminary experiment. To calculate 
p,	we	define	13	levels	(classes)	of	the	HR	transition	for	the	range	between	+4.38	and	−4.38,	i.e.,	
the range of each class is 0.674. This range is determined on the basis of our preliminary 
experiment where the HR transition out of the range was not measured in 2 s, which is the time 
window used for calculating the HR in our work. The likelihood of the transition is calculated as 
the ratio of the number of samples in the class to the number in the whole dataset.
 We update the last reliable measurement of the HR hbase as follows. First, to assess whether 
the measurement at time step i  is reliable, we use a predefined range [ i

lowert , i
uppert ]. The range 

depends on the transition states. If i
obsh  is in the range, hbase is replaced with i

obsh . If i
obsh  is out 

of the range, we increase the range of the next step (i + 1) to [2 i
lowert , 2 i

uppert ] and set the likelihood 
parameter to p = 0.1 because the observation is not reliable.  
 The exercise intensity, i.e., rest or exercise, is estimated using a threshold of the variance of 
the acceleration magnitude measured in 8 s at 125 Hz frequency. We define the threshold as 0.12 
G2	(1G	≈	9.8	m/s2). The parameters used in the transition states are summarized in Table 1. We 
define the states from s1 to s6 on the basis of the exercise intensity and current HR i

corrh . The 
thresholds between s1 and s2, s2 and s3, s4 and s5, and s5 and s6 are 110, 160, 110, and 160 bpm, 
respectively. We empirically determine the parameters in transition states through a preliminary 
experiment. Displacement means the difference in the HR between the current state and the next 
state in Table 1. The parameters are different depending on the person’s habit of exercising. 
Therefore, we evaluate our method in two scenarios. The first scenario is a single subject without 
an exercise habit. The second scenario is multiple subjects with exercise habits.
 To estimate the reliability of the HR measurement, we calculate the degree of discrepancy, 
which is the difference between the filtered HR and the estimated HR. The degree of discrepancy 
is used for the estimation of the reliability of HR, i.e., HR with a large degree of discrepancy has 
low reliability. On the basis of a threshold of the degree of discrepancy, we can exclude the HR 
with low reliability to accumulate reliable big data of HR.

Table 1
Parameters	used	in	six	transition	states.
Exercise intensity State Displacement i

uppert i
lowert

Rest
s1 +0.04 +3.0 −3.0
s2 −0.60 +1.0 −2.0
s3 −0.62 +2.0 −3.0

Exercise
s4 +2.81 +5.0 −1.0
s5 +1.29 +4.0 −1.0
s6 +0.27 +4.0 −4.0
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4. Evaluation

4.1 Experiment for single subject over multiple trials

4.1.1 Setting

 For evaluation, a subject conducted five trials of running activity. Each trial was 5 min long. 
The chest-worn sensor myBeat WHS-3 measured the HR as a ground truth, and the wrist-worn 
sensor	E4	measured	PPG	and	acceleration.	For	 training	and	 testing,	we	performed	 leave-one-
trial-out evaluation. To train the DL-based method,(12) we empirically set the parameters to a 
sliding window size of 8 s and a stride of 2s. Each trial was trained with an appropriate number 
of epochs in which the loss hardly decreased, and the batch size was 32. Our modified Kalman 
filter was applied to the outputs of the DL-based method. We also set a cutoff threshold for 
filtering HR estimation with low reliability. If the reliability of the HR estimation by the DL-
based method was lower than the threshold, the samples were filtered. We calculated the absolute 
error between the ground truth and the estimated HR after the filtering. To observe the effect of 
filtering using the estimated reliability, we also applied linear interpolation to the remaining 
estimated HR. Similarly, the conventional Kalman filter was applied to the estimated HR as a 
baseline. Also, the existing outlier removal method(15) was applied after the conventional 
Kalman filter. For comparison, the absolute error was also calculated for the remaining HR after 
applying the conventional Kalman filter and removing outliers. We performed linear 
interpolation for the baseline and calculated its absolute error. We evaluated the proposed 
method by comparing the trade-off between the percentage of remaining HR samples after 
filtering and their absolute error. We summarize the definition of each HR in Table 2.

4.1.2 Existing outlier removal method

 We implemented the existing outlier removal method(15) for the baseline. First, by applying 
the upper and lower limits of RRI, obvious outliers were removed. Next, HR per minute, i.e., 
60000 ms/RRIms, was calculated from the RRI. On the basis of the assumption that the HR 
does not change suddenly, this method removes values of HR that suddenly change from the 

Table 2
Summary	of	the	definition	of	each	HR.
HR Description
Ground truth HR HR measured by the chest-worn sensor.

Estimated HR HR	estimated	by	the	DL-based	existing	method	for	the	estimation	of	HR	from	PPG	signal	
measured by the wristband sensor.

Baseline HR HR	after	applying	the	conventional	Kalman	filter	and	the	existing	outlier	removal	method	
to the estimated HR.

Filtered HR HR	filtered	by	 the	proposed	method,	which	 is	a	combined	method	of	 the	DL-based	HR	
estimation	method	and	our	modified	Kalman	filter.

Remaining HR HR after our HR removal method with low reliability.
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previous value. However, this idea cannot consider the whole trend of the HR change because it 
compares the current HR with the HR in the previous time step. Therefore, to consider the trends 
of the changes in the HR in a wider range, the moving average was used to determine whether 
the HR should be removed. Through this filtering, outliers were removed from the time series of 
the original HR. We empirically set all parameters for the existing outlier removal method 
through our preliminary experiment.

4.1.3 Results

 We defined the difference between the estimated HR and the filtered HR obtained by the 
proposed method as the degree of discrepancy. The relationship between the degree of 
discrepancy and the absolute error of the estimated HR is shown in Fig. 2.
 The correlation coefficient is 0.839. Because of this strong positive correlation, the degree of 
discrepancy is used as an index of reliability as mentioned earlier. If the degree of discrepancy is 
large, the reliability is low, and vice versa.
 Next, the absolute error and the percentage of the remaining HR samples (remaining rate) of 
each trial are shown in Figs. 3 and 4, respectively. These figures show the averages of all trials.
 The remaining rate of the proposed method is higher than that of the baseline, but the mean 
absolute error of the proposed method is also larger than that of the baseline. This result indicates 
a trade-off between the remaining rate and the absolute error. The proposed method helps retain 
HR samples during exercise, simultaneously suppressing the increase of the absolute error to 1.2 
bpm on average.
 For further evaluation, we performed linear interpolation for the remaining HR of the two 
approaches. The mean absolute error for each trial is shown in Fig. 5.
 The averages of the mean absolute error of the proposed method and the baseline are 6.25 and 
8.01 bpm, respectively. The proposed method is superior to the baseline in the mean absolute 
error for the average of all trials after performing linear interpolation. This means that the 
proposed method more successfully removes estimated HRs greatly affected by the noise than 
the baseline.

Fig. 2. (Color online) Correlation between degree of discrepancy and absolute error.
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4.1.4 Discussion

 Figure 6 shows a trial in which the conventional outlier removal method incorrectly removed 
a large part of the data. After the sudden increase in HR marked by the red circle, the whole data 
was removed as outliers. This is because the conventional outlier removal method is designed to 
remove instantaneous outliers. In contrast, high-intensity exercise such as running causes 
continuous outliers. Therefore, the conventional method fails to retain the correctly measured 
data while running. This is why the remaining rate of the conventional method shown in Fig. 4 is 
low.
 On the other hand, we also found a trial for which the remaining rate is higher than that for 
the proposed method. We found that this occurs when the estimated HR is close to the ground 
truth.
 As shown in Fig. 7, when the HR estimation does not work correctly, outliers can be corrected 
to values close to the ground truth using the modified Kalman filter. On the other hand, Fig. 8 
shows the time series of the ground truth, the estimated HR, and the HR filtered by the proposed 
method in a trial where the mean absolute error of the proposed method is larger than that of the 

Fig. 3. (Color online) Mean absolute error of 
remaining HR.

Fig. 4. (Color online) Remaining rate after removal.

Fig. 5. (Color online) Mean absolute error of remaining HR after linear interpolation.
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conventional method. In particular, in the duration indicated by the red circle, the accuracy of 
the proposed method was low. This is because the ground truth HR suddenly increased even in 
the rest state. The proposed method attempted to decrease the measured value because the 
participant was judged as in the rest state. One of the reasons for this was the lack of HR 
transition data. Such cases can be estimated successfully if a large variety of data and subjects is 
given. 

4.2 Experiment for multiple subjects

4.2.1 Setting

 For further evaluation, we collected data from 19 males with a habit of exercising while they 
ran for 30 min. Because these subjects were in the habit of exercising, we used different 
parameters from those in Sect. 4.1 as shown in Table 3. Because no high HRs, i.e., larger than 
160 bpm, were observed in the experiment, the displacement was not defined.
 The subjects wore an E4 wristband and myBeat WHS-3 chest sensor. Also, we implemented 
the existing DL-based method(12) to estimate the HR under noise owing to motion artifacts. The 
sliding window size is 8 s and its stride was 2 s. For training and testing, we performed leave-

Fig. 6. (Color online) An example of conventional 
outlier	filtering.

Fig. 7. (Color online) Trial where the proposed 
method worked successfully.

Fig. 8. (Color online) Trial where the proposed method failed.
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one-subject-out evaluation. The batch size and the number of epochs were 512 and 200, 
respectively. We also set a cutoff threshold for filtering HR estimation with low reliability. If the 
reliability of the HR estimation by the DL-based method was lower than the threshold, the 
samples were filtered. We calculated the absolute error between the ground truth and the 
estimated HR after the filtering. For the filtering, we removed samples whose discrepancy 
between the estimated HR and the filtered HR was larger than 5.0 bpm.

4.2.2 Results

 The performance of each method is shown in Fig. 9. The evaluation metric is the mean 
absolute error between the output HR of each method and the ground truth. The first method 
(green bars) is the DL-based method.(12) The second method (red bars) is the use of the modified 
Kalman filter. The third method (blue bars) is the removal of samples based on the reliability 
estimated by our method. The outputs of the above three methods are denoted as the estimated 
HR, filtered HR, and remaining HR, respectively. The average mean absolute errors were 6.94, 
6.15, and 6.04 for the estimated HR, the filtered HR, and the remaining HR, respectively. The 
figure shows an improvement from the DL-based method when we use the modified Kalman 
filter. In addition, there is a slight improvement in the remaining HR compared with the filtered 
HR. As observed in the preliminary experiment, the modified Kalman filter can successfully 
deal with moderate sudden transitions of the HR for multiple subjects. 
 However, there are some trials where the modified Kalman filter failed to decrease the error, 
i.e., subjects 2, 8, 9, 13, and 18. The HR time series of subject 18 for each method is shown in 
Fig. 10. The estimated HR, i.e., the output of the DL-based method, markedly fluctuated in this 
trial. As a result, the fluctuation caused a large error, and such a trial had few reliable data. 
Figure 11 shows the remaining rate of the remaining HR. For most of the subjects with a low 
remaining rate, the modified Kalman filter failed to decrease the error. Therefore, we can 
remove trials with a low remaining rate as unreliable trials. However, as shown in Fig. 12, 
subject 13 had a high remaining rate with a large error. Therefore, it cannot be excluded on the 
basis of the remaining rate only. In such cases, the removal method based on the reliability 
cannot decrease the error. To decrease the error, we must enhance the performance of the DL-
based method. For this purpose, one option is to train the DL-based model with personal data of 
the estimation target.

Table 3
Parameters	used	in	six	transition	states	for	athlete	subjects.
Exercise intensity State Displacement i

uppert i
lowert

Rest
s1 −0.29 +3.0 −3.0
s2 −0.02 +1.0 −2.0
s3 — +2.0 −3.0

Exercise
s4 +0.03 +5.0 −1.0
s5 +0.01 +4.0 −1.0
s6 — +4.0 −4.0
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Fig. 9. (Color online) Mean absolute error for each subject using each method.

Fig. 10. (Color online) HR time series of subject 18.

Fig. 11. (Color online) Remaining rate of HR for each subject.

Fig. 12. (Color online) HR time series of subject 13.
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5. Conclusions

 In this study, we designed a reliability estimation method for HR estimation. We found that 
the	error	in	the	estimation	of	the	HR	from	a	PPG	signal	includes	unrealistic	transitions	of	the	HR	
over time. The proposed method is based on the idea that unrealistic transitions are corrected 
using the HR filter so that they reflect realistic transitions. For this purpose, we designed a 
modified Kalman filter using acceleration, and we used the difference between its output and the 
estimated	HR	from	the	PPG	signal	as	an	index	of	reliability.
 For evaluation, we compared the proposed method with a conventional outlier removal 
method using a state-of-the-art method based on DL. After removal, linear interpolation is 
performed. As a result, our method successfully removed 18.9% of the measurements with low 
reliability while achieving a mean absolute error of 6.25 bpm when the HR after filtering was 
interpolated for a single subject. For multiple subjects, our method decreased the mean absolute 
error by 13.1% on average. Our future work includes improving the estimation of HR 
displacement. Since the variance of acceleration, which is the basis of our HR displacement 
estimation, is measured by a wrist-worn device only, we are planning to design an estimation 
model that considers body movements other than those of the arm.
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