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 Unmanned aerial vehicle (UAV) path planning is the key to the UAV carrying a high-precision 
portable radio frequency identification (RFID) reader to complete an inventory task. By taking a 
quadrotor UAV as the object, a type of method is proposed for the path planning using a UAV with 
RFID readers to conduct an inventory of industrial product warehouses. As the particle swarm 
optimization algorithm (PSO) tends to converge prematurely when solving path planning problems 
and tends to fall into local optima, PSO has been improved and an improvement method based on 
differential evolution has been proposed. The fitness-adaptive differential evolution algorithm 
(FiADE) and PSO are mixed and improved for further application in three-dimensional space. 
The final simulation results show that the hybrid suitability DE algorithm (PSO-DE) based on 
improved PSO has a higher uniformity than the DE algorithm, PSO, and whale optimization 
algorithm (WOA), and is more suitable for the trajectory planning of drones in complex industrial 
warehouses.

1. Introduction

 Autonomous flight technology for unmanned aerial vehicle (UAV) has attracted considerable 
attention in the civilian sector. At present, four-rotor UAVs have been widely used in indoor 
positioning, photovoltaic inspection, pesticide spraying, inventory tasks, and environmental 
monitoring.(1,2) This study is based on the raw and auxiliary material warehouse environment of 
an industrial enterprise for planning the path of a four-rotor UAV inventory. For the UAV inventory 
task, the main difficulty lies in the following: the product information in the raw and auxiliary 
material warehouse is diverse, the quadrotor UAV used for warehouse inventory is limited in 
quantity, and the endurance is generally not strong. At the same time, it is also necessary to consider 
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issues such as obstacle avoidance. Therefore, reasonable UAV trajectory planning in the industrial 
warehouse environment can effectively improve the endurance and work efficiency of the quadrotor 
UAV.
 At present, there are many research studies on UAV trajectory planning. At this stage, the 
algorithms to solve the UAV trajectory planning problem are mainly intelligent and accurate 
algorithms.(3,4) Taking the trajectory planning of UAVs as an example, Zhou et al.(5) used Bezier 
curves to generate the trajectory of a quadrotor UAV, but they did not study the motion model. 
The establishment of the dynamic model has no practical application value, as mentioned by Cheng 
et al.(6) Moreover, in related studies by Qian and Lei,(7) Gao et al,(8) Wang and Wang,(9) and Hu 
and Wu,(10) the traditional squid algorithm, fast-expanding random tree algorithm, traditional 
particle swarm optimization algorithm (PSO), and ant colony algorithm are not good enough for 
the convergence of the UAV trajectory planning problem, and the convergence speed is very low. 
The algorithm has been improved to enhance the optimization of the four above-mentioned 
algorithms and the ability to jump out of the local optimum, which has achieved certain results 
and has certain reference significance. However, these studies have mainly carried out simulation 
experiments for fixed-wing UAVs. Thus, the algorithm is not suitable for the trajectory planning 
of quadrotor UAVs. In addition, most of the research studies on UAVs at this stage only use the 
shortest flight path(11) or the least energy consumption(12) to establish a single-objective optimization 
model, and further use the convex approximation strategy(13) to calculate the track. The algorithm 
does not consider other target requirements during the drone mission process, which has certain 
limitations. In the obstacle avoidance link of UAV trajectory planning, the rapidly-exploring 
random trees (RRT) algorithm,(14) potential field method,(15) and other methods are often used.
 At present, in most studies (e.g., Kumar et al.(16)), the path planning problem for UAVs is based 
on a two-dimensional environment, which causes difficulties in the practical application of the 
algorithm, and most of them do not have a track specifically for UAV inventory tasks. Their 
planning studies are based only on patrol missions, surveillance mission context,(17,18) and UAV 
trajectory planning. On the basis of the logistics distribution, Pei et al.(19) proposed a hybrid genetic 
algorithm based on the fusion extended K-means++ algorithm, and a dual-objective optimization 
model was established to reduce the time and energy spent in the UAV delivery process. On the 
basis of the background of UAV plant protection, Kan et al.(20) proposed an improved PSO to plan 
the operation path of a UAV and improve the operation efficiency of UAV plant protection operation. 
PSO is used to plan the UAV path.(21) In the literature,(22,23) the inventory task of quadrotor drones 
equipped with radio frequency identification (RFID) readers is explored, which has certain reference 
significance for the execution of the inventory tasks of drones, but there are problems such as 
incomplete and nonspecific mathematical models and task environment models. 
 Although relevant experts and scholars at home and abroad have conducted considerable research 
on UAV path planning, the following problems still exist:
1)  To simplify the model, most of the research on UAV trajectory planning only focused on UAV 

trajectory planning under the two-dimensional model of the mission environment and did not 
involve the UAV trajectory planning research in the three-dimensional environment. The 
practical application of the algorithm caused difficulties.
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2)  Most of the current research studies have not applied UAVs to the actual industrial background 
and only remain at the theoretical level. The objective function is mostly a single objective 
function, which is too simple to consider other requirements of the task.

3)  When studying the trajectory planning of a rotary-wing UAV, most studies did not add the 
physical constraints of the rotary-wing UAV and did not consider the unique aerodynamic 
characteristics of the rotary-wing UAV.

 Therefore, the main research problem of this paper is UAV 3D trajectory planning based on a 
complex industrial product warehouse inventory background. To solve the above problems, this 
article is based on the background of quadrotor drones performing industrial product warehouse 
inventory tasks. Under the premise of meeting the power constraints of quadrotor drones, the 
structure of the inventory unit cargo has the least energy consumption and the highest accuracy 
rate. The objective function is to build a multi-objective optimization mathematical model to 
optimize the flight trajectory during the UAV inventory process. In this paper, we propose to use 
the improved fitness-adaptive differential evolution algorithm (FiADE) and PSO based on differential 
evolution. We introduce hybrid chaos strategies to improve the optimization performance of the 
PSO algorithm. The final simulation results show that the proposed algorithm outperforms PSO, 
the DE algorithm, and the whale optimization algorithm (WOA) and has a high degree of uniformity, 
enabling the inventory task to be completed effectively while avoiding obstacles.

2. Model Establishment

2.1 UAV motion model

Model assumptions:
1) Since the flying speed of the UAV is relatively low when performing the inventory flight task, 

the effects of the air resistances fL, fR, and fD received by the UAV in level flight, ascending, 
and descending states, respectively, can be ignored.

2) Since the task environment of the quadrotor UAV is indoor during the mission, the airflow 
disturbance is not considered during the flight, and the effects of wind conditions are ignored.

3) When the aircraft is near the hovering state, we ignore the air drag moment in the hovering 
state to simplify the mathematical model of the quadrotor.

4)  During the process of the UAV from the start (counting flight starting point) PS to the end 
(counting flight ending point) PE, the flight track Track can be decomposed into line segments 
between m nodes, { }2 1, ,..., ,..., ,rack rackS rack rackj rackm rackET T T T T T−= .
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 Among them, in Fig. 1, FL, FR, and FD are the total lifts required by the UAV in level flight, 
ascending, and descending states, respectively. FΩi is the total rotor lift of the quadrotor UAV 
during the flight path segment i, ai is the gravitational acceleration vector, and θ and Φ are the 
pitch and roll angles of the UAV, respectively. 
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2.2 Constraints for quadrotor UAV

1) The maximum ascent speed and descent speed of the UAV during flight are determined by the 
physical performance of the UAV:
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2) The maximum pitch and roll angles that the UAV can fly during the pitch and roll movements 
are determined by the physical performance of the UAV:
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Fig.	1.	 Force	analysis	of	UAV	movement.	(a)	Level	flight	force.	(b)	Ascending	force.	(c)	Drop	force.

(a) (b) (c)
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3) The longest time that the UAV can fly during an inventory task is determined by the physical 
performance of the UAV:

 max ,jt T≤∑  (7)

where tj is the flight time of the jth trajectory.

2.3 Scanning model of RFID reader

 The principle of the UAV carrying the RFID reader to collect product data is as follows. The 
RFID reader module on the UAV can achieve the purpose of inventory by scanning the electronic 
tags installed on the items and the cargo space. (Fig. 2)
 When the drone carries the RFID reader into the product data collection, the raw and auxiliary 
materials to be counted are not only obstacles, but also need to meet the requirement that the tag 
is within the scanning range of the RFID reader carried by the drone to ensure that the original 
and auxiliary materials can be completed. In the material data collection task, when the UAV is 
at node j, Tracky = (xj, yj, zj), and we assume that the center coordinates C of the RFID tag of the 
ith cargo are (xc, yc, zc). The UAV is expanded in a conical shape with the maximum scanning 
angle φmax and the maximum scanning radius distance δmax, and the establishment of UAV mission 
planning is based on RFID reading and writing the fitness function recognized by the machine:

 ( ) ( ) ( )2 2 2
j C j C j Cl x x y y z z= − + − + − , (8)
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Fig. 2. Principle of UAV carrying RFID reader to collect product data.
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2.4 UAV inventory of energy consumed per unit of cargo

 The total energy consumed by the drone during the flight of the inventory mission is as follows:
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Therefore, the objective function in the article is

 1 .f K
U

= ⋅  (14)

3. Algorithm Description

 The path planning of the UAV can help the UAV complete the flight mission effectively and 
improve the operation efficiency. PSO is an evolutionary algorithm based on the foraging behavior 
of flying bird swarms, which can solve large-scale optimization problems. The algorithm treats 
birds as particles, and these particles form a particle swarm. Each particle has both speed and 
position attributes. A single particle adjusts its position according to its own optimal position and 
the optimal position of the entire group. After multiple iterations, the goal of optimization is 
achieved. PSO has simple calculations, high robustness, good memory, and high stability, which 
can be used to rapidly solve path planning problems. However, particle swarms are easy to converge 
prematurely and fall into local optimality, and the accuracy of path planning is often low. Therefore, 
in this paper, we propose to use the improved FiADE based on differential evolution to mix with 
PSO and introduce the chaos strategy to improve the optimization performance of PSO and 
effectively solve the complex environment in this paper. 
 In the use of the hybrid suitability DE algorithm (PSO-DE) to solve the three-dimensional path 
planning problem, we assume that each individual particle is

 1 1 1 2 2 2 1 1 1 2 2 2 1 2( {( , , ),( , , ), } {( , , ),( , , ), } { }),k k k
i i iM M x y z x y z M x y z x y z m m= = = + +    
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where Mi
k represents the algorithm iteration to the position of the ith individual of the kth generation 

of the particle swarm, that is, the flight path of the UAV represented by the ith individual. In the 
iterative process, the particle swarm continuously updates and evolves and moves toward the 
optimal solution.

3.1 Basic step of algorithm

 For the FiADE algorithm, the update strategy is as follows.

3.1.1 Mutation operation

 For each target vector in the population Mi,E, E means that the algorithm runs to the Eth 
generation to perform differential mutation operation [Eq. (15)] and the generated mutation vector 
is denoted as Vi,E = [V1

i.G, ..., VD
i.G]. 

 
1 2 3 4 5

, , , , , ,( ) ( )i i i i ii E i ir E r E r E r E r EV M F M M F M M= + ⋅ − + ⋅ −  (15)

 In the formula, the subscripts ri
1, ri

2, ri
3, ri

4, and ri
5 are randomly selected individual serial 

numbers between [1, Np] and different from i, and Fi is the scaling factor corresponding to individual 
i. The calculation process is as follows.
 Step 1: Calculate Fi for each individual Mi.

 1 max
i

con i

fF F
fλ

 ∆
= ⋅ + ∆ 

 (16)

	 In	 the	 formula,	 Δfi = | f(Xi) – v(Xbest)| and Mbest are the lowest fitness individuals 
λcon	=	0.1	×	Δfi + 10−14 in the current population, and Fmax is the given parameter.
 Step 2: Calculate F2 for each individual Mi.

 2 max (1 )ifF F e−∆= ⋅ −  (17)

 Step 3: Calculate Fi .

 1 2max( , )iF F F=  (18)

3.1.2 Cross operation

 The target vector Mi,E and its corresponding mutation vector Vi,E execute the crossover 
strategy, the newly generated individual is denoted as 1 2

, , , ,{ , }D
i E i E i E i EU u u u= ⋅⋅ ⋅ , and the 

calculation formula for the jth point ui
i,E in individual i is
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 In the formula, CRi is the crossover probability corresponding to individual i, and the calculation 
process is as follows. Compare the fitness function value of the mutation vector Vi and the original 
vector Mbest; if f(Vi) < f(Mbest), execute Eq. (20); otherwise, execute Eq. (21).

 i constCR CR=  (20)
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f V f M

−
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Here, CRconst, CRmin, and CRmax are the set parameters.

3.1.3 Select operation

 Comparing the original individual Mi,E with the fitness function value of the new individual 
Ui,E after mutation and crossover operation, we select individuals using Eq. (22). The superior 
individual enters the next cycle and the weaker individual is eliminated.
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 (22)

 For individual particle swarm positions, the update strategy is as follows.
 The new individuals optimized by FiADE are used as contemporary individuals of the particle 
swarm to participate in the position update of the particle swarm to produce offspring individuals.

 1
1 2( ) ( )k k k k

i i i i iv v c Rn p M c Rn g Mω+ = × + × × − + × × −  (23)

 1 1 1k k k
i i iM M v+ + += +  (24)

 Among them, vk
i represents the flight speed of the ith individual in the kth iteration, ω is the 

inertia factor, c1 and c2 are the learning factors, pi is the historical optimal position of the ith particle 
swarm individual, and g is the global optimal position.
 To prevent the particle swarm from falling into the local extreme point, the chaos optimization 
idea is introduced into PSO. We perform chaotic optimization on the global optimal position g = 
(g1, g2, …) and map g1 to the domain [0, 1] of the logistic equation to obtain Zi. The logistic equation 
is
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 1 (1 ) ( 0,1,2, ).n n nZ Z Z nµ+ = − = ⋅ ⋅ ⋅  (25)

 Then, we use the logistic equation to iteratively generate the chaotic variable sequence

 ( ) ( 0,1,2, ).m
iZ m = ⋅⋅ ⋅  (26)

 Then, the generated chaotic variable sequence Zi
(m) is restored to the original solution space 

through inverse mapping to obtain G(m), the fitness function value of the sequence is calculated, 
and the individual position of the optimal fitness value is substituted for g. 
 To ensure that the number of populations remains unchanged after merging, some individuals 
are eliminated by roulette operation after the fitness value is normalized. Compared with traditional 
algorithms, FiADE can dynamically adjust the scaling factor and crossover probability of the DE 
algorithm according to the change in the individual fitness function value of each generation of 
population and balance the development and exploration capabilities of the algorithm. The new 
individuals generated by FiADE are added to the particle swarm, which improves the diversity of 
the population and makes the algorithm have the advantages of PSO  and the DE algorithm.

3.2 Basic steps of the algorithm for solving the irregular placement model

(1) Initialization parameters
 Initialize the parameters included in the algorithm.
(2) Initialize the track point
 The RRT algorithm is used to generate the initial collision-free trajectory and obtain an initial 
feasible path. A polynomial fitting method is used to perform segmental fitting on the initial path, 
and the segment lengths are the same.
(3) Variation
 Use the mutation operation in FiADE to randomly select five individuals in the population and 
perform the mutation operation.
(4) Cross
 Perform a crossover strategy between the mutation vector generated in 3.2 (3) and the 
corresponding individual position to generate a new individual.
(5) Foraging
 After the offspring are produced, they participate in the particle swarm update strategy, and 
the offspring follow their parents for food.
(6) Update the global and individual extreme values.
 Update the global and individual optimal values, and record the global optimal path g and the 
individual optimal path pi. Judge whether the maximum number of iterations is reached; if it is 
reached, exit the loop and output the optimal path; if not, return to 3.2 (3). (Fig. 3)
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3.3	 Simulation	verification	and	analysis

 We conducted simulation verification for the above-mentioned improved PSO. The simulation 
software is MATLAB2017a, and the relevant three-dimensional model is established on the basis 
of the physical map of the industrial warehouse, as shown in Fig. 4. By extracting the parameters 
of a drone and an RFID reader, the relevant parameters of the drone and RFID can be obtained: 
vRmax = 2.5 m/s , vDmax = 1.5 m/s, Tmax = 1800 s, δmax = 5 m, and Φmax = 120°. In simulation 
verification, the parameter settings are shown in Table 1. The coordinates of the flight start point 
of the UAV are (0, 0, 0), and the coordinates of the flight end point are (0, 60, 0). First, we verify 
the ability of the proposed algorithm to avoid obstacles, as shown in Fig. 5. Secondly, under the 
condition of ensuring the safe flight of the quadrotor UAV, we verify the storage efficiency and 
accuracy of the quadrotor UAV, as shown in Tables 2 and 3, and Fig. 6.

3.4 Simulation environment for quadrotor UAVs to perform disk library tasks

 The environmental model of the UAV performing raw and auxiliary material inventory tasks 
in a warehouse is shown in Fig. 4. To verify the advantages of the algorithm proposed in this paper, 
three other algorithms such as PSO are selected as experimental comparison examples. We compare 
them with the PSO-DE proposed in this paper for verification.

3.5 Simulation results of quadrotor UAV performing disk library task

 In the process of running PSO-DE, PSO, DE, and WOA 30 times, the simulation results are 
shown in Tables 2 and 3.

Fig.	3.	 Algorithm	basic	flow	chart.
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Fig. 5. (Color online) PSO-DE algorithm inventory roadmap.

Fig. 4. (Color online) Schematic diagram of raw and auxiliary material warehouse scene.

Table 1
Parameter setting table.
Parameter  Gmax Nmax Fmax CRconst CRmin CRmax NP ω
Value 150 20 0.75 0.85 0.1 0.8 20 0.6

Table 2
Cargo information collection results of four algorithms (PSO-DE, PSO, DE, and WOA).

Index Algorithm
DE PSO WOA PSO-DE

Quantity of collected goods 691 694 695 708
Cargo collection rate (%) 89.97 90.36 90.49 92.19
Inventory speed (s/box) 0.1259 0.1346 0.1346 0.1225

Table 3
Average cargo information collection results of four algorithms running thirty times.

Index Algorithm
DE PSO WOA PSO-DE

Average	fitness	value 1.067 1.126 1.147 1.024
Average cargo collection 688 691 694 702
Average cargo collection rate (%) 89.58 89.97 90.36 91.41
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3.6 Simulation analysis of quadrotor UAV performing warehouse inventory task

 It can be seen from the simulation results shown in Fig. 5 that the trajectory planned by PSO-DE 
designed in this paper can effectively adapt to the three-dimensional warehouse environment, 
avoid obstacles in the warehouse environment, and complete the warehouse inventory task. For 
different obstacle models, the UAV can effectively avoid obstacles to reach the target point, thus 
verifying the effectiveness of the algorithm, and the planned path is suitable for UAV flight. It can 
be seen from Fig. 6 that the proposed algorithm has the highest convergence speed, the best 
convergence effect, and a certain degree of uniformity. Therefore, the algorithm not only retains 
the robustness, memory, and stability of PSO, but also overcomes the problems of premature 
convergence and easiness in falling into local optimum, and improves the accuracy of path planning.
 Tables 2 and 3 show that in the process of running the algorithm 30 times, the statistical results 
indicate that, in the average of the 30 runs, when the maximum fitness function value differs from 
the minimum fitness function value by about 10%, the difference between the maximum cargo 
scanning rate and the minimum cargo scanning rate is 1.83%. The cargo scanning rates are similar, 
but the difference in response function value is large. Moreover, according to the improved method 
proposed in this article, the flight data of the UAV are detected in the field, and the average flight 
time is increased by 20%. Therefore, according to the multi-objective function in the article, it 
can be concluded that the FiADE–PSO hybrid algorithm with the introduction of the chaos strategy 
proposed in this article can effectively reduce energy consumption while ensuring the accuracy 
of cargo scanning, which can effectively use the battery life of the quadrotor UAV.

4. Conclusions

 For the 3D trajectory planning problem of the inventory flight of a UAV with an RFID reader, 
we proposed a hybrid improved FiADE algorithm and PSO to further extend it to 3D space with 
a quadrotor UAV as the object. Our works are as follows.

Fig. 6. (Color online) Curve of objective function value with the number of iterations.
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1)  We analyzed the movement and dynamics of the UAV, simplified its three-dimensional movement 
process, established the corresponding mathematical model, and obtained the physical 
performance constraints of the quadrotor UAV, which provided conditions for the in-depth 
study of the UAV trajectory planning problem.

2)  We established a multi-objective function with the highest inventory rate of raw and auxiliary 
materials and the lowest energy consumption per unit of inventory, which effectively solved 
the inventory task of drones with RFID readers.

3)  We mixed the improved FiADE and PSO based on differential evolution, then introduced the  
chaos strategy to improve the performance of PSO and reduce the energy consumption of the 
UAV inventory task. We improved the effective endurance time and effectively solved the 
problem of the UAV library in a complex environment.

 In the next stage, we will further study the trajectory planning of multiple UAVs with dynamic 
obstacles in the inventory process and study autonomous flight strategies. On the basis of our 
findings, we will add further interference threats such as sudden obstacle threats and RFID 
interference source threats, which will be suitable for complex and suddenly changing warehouse 
environments.
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