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 Temperature data inside pallets are used as important data indicators for raw tobacco storage 
and maintenance. To improve the monitoring effect of wireless sensors in raw tobacco pallets, the 
layout optimization model of wireless sensors in a three-dimensional complex environment is 
constructed, a multi-objective function with the smallest sensor layout cost and the largest monitoring 
range is established, and an improved particle swarm optimization (IPSO) is designed to obtain 
preliminary results. The layout of wireless sensors is optimized and then the long short-term 
memory (LSTM) neural network algorithm is used to predict the temperature data in a cigarette 
pallet to achieve the secondary optimization of the sensor layout. Finally, on the basis of actual 
temperature data in raw tobacco pallets, a simulation environment model is established and verified 
by simulation experiments. Simulation results show that the sensor layout optimization method 
proposed in this paper can effectively reduce the number of sensors arranged and, at the same 
time, allow enterprises to effectively minimize the cost of raw tobacco storage and maintenance.

1. Introduction

 Under the current structure of China’s tobacco industry, raw tobacco storage areas of tobacco 
groups are set up according to administrative regions, with each tobacco group company having 
a corresponding raw tobacco storage yard, and each raw tobacco yard generally has multiple raw 
tobacco pallets, each of which is an independent environment. According to the management 
regulations of the raw tobacco yard, all packs entering the yard need to be sorted and stacked 
according to the year, variety, origin, grade, moisture content, and other relevant information of 
tobacco leaves. However, as there are usually omissions and lapses during packet inspection, the 
environment inside the pallets becomes complex and uncertain. Therefore, the core problem in 
the maintenance of raw tobacco pallets is still the monitoring of mold information in complex and 
uncertain environments. 
 Sensor layout planning is an essential aspect of tobacco information monitoring in a raw tobacco 
yard, as raw tobacco requires a strict monitoring of temperature and humidity changes inside the 
pallets during maintenance to inhibit the growth of molds and mildews inside the pallets,(1) which 
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can cause the tobacco to fail to achieve the best mellowing during maintenance. Therefore, the 
deployment of raw tobacco maintenance sensors is a multi-objective wireless sensor network 
(WSN) deployment problem involving many constraints,(2) which is also one of the core problems 
of raw tobacco maintenance information monitoring.
 There have been several studies on the deployment of WSNs at home and abroad. For example, 
to improve network lifetime and network feasibility, a new method of data transmission based on 
WSN with low latency and energy balance was proposed by Pandey and Hegde on the basis of 
small-world characteristics.(3) Elhoseny et al.(4) proposed a genetic-algorithm-based K-coverage 
model to extend the operational lifetime of WSNs after the wireless sensors run out of energy and 
cannot effectively monitor the monitoring targets. Feng et al.(5) designed an adaptive particle 
swarm optimization (PSO) to solve such problems in order to ensure that the monitoring range 
formed by the WSN deployment can effectively meet the requirements of the monitoring environment. 
Liu et al.(6) proposed a distributed cuckoo algorithm for optimizing the layout of wireless sensor 
nodes to address the problems of low node utilization and low coverage of wireless sensor networks. 
In addition, intelligent algorithms such as simulated annealing,(7) ant colony optimization,(8) and 
PSO(9) are also widely used in solving layout optimization problems.
 In terms of sensor information monitoring, there are a few studies related to the optimization 
of the sensor layout. Xu et al.(10) formed an information matrix based on the modal matrix and 
arranged it according to the preset points, and further eliminated the points with smaller contributions 
by analyzing the contribution of the modal matrix of each point, and finally optimized the 
information matrix. Hao et al.(11) used the K-means clustering algorithm to find the temperature 
anomalies in the spatial range of the grain bin, then used multiple-response analysis to screen the 
feature points to form a preliminary layout scheme, and finally used the ARIMA algorithm to test 
the feature points for prediction and to correct the layout scheme to optimize the sensor layout. Li 
et al.(12) used ANSYS FLUENT analysis software to simulate the temperature field distribution 
in a mushroom room, which in turn guided the arrangement of the sensor monitoring system in 
the mushroom room in order to optimize the layout of temperature sensors. By the computational 
fluid dynamics (CFD) simulation method, Jia et al.(13) and Zhao et al.(14) determined the optimal 
arrangement of temperature sensors by simulating and analyzing the temperature field of a plant 
factory. Jin(15) restored the temperature field of an unknown point by interpolating the data of a 
limited number of temperature nodes at a certain moment on the basis of the spatial interpolation 
theory and further optimized the layout of the temperature sensor through a genetic algorithm.
 From these studies, it can be seen that simulation, data interpolation, and optimization algorithms 
have been widely used in the field of sensor layout and have achieved certain results, but the 
following problems still exist in the current research on sensor layout planning.
(1)  At this stage, most of the research is mainly focused on WSN models and algorithms, whereas 

research on sensor layout optimization, such as in tobacco mildew information monitoring, is 
nearly missing.

(2)  In the study of sensor layout optimization, the existing research is very simplified when 
considering sensor constraints.

(3)  Most of the current research does not incorporate a practical application context, which causes 
considerable difficulties in the practical application of models and algorithms.
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 In this study, we address the problems of incomplete monitoring of mildew information and 
high equipment investment costs in current tobacco leaf maintenance, and establish a wireless 
sensor layout optimization model in the context of tobacco leaf maintenance in tobacco logistics 
centers. The multi-objective sensor layout optimization model with minimum sensor placement 
cost and mildew information monitoring coverage is constructed on the basis of temperature data 
for a certain time period and solved using an improved particle swarm optimization (IPSO) based 
on an adaptive strategy to determine the location of the sensors, thus achieving layout optimization 
with minimum sensor placement cost and maximum coverage. Experimental results show that the 
proposed solution can be effectively used in raw tobacco maintenance monitoring.

2. Mathematical Model for Sensor Layout Optimization

2.1 Problem description

 The traditional deployment methods of wireless sensors are uniform deployment and manual 
experience deployment, but these two deployment methods usually have too many deployments 
of wireless sensors, a low monitoring coverage rate or too many monitoring overlaps of wireless 
sensors. These problems lead to a large amount of waste of wireless sensor resources. In this study, 
we rely on the temperature and humidity monitoring data of some raw tobacco pallets in a raw 
tobacco yard area of Hongyun Honghe Tobacco (Group) Co., Ltd. to build a wireless sensor layout 
optimization model to maximize the utilization of wireless sensor monitoring resources.

2.2 Model assumptions

(1) The temperature sensors used all have the same sensing radius.
(2) The grid method is used to classify raw tobacco pallets.
(3)  The weather conditions outside the chimney will not change suddenly and will not affect the 

inside of the chimney.
(4)  The signal transmission of the wireless sensor is not interfered in the pallets, and the entire 

pallet area is covered by the wireless sensor.

2.3 Model construction

 Let the sensing radius of the adopted temperature sensor be R. In this paper, the sensing radius 
of the sensor is defined as the product of the thermal diffusivity of the temperature(16,17) and the 
duration of the sensor monitoring interval.

 R t= ⋅α  (1)

 
VC
λα =  (2)
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Here, R is the sensing radius of the wireless sensor, t  is the time interval between the two monitoring 
sessions, α is the thermal diffusivity of the tobacco leaf, λ is the thermal conductivity of the tobacco 
leaf, and CV is the volumetric heat capacity CV=ρ*CP.
 Let 1 2{ , , , }R R R

mT T T T= ⋅⋅ ⋅  be the set of spatial raster points inside a raw tobacco pallet, ( , , )R R R
i i ix y z  

is the position of any raster point R
iT  in the raw tobacco pallet space, 1 2 2{ , , , }W W WP P P P= ⋅⋅ ⋅  is a 

collection of wireless sensors within a raw tobacco pallet, and ( , , )W W W
j j jx y z  is the position of any 

sensor W
jP  in the raw tobacco pallet space. Then, the location of any sensor A and the location of 

any pallet grid point B are expressed using the Euclidean distance as

 2 2 2( , ) ( ) ( ) ( )W R W R W R W W
j i j i j i j id P T x x y y z z= − + − + − . (3)

 In this paper, the relationship between the storage temperature and the specific growth rate of 
molds is used to define the coverage weight of each grid point inside the original tobacco stack, 
i.e.,

 1 2
0 2ln( )

273 ( 273)
C Cu C

T T
= + +

+ +
, (4)

 ln( )R
i iw u= . (5)

Here, C0, C1, and C2 are coefficients, T is the storage temperature (℃), and ln(ui) is the specific 
growth rate of the ith raster point affected by the temperature at that point.
 Let the monitoring coverage weight of any grid point R

iT  inside the raw tobacco pallet be R
iw . 

Then, the monitoring coverage rate of any wireless sensor j to a certain area inside the raw cigarette 
pallet can be defined by the weight of each location point in the area and can be expressed as
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Here, W
jw  is the coverage weight of the grid points of sensor j in the raw tobacco pallet and j

iX  is 
a 0-1 variable. When the distance from any grid position in the raw tobacco pallet to sensor j is 
less than the sensor’s sensing radius, j

iX = 1; otherwise, j
iX = 0.

 The total coverage rate of a certain cigarette pallet wireless sensor to the raw tobacco pallet 
can be expressed as

 
1

n
W W
all j

j
w w

=
=∑ . (8)
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 According to the management requirements of the raw tobacco pallets of Hongyun Honghe 
Tobacco (Group) Co., Ltd., a small number of wireless sensors are needed to monitor as much 
mildew information of the pallets as possible. Therefore, the available optimization goal is

 max :
W
allwf
n

= . (9)

Constraints:
 The number of wireless sensors should not exceed the upper limit of the maximum arrangement 
of each raw tobacco pallet:

 max ,Wn n n Z< ∈ . (10)

max
Wn  is the upper limit of the maximum number of raw tobacco pallets given by the enterprise.

 The layout of the wireless sensor should be inside the raw tobacco pallet and not beyond the 
raw tobacco pallet space:

 
min max

min max

min max

, {1,2, , }

R W R
j

R W R
j

R W R
j

x x x

y y y j n

z z z

 < <
 < < ∈ ⋅⋅ ⋅


< <

. (11)

Here, min
Rx , min

Ry , min
Rz , max

Rx , max
Ry , and max

Rz  are the margins of the wireless sensor in the pallet 
space,

 2 ( , ),W W W
i j iR d P P P P≤ ∀ ∈ . (12)

Here, ( , )W W
i jd P P  is the distance between any wireless sensors.

3. Algorithm Description

3.1 Traditional PSO

 PSO is a swarm intelligence algorithm proposed in 1995. It solves the optimization problem 
by imitating the foraging and predation behaviors of birds. The optimization of PSO originates 
from the information interaction between particles and the update of particle speed and position. 
In this algorithm, the position of each particle represents a solution of the problem, and the position 
of the particle in the next iteration is determined by the position and velocity of the particle. The 
population structure of PSO is 



3290 Sensors and Materials, Vol. 34, No. 8 (2022)

 

1 2
1 1 1

1 1 2
1 1 1

1 2
2 2 2

2 1 2
2 2 2

1 2

1 2

, , ,

, , ,

, , ,

, , ,
                  

, , ,

, , ,

D
g

D

D
g

g D

D
NP NP NPg

NP D
NP NP NP

v v v
X

x x x

v v v
X

U x x x

v v v
X

x x x

    →  
    
   →  →     
 
    →   

   















. (13)

Here, U g represents the population in the gth iteration, g
iX  represents the individual in the gth 

iteration, j
iv  represents the speed of the ith individual in the jth dimension, j

ix  represents the 
position of the ith individual on the jth dimension, NP is the population size, and D is the problem 
dimension.
 In the traditional PSO, the initial position of the particles is generated by random numbers. In 
each iteration, the particle will update its position by tracking two positions: one is the optimal 
solution found in the iteration process and the other is the optimal solution found by all particles 
in the iteration process, such as

 1 1 ( ) 2 2 ( )j j j j j j
i i i iipbest gbestv w v c r x x c r x x= × + × × − + × × − , (14)

 j j j
i i ix x v= + . (15)

Here, w is the weight of inertia, c1 and c2 are the learning factors, r1 and r2 are random numbers 
between 0 and 1, and Xipbest and Xgbest respectively represent the historical optimal solution of the 
ith individual and the global optimal solution of the population.
 The basic steps of the traditional PSO are as follows.
Step 1. Initialize the parameters and generate the initial population in a random manner.
Step 2.  Calculate the fitness function value of the individuals in the population, update the 

individual and global extreme values, and save the corresponding extreme points.
Step 3.  Update the speed of each individual and re-assign the speed that violates the boundary 

conditions.
Step 4.  Update the position of each individual and re-assign the position that violates the boundary 

conditions.
Step 5.  Exit the loop when the maximum number of iterations is reached; otherwise, return to 

Step 2.
 The traditional PSO is widely used in various optimization problems because of its low 
complexity, easy implementation, and good convergence. However, as the model complexity of 
the optimization model gradually increases, PSO is used in large-scale optimization problems. It 
is easy to fall into the local optimum, so in this paper, we propose an IPSO to achieve better results 
when solving large-scale problems.
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3.2 Improved particle swarm algorithm

3.2.1	 Differential	crossover	strategy

 In the traditional PSO algorithm, the individual location update uses the search method shown 
in Refs. 14 and 15. This update method may cause the individual to fall into the local extreme 
point during the movement, causing the algorithm to fall into the local optimum or even become 
stagnant. To solve this problem, the mechanism of the differential evolution algorithm is used as 
reference, the differential crossover strategy is introduced, and the mutant population is generated 
through 
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where F represents the difference coefficient, r3 and r4 are random integers between 1 and NP, 
and after the mutant population is obtained, the cross operation is performed with the original 
population to obtain the cross population, as shown in Eq. (17).
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3.2.2 Foraging selection strategy

 In the traditional PSO, the particles will choose to directly accept the new position after the 
position is updated, although the fitness value of the new position is worse than that of the original 
position. This may lead to the loss of high-quality solutions, which will decrease the convergence 
speed of the algorithm. To solve this problem, a foraging selection strategy is introduced. Before 
the location update, the structure and information of the original population are completely copied 
to obtain a new population. The new population will replace the original population for differential 
and crossover operation. The original population still implements the update strategy of the 
traditional particle swarm algorithm. After the location update is completed, the new population 
will merge with the original population to form a selection population with population size 2NP. 
By sorting the fitness values, better NP individuals are selected through the greedy strategy, and 
the next iteration is entered.
 In summary, the basic steps of the improved particle swarm algorithm are as follows.
Step 1. Initialize the parameters and generate the initial population in a random manner.
Step 2.  Calculate the fitness function value of the individuals in the population, update the 

individual and global extreme values, and save the corresponding extreme points.
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Step 3.  Copy the structure and information of the population to obtain a new population, and the 
new population replaces the original population for differential crossover operation.

Step 4.  Update the speed of each individual in the original population and re-assign the speed 
that violates the boundary conditions.

Step 5.  Update the position of each individual in the original population and re-assign the position 
that violates the boundary conditions.

Step 6.  Perform a differential crossover strategy for each individual in the new population to 
generate a cross population.

Step 7.  Combine the updated cross population with the original population, sort the fitness values, 
and select the better individual to enter the next iteration.

Step 8.  When the maximum number of iterations is reached, exit the loop; otherwise, return to 
Step 2.

4. Experimental Testing

 To verify the effectiveness of the algorithm designed in this paper, simulation experiments with 
the traditional PSO are compared with the IPSO proposed in this paper to effectively illustrate the 
effectiveness of the proposed algorithm.

4.1 Experimental environment

 In this paper, we present a simulation based on a week’s worth of temperature monitoring data 
from the logistics center of Hongyun Honghe Tobacco (Group) Co., Ltd., and a four-dimensional 
data interpolation method was used to fit the monitoring data and visualize the output to build an 
optimized sensor layout model. The simulation experiment environment used in this paper is Intel 
i7-9750H CPU (2.60 GHz), 16 Gb of RAM, and MATLAB R2016b simulation software. Through 
the investigation of the cargo yard under the logistics center of Hongyun Honghe Tobacco (Group) 
Co., Ltd., it can be known that the maximum deployment limit of sensors is max

Wn  = 80, the density 
of the raw tobacco leaf is ρ = 200 kg/m3, and the heat–melt ratio of the tobacco leaf is CP = 
1.83 kJ/kg℃. The time interval between the two monitoring sessions of the sensor is 30min, the 
thermal conductivity of the raw tobacco leaf is λ = 0.09132, and the maximum boundaries of the 
pallet are max 9.7Rx = , max 4Ry = , and max 3.2Rz = . The temperature monitoring data interpolation and 
visualization analysis diagrams through Matlab tools are shown in Figs. 1 and 2, and some 
temperature monitoring data are shown in Table 1.

4.2 Simulation results

 The feasibility of the IPSO in this paper is verified through simulation experiments, and the 
simulation results are shown in Figs. 3–5. The temperature data are predicted using the LSTM 
neural network based on initial data, and the results are shown in Figs. 6 and 7 and Table 2, and 
the re-optimization result of the wireless sensor layout scheme is shown in Figs. 8–10. 
 The efficiency of the IPSO is verified and evaluated by comparing it with that of the traditional 
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Fig. 1. (Color online) Four-dimensional scatter plot of experimental data.

Fig. 2. (Color online) Four-dimensional slices of experimental data .

Table 1 
Selected sensor temperature data

Sensor position
(x, y, z)

Temperature (℃)
2021-04-25 

00:05:30
2021-04-25 

00:35:30 ··· 2021-04-30 
09:35:30

2021-04-30 
10:05:30

(3.2,1,0.4) 20.6 20.5 ··· 20.7 20.7
(3.7,1,0.4) 20.0 20.0 ··· 20.9 20.9
(4.2,1,0.4) 20.7 20.7 ··· 20.8 21.8
(4.7,1,0.4) 20.8 20.8 ··· 20.7 20.7
(5.2,1,0.4) 20.3 20.4 ··· 20.5 20.6
(5.7,1,0.4) 20.5 20.5 ··· 20.4 20.5
(6.2,1,0.4) 19.9 19.9 ··· 20.1 20.1
··· ··· ··· ··· ··· ···
(3.2,3,2.2) 19.5 19.5 ··· 20.9 20.9
(3.7,3,2.2) 20.3 20.3 ··· 21.9 21.9
(4.2,3,2.2) 19.7 19.7 ··· 20.7 20.7
(4.7,3,2.2) 20.3 20.3 ··· 19.7 19.8
(5.2,3,2.2) 19.5 19.5 ··· 19.9 19.9
(5.7,3,2.2) 20.2 20.2 ··· 19.7 19.6
(6.2,3,2.2) 20.2 20.3 ··· 20.2 20.2
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Fig. 3. (Color online)  Single iterative run diagram 
of the objective function based on initial temperature 
data.

Fig. 4. (Color online) Mean iteration curve of the 
objective function based on the initial temperature 
data run 15 times.

Fig. 7. (Color online) Schematic diagram of the 
prediction results of the temperature data at the 
center side of the raw tobacco pallet.

Fig. 5. (Color online) Location optimization diagram for two algorithms based on initial temperature data.

Fig. 6. (Color online) Schematic diagram of the 
predicted results of the edge side temperature data of 
the raw tobacco pallet.
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Table 2 
Temperature prediction data for selected sensors.

Sensor position
(x, y, z)

Predicted temperature (℃)
2021-04-30 

10:35:30
2021-04-30 

11:05:30 ··· 2021-04-30 
12:35:30

2021-04-30 
13:05:30

(3.2,1,0.4) 16.42 16.41 ··· 16.41 16.42
(3.7,1,0.4) 17.73 17.72 ··· 17.72 17.72
(4.2,1,0.4) 16.79 16.79 ··· 16.80 16.80
(4.7,1,0.4) 18.02 18.02 ··· 18.02 18.02
(5.2,1,0.4) 17.10 17.10 ··· 17.10 17.11
(5.7,1,0.4) 18.25 18.26 ··· 18.26 18.26
(6.2,1,0.4) 17.83 17.84 ··· 17.85 17.85
··· ··· ··· ··· ··· ···
(3.2,3,2.2) 19.41 19.41 ··· 19.42 19.42
(3.7,3,2.2) 19.70 19.70 ··· 19.70 19.70
(4.2,3,2.2) 19.80 19.80 ··· 19.79 19.79
(4.7,3,2.2) 19.96 19.96 ··· 19.97 19.96
(5.2,3,2.2) 20.01 20.01 ··· 20.02 20.02
(5.7,3,2.2) 19.79 19.79 ··· 19.80 19.80
(6.2,3,2.2) 19.37 19.37 ··· 19.35 19.34

Fig. 8. (Color online). Single-run objective function 
iteration graph.

Fig. 9. (Color online) Iterative graph of the average 
value of the objective function for 15 runs.

Fig. 10. (Color online) Location optimization diagram of two algorithms.
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PSO, which includes the convergence rate and the optimal fitness value. The simulation results 
show that the IPSO has a higher ability than the traditional PSO in determining the value of the 
optimal fitness function and that the algorithm designed in this paper has a certain improvement 
in the convergence rate compared with the traditional algorithm. The algorithm designed in this 
study has a higher global search capability in solving such problems.

5. Conclusions

 Aiming at the problems of insufficient mildew information monitoring and high equipment 
investment cost in the current process of curing raw tobacco leaves, in this paper, we design an 
IPSO to study the sensor layout optimization problem, and according to the logistics center of 
Hongyun Honghe Tobacco (Group) Co., Ltd., the monitoring of cigarette pallets is used as the 
source of experimental data to optimize the position and number of sensors in the pallets. The 
sensor layout optimization model built in this study is based on the actual tobacco maintenance 
background and considers the effect of the internal temperature of the tobacco pallet on the moldy 
rate. It is a further expansion of the traditional WSN problem. We further consider the effect of 
temperature on the raw tobacco leaves on the basis of the WSN problem. The effects of mildew 
and the IPSO are used to solve the model to obtain a preliminary layout plan, and then the mildew 
information is predicted using the LSTM neural network algorithm so as to re-optimize the 
preliminary sensor layout plan to account for the rationality of the sensor layout plan. The sensor 
layout proposed in this paper has a good reference value for tobacco companies in the management 
and control of mildew information in tobacco leaf maintenance, but there are still many uncertain 
factors in an actual application, such as the quality and moisture content of the tobacco leaves. 
Owing to the effects of subjective human factors such as inspection errors, sensor layout schemes 
under the effects of objective factors such as human factors and sudden weather conditions are 
also the next main research direction.
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