
3191Sensors and Materials, Vol. 34, No. 8 (2022) 3191–3212
MYU Tokyo

S & M 3035

*Corresponding author: e-mail: 2221713675@qq.com
https://doi.org/10.18494/SAM3933

ISSN 0914-4935 © MYU K.K.
https://myukk.org/

High-altitude Inspection Technology of Substation Based on 
Fusion of Unmanned Aerial Vehicle and Multiple Sensors

Xiaohua Yang,1 Xiao Ye,2 Jianing Cao,2* Rong Yan,2 Xiaojue Guo,3 and Jisheng Huang4

1Measurement Center, Yunnan Power Grid Co., Ltd., Kunming 650051, China
2Faculty of Civil Aviation and Aeronautics, Kunming University of Science and Technology, 

Kunming 650500, China
3Kunming ZhiYuan Measurement & Control Technology Co., Ltd., Kunming 650500, China

4Lincang Power Supply Bureau, Yunnan Power Grid Co., Ltd., Lincang 677099, China

(Received April 7, 2022; accepted July 26, 2022)

Keywords:	 substation	inspection,	multi-sensor	fusion,	UAV	path	planning,	RRT	algorithm,	mayfly	algorithm

 With the continuous development of the power grid industry, the difficulty of substation 
operation and maintenance is also increasing. Because of its high mobility and low 
destructiveness, a rotary-wing unmanned aerial vehicle (UAV) can achieve effective detection 
and avoid the difficulty and poor accuracy of high-altitude inspection of substations. Owing to 
the ability of a UAV to integrate various sensors, such as visible light imaging sensors, thermal 
imaging sensors, and self-positioning sensors, it can ensure its own safety and that of the 
equipment to be tested during the inspection. Thus, in this paper, we study the application of 
rotary-wing multi-sensor UAVs in the high-altitude inspection of substations. Firstly, we 
establish a UAV inspection and autonomous detection model involving electromagnetic and 
other environmental influences. This model considers substation environmental restrictions, 
UAV physical constraints, and the limitations of sensor detection, and it is combined with a 
mobile edge computing platform. Secondly, we design an improved path planning algorithm 
combining the floating algorithm and the rapidly exploring random trees (RRT) algorithm and 
introduce improved strategies such as the Cauchy mutation strategy and Lèvy flight strategy to 
reduce the blindness of the algorithm search. Finally, by conducting simulation experiments and 
comparing the designed algorithm with traditional algorithms such as the ant colony algorithm, 
genetic algorithm, and simulated annealing algorithm, we verify the feasibility of the model and 
algorithm. The results of this study provide practical assistance to promote the automation and 
intelligence of substation inspection.

1. Introduction

 In recent years, the development of the power grid industry has tended to be informative and 
intelligent.(1) As an important node in the power grid, the operation of substations directly 
determines the result of power distribution, thus affecting the operation of the whole power grid. 
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Therefore, the inspection of substations is crucial. With the advancement of smart grids, the 
requirements for lean substation equipment operation and maintenance are also increasing, 
requiring the development of intelligent substation inspection.
 Traditional substation inspection involves regular inspection and observation by maintenance 
personnel, which is time-consuming and limited by the difficulty of observing faults in high-
altitude equipment, thus affecting the safety of the substation. Unmanned aerial vehicles (UAVs) 
are gradually being adopted by the power grid industry due to their high mobility and high-
altitude views, greatly reducing the workload of maintenance personnel.(2) Meanwhile, the 
continuous development of image sensor technology has made the intelligent diagnosis and 
identification of faults and defects in grid equipment more accurate and robust. Therefore, the 
intelligent inspection of substations based on drones and sensors is gradually becoming 
mainstream.(3) In addition, edge computing technology also has applications in the power grid 
industry,(4) which facilitates the processing of large amounts of inspection data and further 
improves the mobility and convenience of UAV inspections.(5) In summary, UAV technology, 
sensor technology, and edge computing technology provide the software and hardware basis for 
intelligent substation inspection, and integrating the three is the key to development.(6)

 The accuracy of UAV-based industrial applications depends mainly on the effectiveness of 
the mathematical model developed and has been a hot topic of researchers.(7) Among them, 
Tran et al.(8) designed a UAV trajectory model with the minimum total energy consumption 
while satisfying the timeout requirement and energy budget as the optimization objective. 
Yu et al.,(9) on the other hand, studied plant protection tasks carried out by UAVs and reduced 
operational costs by constructing shortest-path and least-number models. Liu et al.(10) 
constructed energy-efficient and time-efficient minimization models and completed inventory 
operations in indoor warehouses, using rotary-wing UAVs to improve operational efficiency. In 
summary, some results have been achieved in UAV trajectory planning, but there have been few 
studies on substation inspection, most of which have been based on ground robots,(11–13) which 
have high space constraints and operational costs. Therefore, in this paper, we construct a 
substation inspection path planning model based on a rotary-wing UAV in fusion with multiple 
sensors, with the sensors themselves providing mathematical support for the UAV substation 
inspection trajectory planning.
 The most critical aspect of substation inspection based on UAVs is the planning of UAV 
inspection paths.(14) Heuristic and metaheuristic algorithms have been used in UAV trajectory 
planning, where the rapidly exploring random trees (RRT) algorithm(15) and A* algorithm(16) 
exhibit good results. However, for high-dimensional path planning problems involving complex 
constraints, a single classical path planning algorithm can fall into a local optimum. For this 
reason, various improvement strategies have been introduced to enhance the global optimization 
capability of algorithms. Pan et al.(17) improved the golden eagle optimization algorithm by 
using two strategies: personal example learning and mirror reflection learning. Chai et al.(18) 

improved the difference algorithm by using multiple swarm strategies, new adaptive strategies, 
and interactive mutation strategies to improve its ability to solve high-dimensional problems. 
Wang et al.(19) improved the jump-out and revisit mechanisms of the distributed particle swarm 
optimization algorithm (PSO) to reduce the blindness of the algorithm search. In summary, a 
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feasible research method is to improve a heuristic or metaheuristic algorithm to obtain better 
path planning results. The mayfly algorithm (MA), an emerging metaheuristic algorithm,(20) had 
its initial applications in various fields and it has been shown to have a strong capability for 
solving high-dimensional optimization problems.(21) Therefore, we improve the RRT algorithm 
based on MA to reduce the blindness of its search while retaining its ability to solve high-
dimensional problems, thus increasing the speed of the solution while ensuring its accuracy.
 In this paper, we study the problem of substation inspection based on a rotary-wing UAV 
fused with multiple sensors, build an intelligent substation inspection system architecture, and 
establish a UAV inspection model with inspection distance, time, and energy consumption as 
optimization indexes to enable the UAV to complete the substation inspection task. We also 
improve the RRT algorithm based on the metaheuristic algorithm to plan UAV inspection 
trajectories and promote the intelligence of substation inspection. To summarize, the 
contributions of this paper are as follows.
1. We introduce a substation inspection task process involving sensor technology, edge 

computing technology, and a UAV and construct the architecture of an intelligent substation 
inspection system.

2. We construct a UAV inspection model involving UAV physical constraints, sensor operation 
constraints, and inspection task constraints and establish the UAV inspection distance, time, 
and energy consumption as indicators to ensure efficient UAV substation inspection.

3. We improve the RRT algorithm through MA to enhance its search speed and accuracy to 
achieve effective UAV substation inspection trajectory planning.

4. We establish a 3D simulation environment model. We use PSO, the genetic algorithm (GA), 
MA, and the proposed improved mayfly algorithm based on Cauchy mutation strategy and 
Lèvy flight strategy (ICLMA) to carry out simulation experiments, and we compare the 
results to evaluate the developed model and algorithm.

 The rest of this paper is as follows. In Sect. 2, the substation inspection task flow and 
intelligent substation inspection system architecture based on a rotary-wing UAV fused with 
multiple sensors are introduced. In Sect. 3, a UAV inspection model with inspection distance, 
time, and energy consumption as the optimization indexes is established. In Sect. 4, an improved 
path planning algorithm combining MA and the RRT algorithm is designed. In Sect. 5, 
simulation experiments are carried out and the results are analyzed. Finally, Sect. 6 concludes 
the paper.

2. Inspection Task Description

 The substation contains primary equipment such as transformers, high-voltage circuit 
breakers, and lightning arresters (equipment that directly generates, transmits, distributes, and 
uses electric energy) and secondary equipment such as relay protection devices, measurement, 
control devices, and metering devices (equipment that measures, controls, monitors, and protects 
the primary equipment). The inspection of the substation requires the operators to check the 
above equipment, detect abnormalities, and repair the abnormal equipment to ensure the 
standard and safe operation of the substation. The intelligent inspection of a substation based on 
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a rotary-wing UAV requires the inspection trajectory of the UAV to cover all the equipment 
under inspection to capture images of the equipment to be inspected using visual sensors such as 
IR cameras and to transmit the image information to a mobile edge computing platform using 
wireless communication technology. The platform detects abnormalities of the equipment 
through a feature recognition algorithm and, finally, streams the data back to the computing 
center. The rotary-wing UAV carries out the intelligent inspection of substations by employing 
multiple heterogeneous sensors, significantly reducing inspection blind areas while safeguarding 
inspection accuracy, and inspection data are effectively collected and processed by sensor 
technology and edge computing technology through the following specific processes.
1. The computing center plans inspection paths based on a 3D distribution model of the 

substation equipment.
2. On the basis of the inspection route, the UAV realizes autonomous flight by carrying a self-

positioning real-time kinematic (RTK) module. When it reaches the inspection point, the 
UAV collects visible images, IR images, and video recording information of the equipment to 
be inspected through its IR thermal imaging camera and an ordinary optical camera.

3. The UAV transmits the inspection information to the preset mobile edge server in the 
substation through the equipped map transmission module. The server uses the preset 
information processing algorithm for abnormality detection and transmits the detection 
results to the computing center.

3. UAV Inspection Model

 The development of the intelligent substation inspection system should be based on the UAV 
platform, and the accuracy of UAV inspection depends on the comprehensiveness of the 
established inspection model. Reasonable assumptions will greatly simplify the calculation in 
inspection task planning. The following is a detailed description of the established UAV 
inspection model. Figure 1 shows the main system architecture for inspection using UAVs.

Fig. 1. (Color online) Architecture of intelligent substation inspection system.
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3.1 Model assumptions

 Because of its high maneuverability, a rotary-wing UAV has effective targeting in inspection, 
and the analysis of its complex dynamics increases the difficulty of establishing inspection 
models. We assume the following in our model.
1. Owing to the high mobility of the rotary UAV, the acceleration or deceleration phase can be 

ignored because of its short duration compared with the total flight time, i.e., the flight of the 
UAV is considered uniform, and the uniform flight speed is specified as 80% of the maximum 
flight speed.

2. The rotary-wing UAV only operates when the wind strength is lower than the safety 
threshold, and the cm-level hovering error generated by the wind is offset by the RTK module 
and gimbal carried by the UAV, allowing the impact of wind on inspection to be ignored.

3. The energy consumed by the UAV to adjust its attitude is negligible.(22)

3.2 Model building

 Firstly, a reference point O in the substation is selected as the local coordinate origin of the 
substation, with the X axis pointing to the geographic North Pole, the Y axis pointing east, and 
the Z axis pointing vertically downward. Using the 3D coordinate system of the substation 
environment, the UAV trajectory can be represented by a series of ordered coordinates. 
Therefore, an inspection can be expressed as S→T→E, where 0 0 0( , , )S x y z=  indicates the 
coordinates of the starting point of the trajectory where the UAV starts inspection, ( , , )e e eE x y z=  
denotes the coordinates of the endpoint of the UAV inspection trajectory, and 

{ }( , , ) | {1,2, , }i i iT x y z i n= ∀ ∈ ⋅⋅ ⋅  indicates the set of coordinates of the centers of the equipment to 
be inspected. Also, the coordinates of the highest and lowest points of the equipment are 
expressed by Ii

max = (xi, yi, hi
max) and Ii

min = (xi, yi, hi
min), respectively. The location of drone U is 

denoted as ( , , )U U UU x y z=  and the location of the mobile edge server MES in the substation is 
denoted as ( , , )MES MES MESMES x y z= . On the basis of this mathematical description of the 
inspection task, the inspection model is established as shown below.
 The trajectory of the UAV between any two nodes can be represented as a vector and can be 
projected to the A-plane and S-axis direction. The flight distance of the UAV between any two 
nodes can be characterized by the Euclidean parameterization of the vector corresponding to the 
track segment as follows.

 { }, , , ,H V
ij ij ijJ J J i j S T E= + ∀ ∈
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Here, ijJ


 is the track vector between any two nodes, and  and H V
ij ijJ J
 

 are the projection vectors of 
the track vector in the horizontal and vertical directions, respectively. In Eq. (2), Dij is the length 
of the track between any two nodes and 2  represents the 2-parametric number of the vector, 
i.e., the Euclidean parametric number, which is calculated using Eqs. (3) and (4).

3.2.1 Inspection distance index

 The 0–1 variable is introduced as shown in Eq. (5), which takes a value of one when the UAV 
travels from point i to point j and zero when it does not. We combine Eqs. (2) and (5) to obtain 
the inspection distance index in Eq. (6), where Dij is the flight distance between track points i 
and j, and the sum of its product with the decision variable Xij represents the total length of the 
track points passed by the UAV.

 
1, UAV from point  to point 
0, Otherwiseij

i j
X


= 


 (5)

 { }, , , ,ij ijUD D X i j S T E= × ∀ ∈∑  (6)

3.2.2 Inspection time indicator

 Similarly to the UAV trajectory representation, the UAV flight speed is projected onto the 
A-plane and the S-axis direction, then the UAV inspection flight time is determined by the 
magnitude of the velocity vector of the trajectory length. The UAV executes the preset inspection 
task after reaching the inspection point, and the inspection task execution time includes the 
attitude adjustment time of the UAV, the working time of the image sensor, and the information 
transmission time of the map transmission module. The inspection time index is obtained by 
combining the inspection flight time and task execution time, as shown in Eq. (12).

 U H VV V V= +
  

 (7)

 2 2

H V
ij ij

ij
H V

J J
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V V
= +

 

 

 (8)

 P C T
i i i iTS t t t= + +  (9)
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In Eq. (7), UV


 is the speed vector of the UAV, where HV


 and VV


 are its components in the 
horizontal and vertical directions, respectively. In Eq. (8), TFij is the flight time of the UAV for 
track point i j→ , where HV



 and VV


 respectively indicate the magnitude of the speed component 
in the horizontal and vertical directions. In Eq. (9), TSi is the inspection task execution time of 
the UAV at device i, where P

it  is the attitude adjustment time of the UAV, C
it  is the working time 

of the image sensor, and T
it  is the information transmission time of the UAV. Equation (10) is 

used to obtain T
it , where Ri is the amount of task data to be transmitted at device i, β is the 

transmission speed without interference, and L is the interference loss. In Eq. (11), λ is the 
environmental interference coefficient, which is determined by the electromagnetic environment 
and equipment distribution of the substation. β0 is the interference loss at reference distance d, 

2
UMES


 is the distance of the UAV from the receiver of the mobile edge server. iξ  is a 0–1 
variable, where 1iξ =  means that the UAV detects equipment point i and 0iξ =  means that the 
UAV does not detect equipment point i.

3.2.3 Inspection of energy consumption indicators

 The energy consumption differs with the flight state of the UAV, and here, we only analyze 
the energy consumption in the hovering and general flight states. Since we mainly study the 
UAV inspection path, the complex dynamics analysis of the induced drag and wing drag of the 
UAV is ignored, and an energy consumption index of the substation UAV inspection is 
established from the relationship between the lift and power of the UAV established by 
Fan et al.(23) as follows.
 In the hovering state,

 0H UFl G− = . (13)

 In the general flight state,

 sin 0N UFl Gα× − = . (14)

Here, HFl  is the lift of the UAV in the hovering state and NFl  is the lift of the UAV in the general 
flight state. UG  is the gravitational force acting on the UAV; U UG m g= × , where Um  is the mass 
of the UAV and g is gravitational acceleration. α is the pitch angle of the UAV in flight.
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 On the basis of the study of Fan et al.,(23) the following approximate relationship is obtained 
between the lift and power of the UAV:

 UFFl K P C= × − , (15)

where K is the power conversion factor and C is a constant.
 Combining Eqs. (13)–(15), the flight powers of the UAV in the hovering and general flight 
states are respectively given by

 2 2
2 2

1 1( ) ( )H
UF H UP Fl C G C

K K
= + = + , (16)

 
2

2
2 2

1 1( )
cos

N U
UF N

GP Fl C C
K K α

 = + = + 
 

. (17)

 Combining Eqs. (8), (9), (16), and (17) yields the energy consumption index UE, which is the 
energy consumed by the UAV in completing all equipment inspections:

 { }( ) ( ( ) ), , ,1,2, ,N H
UF ij ij UF E i iUE P TF X P P TS i j S nξ= × × + + × × ∀ ∈ ⋅⋅ ⋅∑ ∑ , (18)

where PE is the total power of the sensors carried by the UAV.

3.2.4 Optimization objective

 The aim of our research is to inspect substation equipment and collect and upload inspection 
data via UAVs, and the energy consumption or time of the operation should be minimized while 
guaranteeing the reliability of the inspection. Therefore, an objective function based on the 
established UAV inspection distance index, time index, and energy consumption index is 
established, as shown in Eq. (19), with the optimization objective of minimizing the total index. 
Figure 2 shows the schematic diagram of the UAV states.

 min( )F UD UT UE= × ×  (19)

Fig. 2. Schematic diagram of the UAV states.
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3.2.5 Constraints

 The sensor operation constraints, UAV physical performance constraints, and trajectory 
planning constraints for the entire inspection are as follows.
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1
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Si
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X
=

=∑  (20)
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2

arccos( , ) , ( , , )max max u u
i i i i i i UAV UI UI UI AT I x y z≤ × ≤ =

  

 (26)

 N
max UF GEUE UE P TF− ≥ ×  (27)

 , {1,2, , }i n i nξ = ∀ ∈ ⋅⋅ ⋅∑  (28)

 Equations (20) and (21) ensure that the UAV departs from and returns to the inspection 
center. Equations (22) and (23) ensure that each point to be inspected is assigned a UAV for 
inspection. Equation (24) defines the pitch angle range of the UAV in the flight process that 
gives the UAV as high stability as possible during the inspection flight. According to the study 
of Xiang et al.,(24) the stability of the UAV increases when the pitch angle increases from 0 to 5° 
and decreases when the pitch angle increases from 5 to 10° . Furthermore, from Eq. (17), it can 
be seen that in the general flight state, the smaller the pitch angle of the UAV, the smaller the 
flight power. To increase the flight time, the pitch angle range of the UAV is specified as –5 to 
5°. Equation (25) indicates that the UAV image sensor at device i can be acquired to cover the 
device,  where θU and θD are the elevation angle and pitch angle of the UAV gimbal and max

Uθ   
and min

Dθ  are the maximum elevation angle and maximum pitch angle of the UAV gimbal, 
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respectively. Equation (26) is the workable constraint of the image sensor of the UAV at device i, 
where AV is the minimum focusable distance of the visible sensor and AT is the maximum 
collectable distance of the IR sensor while guaranteeing the acquisition accuracy. Equation (27) 
is the UAV return constraint, where UEmax is the total energy, UE is the energy consumed to 
complete the inspection of all devices determined by Eq. (18), G is the last inspection point of the 
UAV, TFGE is the return time of the UAV, and N

UFP  is the flight power. Equation (28) ensures that 
all devices are inspected.

4. Improved Trajectory Planning Algorithm

 Because of its small size and robust mobility, a rotary-wing UAV can be used for effective 
targeting in substation inspection without major spatial constraints, making it easy to generate 
many feasible paths. In the path planning problem with multiple decision indicators and complex 
constraints, traditional path planning algorithms such as the artificial potential field method and 
GA have high computational complexity and poor solutions; thus, a more generalized path 
planning algorithm with a high-dimensional solution space is required. MA combines the major 
advantages of PSO, GA, and the firefly algorithm (FA). It has a high convergence speed while 
maintaining the accuracy of the solution; however, MA easily falls into a local optimal solution, 
which reduces the solution accuracy. Thus, we design a hybrid MA based on the improved RRT 
algorithm for UAV substation inspection path planning.

4.1 Improved RRT path planning algorithm

 The traditional RRT algorithm plans paths mainly by randomly generating extended trees. 
Although the optimal path can be found if the number of searches is sufficient, the random 
strategy makes the algorithm search space large, the search efficiency is low, and the results of 
path planning obtained using RRT are highly random and the process is computationally 
complex. Therefore, to address the problem of the randomness of the traditional RRT algorithm, 
we improve the RRT algorithm by using an adaptive dynamic step size and the Gibbs sampling 
strategy, starting from the parent node selection and randomness.

4.1.1 Gibbs sampling strategy

 Gibbs sampling is one of the random simulation sampling algorithms. If the specific density 
function of the probability distribution cannot be determined, an approximate solution can be 
obtained using Gibbs sampling, thus simplifying the problem and improving the computational 
efficiency. When Gibbs sampling is used, it is necessary to know the conditional probability of 
an attribute in the sample under all other attributes and then use this conditional probability to 
generate sample values of each attribute in the distribution. The Gibbs pseudocode is shown in 
Algorithm 1.
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4.1.2 Adaptive dynamic step strategy

 The application of the Gibbs sampling strategy reduces the randomness of the traditional 
RRT algorithm and effectively improves its search efficiency. However, owing to the fixed 
expansion step, in a scenario with dense obstacles, the algorithm cannot quickly and smoothly 
pass through the obstacles. To avoid the extended tree wandering around the same point for a 
long time, a self-learning strategy is introduced into the traditional RRT algorithm, and Eq. (30) 
is used to make the algorithm realize dynamic step adjustment.K varies with the number of 
iterations as follows:

 
2

,iter

iter

NK
Max

 
 


=


 (29)

where K is the dynamic step adjustment coefficient, Niter is the number of times of Gibbs 
sampling, and Maxiter is the maximum allowable number of times of Gibbs sampling. The 
formula used to dynamically adjust the step size is

  ,    if ,
size size size iterstep = step K step  N γ− × >  (30)

Algorithm 1 
Gibbs pseudocode.

 1   GibbsAlgorithm
 :    , ,Ub,LbnSamples mu rho propSigmaInput ， ，

: xOutput
1:  x  zeros(nSamples,2)←  

2 :  x(1,1)  unifrnd(Lb(1), Ub(1))←  

3:  x(1,2)   unifrnd(Lb(2), Ub(2))←  

4 :  t  1←  
5:  nSampl st e   < dowhile 

6 :  t  t +1←  
7 :  T  [t - 1,t]←  

[ ]8:    1,    each iD dim∈for do   

 9 :  nIx = dims ~= iD   

10:      muCond  mu(iD) + rho(iD)* (x(T(iD),nIx) - mu(nIx)) ←    
211: (1 ( ) )varCond sqr D r    t ho i← −    

12:     x(t,iD) = normrnd(muCond,varCond)   

13:   end 

14: end
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where stepsize is the step length of the RRT algorithm and γ is the threshold number of 
consecutive invalid nodes. K is introduced to adjust the step size according to γ, so that the step 
size changes dynamically with the number of calculations. Since the extended tree wanders for a 
long time near the same point, the range of passable paths near the point is small and the step 
size is too large for obstacle avoidance. Figure 3 shows how K changes with Niter.

4.2 Traditional MA

 MA is a metaheuristic algorithm based on the dynamic interaction of mayflies. Its main idea 
is to imitate the flight behavior and mating behavior of mayflies for related optimization work, 
and the intelligent behavior of mayflies mainly comprises the movement of female mayflies, the 
movement of male mayflies, and the mating process.

4.2.1	 Movement	of	male	mayflies

 Adult male mayflies rise to the surface of the water to find a location to attract females. Their 
search for this location is modeled as

 1 1t t t
i i ix x v+ += + , (31)

 
2 21

1 2( ) ( )p gr rt t t t
ij ij j ij j ijv v a e pbest x a e gbest xβ β− −+ = + − + − , (32)

where 0 ( , )i min maxx U x x∈ , t
ijv  is the velocity of mayfly i in dimension j = 1, ..., n at time t, t

ijx  is the 
position of mayfly i in dimension j at time t, and a1 and a2 are positive attraction constants for 
scaling the contributions of the cognitive and social components, respectively. pbesti is the 
global optimal solution, gbesti is the local optimal solution, β is the fixed visibility, and rp and rg 
are the Cartesian distances between xi and pbesti and between xi and gbesti, respectively.
 At the same time, the mayfly updates its velocity through the courtship dance, which is 
modeled by

Fig. 3. Graph showing change in K.
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 1t t
ij ijv v d * r,+ = +  (33)

where d is the distance coefficient and r	is	a	random	number	in	the	range	[−1,	1].

4.2.2	 Movement	of	female	mayflies

 Upon the arrival of the male mayfly, the female mayfly moves towards the male mayfly, 
which is modeled as

 1 1t t ty y vi i i
+ += + , (34)

 

2

2 ( ), ( ) ( ),1

* , ( ) ( ).

rmft t tv a e x y f y f xt ij ij ij i ivij
tv fl r f y f xij i i

β −
 + − >+ = 
 + ≤

 (35)

Here, t
ijy  is the position of female mayfly i in dimension j at time t, rmf is the Cartesian distance 

between the female and male mayflies, and fl is the wandering coefficient.

4.2.3 Mating

 One individual each from the male and female populations is selected as a parent to produce 
more adaptive offspring according to Eqs. (36) and (37).

 
1 = * (1 )*offspring L male L female+ −  (36)

 2 * (1 )*offspring L female L male= + −  (37)

Here, male denotes the male sire, female denotes the female sire, and L denotes a random value 
within a certain range.

4.3 Improved MA

 The advantage of MA is that it combines the major advantages of PSO, GA, and FA, and 
there are various ways to update the positions of the population. However, it is still possible to 
fall into a local optimum. Therefore, the Cauchy mutation strategy and Lèvy flight strategy are 
introduced to extend the search space of the algorithm to improve its ability to find the global 
optimum.
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4.3.1 Cauchy mutation strategy

 In the mating behavior of the traditional MA, the search direction and weight coefficients of 
each dimensional variable change randomly and irregularly with the number of updates, which 
affects the stability of the algorithm in solving optimization problems. The Cauchy distribution 
has a stronger disturbance ability than the Gaussian distribution. For this reason, the Cauchy 
mutation strategy is introduced to update the positions of species offspring by using its 
perturbation ability to increase the biodiversity of the population while improving the stability of 
the algorithm to further improve its ability to find the global optimum.
 The Cauchy mutation originates from the Cauchy distribution. The probability density of the 
1D Cauchy distribution is

 2
1 ( ) .af x

a xπ
= ⋅

+
 (38)

 When a = 1, the distribution is called the standard Cauchy distribution. Therefore, the 
formula for updating progeny in MA is

 
1 ,

.2

 0,1 () | 1  0,1)  |

 0,1) | 1  0,( 1)  |

( ( )

( ( )
male female

female male

offspring cauchy X cauchy X

offspring cauchy X cauchy X

= × + − ×

= × + ×



 −  (39)

4.3.2	 Lèvy	flight	strategy

 The Lèvy flight strategy was introduced to update the moving positions of female and male 
mayflies during the computation to enhance the ability of MA to calculate the global optimal 
solution. The formulas for the positions of mobile male and female mayflies after the introduction 
of the Lèvy flight strategy are respectively as follows:
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 (40)
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 (41)

where Levy is the optimized step size coefficient, which obeys the Lèvy flight distribution
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where β	is	a	constant	taking	values	in	the	range	of	[0,	2].	In	this	paper,	β is taken as 1.5. Γ(β) is 
the gamma function and s is expressed as

 
2

1 ( ,; (0, ), 0,1)s N N
β

σµ υµ
υ

∼∼=  (43)

where

 
( )

1

( 1)/2
(1 ) sin( 2) .
(1 ) / 2 2 +

 Γ + = ⋅ ⋅Γ +  

β

β
β βπσ

β β
 (44)

4.3.3	 Algorithm	flow	of	ICLMA

 The specific steps of the hybrid mayfly algorithm (ICLMA) based on the Cauchy mutation 
strategy and Lèvy flight strategy are as follows.
Step 1  Initialize mayfly populations Mayflyi,iter and Mayflyfi,iter, set initial parameters, and 

define decision variables.
Step 2:  Randomly generate female and male mayfly populations according to solution space 

and calculate initial fitness function value.
Step 3:  Using random values, update moving positions of female and male mayflies by Eqs. (40) 

and (41), respectively.
Step 4:  Calculate fitness function value of new position, as well as global variable position and 

target function value.
Step 5:  Update female and male mayfly mating offspring positions according to Eq. (39) and 

calculate fitness function values.
Step 6:  Check if updated global variable position has changed according to fitness function 

value, and update corresponding parameters.
Step 7:  Check if number of iterations has reached the maximum. If not, return to Step 3.
As a summary, the flow chart of the improved RRT algorithm and ICLMA is shown in Fig. 4.

5. Simulation Experiments

 We establish a 3D simulation environment model based on a substation in Yunnan, China, as 
shown in Fig. 5. The DJI Royal 2 rotary-wing UAV is selected to perform the substation 
inspection simulation. The rotary-wing UAV is equipped with a visible camera, IR sensor, RTK 
positioning module, and map transmission module to perform the inspection. Based on the 
established 3D environment model and the UAV inspection model, the designed ICLMA is used 
for path planning to verify the effectiveness of the proposed model and algorithm, and the 
relevant parameters of the simulation inspection task are shown in Table 1. MATLAB R2020a is 
used as the algorithm programming tool, the operating system is Windows 10, the computer 
memory is 32 GB, and the CPU is Intel i7-10870H.
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Fig. 5. (Color online) Three-dimensional simulation environment model.

Fig. 4. Flow chart of ICLMA.
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 In addition, to compare the performance and robustness of the proposed algorithm, ICLMA, 
GA, PSO, and MA are run 100 times as experimental algorithms, and the results are compared 
and analyzed.

5.1 Results of substation inspection simulation

 The simulation results after 100 runs are shown below, where Fig. 6 shows the optimal 
iteration profiles of GA, PSO, MA, and ICLMA over 100 runs; Fig. 7 shows the worst iteration 
profiles of GA, PSO, MA, and ICLMA over 100 runs; and Fig. 8 shows the average iteration 
profiles of GA, PSO, MA and ICLMA over 100 runs. Table 2 shows some of the parameters of 
the designed algorithm. Table 3 shows the average, optimal, and worst objective function values 
and the average running time of the four algorithms of GA, PSO, MA, and ICLMA for 100 runs.
 The results are presented for a run randomly selected from the 100 runs. Figure 9 shows the 
iteration profiles of GA, PSO, MA, and ICLMA for the randomly selected run. Table 4 shows the 
path length, inspection time, and inspection energy consumption values for the randomly 
selected run. Figure 10 shows related indexes of each algorithm, and Fig. 11 shows the substation 
inspection paths generated by GA, PSO, MA, and ICLMA.

Table 1 
Parameters related to simulation inspection.
Name Value
Drone mass, mij 1100 g
Maximum ascent speed 4 m/s
Maximum descent speed 4 m/s
Maximum	horizontal	flight	speed 14 m/s
Maximum	flight	altitude 6000 m
Maximum tiltable angle 25°
Maximum rotational angular speed 100°/s
UAV real-time image transmission speed, β 40 Mbps
Quality 720p, 30 Hz
Battery capacity 3850 mAh
Total energy 59.29 Wh
Rotatable range of head Pitch	−90–+30°
Angle jitter amount ±0.005°
Temperature measurement range −40	to	550	℃

Temperature measurement method Spot temperature measurement 
Area temperature measurement

Visible camera focus 1	m	to	infinity

ISO range Video: 100–12800 (auto) 
Photo: 100–1600 (auto)

Task volume per detection point, Ri 50 M
Gravitational acceleration, g 9.8
Power conversion factor, K 2.061
Constant, C 8.532
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Table 3 
Results of GA, PSO, MA, and ICLMA runs.
Algorithm Optimal Worst Average
GA 3.060 × 1015 6.2651 × 1015 4.2360 × 1015

PSO 1.7532 × 1015 5.2891 × 1015 3.5670 × 1015

MA 1.8232 × 1015 3.9117 × 1015 2.8287 × 1015

ICLMA 7.0613 × 1014 2.1198 × 1015 1.2029 × 1015

Table 2 
Simulation parameters.
Name Value
Maximum number of iterations, Maxiter 400
Inertia weight, g 0.8
Inertia weight damping ratio gdmap 1
Global	learning	coefficient1,	a2 1.5
Global	learning	coefficient1,	a3 1.5
Global	learning	coefficient1,	a2 1

Fig.	8.	 (Color	online)	Average	iteration	profiles	of	GA,	PSO,	MA	and	ICLMA	over	100	runs.

Fig.	7.	 (Color	online)	Worst	iteration	profiles	of	GA,	
PSO, MA, and ICLMA over 100 runs.

Fig.	6.	 (Color	 online)	 Optimal	 iteration	 profiles	 of	
GA, PSO, MA, and ICLMA over 100 runs.
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5.2 Analysis of results

 From Figs. 6–8, the designed ICLMA has a stronger search capability than GA, MA, and 
PSO, both in the early stage of the search and in the global search, and its convergence speed and 
accuracy are superior to those of the other algorithms. Moreover, from the comparison of the 

Table 4 
Specific	simulation	results.
Algorithm Distance (m) Time (s) Energy consumption (W)
GA 4665.51 832.11 7.70 × 1011

PSO 1861.89 637.17 2.53 × 1011

MA 2420.95 683.76 1.73 × 109

ICLMA 1711.97 623.44 9.55 × 108

Fig.	9.	 (Color	online)	Iteration	profiles	of	GA,	PSO,	MA	and	ICLMA	runs	randomly	chosen	from	100	iterations.

Fig. 10. Bar chart of indexes of each algorithm.
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average, optimal, and worst objective function values of 100 runs in Table 3, the designed 
ICLMA algorithm reduces the objective function values by 57.48–71.60, 45.81–66.16, and 
59.72–76.92% compared with those of GA, MA, and PSO, respectively. Furthermore, it can be 
seen from Fig. 9 that ICLMA still has a significant advantage over the other algorithms in the 
randomly selected run. From Fig. 10, the distance, time, and energy consumption of ICLMA are 
clearly superior to those of the other algorithms, and the energy consumption of ICLMA is so 
much smaller than those of GA and PSO that it does not appear in the figure. In addition, from 
the specific run results in Table 4, the total length of the inspection path of ICLMA is 1711.97 m, 
which are 63.31, 29.29, and 8.05% less than those of GA, MA, and PSO, respectively. The total 
time of inspection of ICLMA is 623.44 s, which is 25.08, 8.82, and 2.15% less than those of GA, 
MA, and PSO, respectively. In addition, the total energy consumption of inspection of ICLMA is 
9.55 × 108 W, which is 99.8, 44.79, and 99.62% less than those of GA, MA, and PSO, respectively. 
In summary, the designed ICLMA has a strong global and local search capability and high 
robustness.
 From the above results, the proposed inspection model comprehensively involves inspection 
length, time, and energy consumption and can effectively generate inspection paths. ICLMA 
also benefits from the introduction of improved strategies such as the Cauchy mutation strategy 
and Lèvy flight strategy, which can reduce the length, time, and energy consumption of 
inspection compared with those of the general trajectory planning algorithms, thus helping 
promote intelligent and efficient substation inspection.

6. Conclusions

 We investigated the substation inspection problem based on a rotary-wing UAV with fused 
heterogeneous sensors. A UAV inspection model with the minimum total index as the 

Fig. 11. (Color online) Substation inspection paths generated by GA, PSO, MA, and ICLMA.
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optimization target was constructed under the premise of integrating the constraints at all 
physical levels and taking the inspection distance, time, and energy consumption as the 
optimization indexes. In addition, an RRT algorithm that introduces the Gibbs sampling strategy 
and adaptive dynamic step strategy was designed, a floating algorithm that introduces the 
Cauchy mutation strategy and Lèvy flight strategy was combined, and finally, the improved 
ICLMA for planning the inspection path was designed. Experiments based on a substation 3D 
simulation environment model were carried out, and PSO, GA, and MA were selected for cross-
sectional comparison to verify the feasibility of the proposed model and algorithm. The 
experimental results show that the proposed model and algorithm can reduce the inspection 
distance, time, and energy consumption and help promote automated and intelligent substation 
inspection. In future research, we will further study UAV autonomous inspection based on 
communication networks such as 5G to further reduce the workload of personnel, and we will 
also focus on the inspection of substations in complex environments such as plateaus to extend 
the generalizability of the research.
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