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 To solve the problem of “first-kilometer” distribution difficulties in rural areas, we propose a 
transportation method using unmanned aerial vehicles (UAVs) for delivery. The mountainous 
environment of Fengshan County in Guizhou is first simulated as the UAV delivery environment. 
A differential evolution strategy based on the improved whale optimization algorithm (DEIWOA) 
combined with multisource heterogeneous sensors is then proposed to solve the UAV obstacle 
avoidance path. After the UAV’s delivery path is planned using the DEIWOA algorithm, the 
multisource heterogeneous sensor is used to perform obstacle avoidance among multiple UAVs 
and path correction of UAVs in actual situations. Afterwards, to minimize the delivery cost of 
UAVs, a multi-UAV cargo delivery model is built with the optimization goal of minimizing the 
transportation cost and time window violation cost. This UAV scheduling model is solved using 
the proposed DEIWOA algorithm. Finally, simulations are performed to compare the proposed 
method with the cutting-edge algorithms. The obtained results show that the proposed DEIWOA 
algorithm can provide a better plan of the UAV path and reduce the cost of logistics scheduling. 
It can also provide support for UAV logistics and distribution in mountainous areas in actual 
situations.

1. Introduction

 In recent years, in the context of new rural development, agricultural logistics has become a 
vital guarantee to promote the development of a rural economy. Because of the complex terrain 
environment in some poor mountainous areas, ground transportation faces great difficulties, and 
the traditional logistics and distribution methods cannot meet the dual demands of timeliness and 
freshness in the transport of agricultural products.(1) The complex rural “first-kilometer” distribution 
has been widely studied by researchers and industries, since an efficient distribution is crucial for 
improving the economic development in poor mountainous areas. UAVs have high flexibility, fast 
speed, minor transportation restrictions, and high economic efficiency.(2) Therefore, in this paper, 
we propose a distribution model that uses UAVs to transport fresh agricultural products from the 
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rural site (shipping point) to the ground cold vehicle (receiving point) outside the mountainous 
area.
 Agricultural products such as mushrooms and matsutake mushrooms have the characteristics 
of high value, lightweight, and short storage time. The attributes of the freshness of the agricultural 
products should be considered when designing the UAV delivery solution. The value of the 
agricultural products can be retained to the greatest extent only when the UAV delivers the 
agricultural products as fast as possible within the service time limit of the receiving point. 
Therefore, the UAV “first-kilometer” delivery problem is similar to the vehicle path planning 
problem, which can be understood as a multi-UAV path planning and scheduling problem with 
time windows. To solve this problem, the UAV path planning and UAV task order assignment in 
the 3D environment should be considered.
 The UAV delivery problem is an expansion of the vehicle path problem in 3D space. The current 
studies on UAV delivery mainly focus on the transport to the client side and the UAV route plan. 
The established optimization objectives mainly include the minimization of the delivery cost and 
the maximization of customer satisfaction.(3,4) Zhang et al.(5) conducted an in-depth study of the 
logistics UAV delivery problem, while considering several factors such as the performance of the 
UAV and the nature of the mission. They then developed a multi-objective function to minimize 
the range, navigation altitude, and crash hazard of the UAV. Qiqian et al.(6) explored the UAV 
logistics model to reduce the cost of the UAV logistics system and expand the distribution area 
through the study of public transport networks. Since the swarm intelligence algorithm can quickly 
solve UAV paths while mostly avoiding falling into a local optimum, the use of the swarm intelligence 
algorithm to solve UAV paths has become crucial.(7,8) For example, in the study of multi-UAV 
trajectory planning, optimization algorithms such as the genetic algorithm and ant colony algorithm 
were widely used to solve the trajectory planning problem of UAVs.(9,10)

 Most of the current logistics scheduling optimization methods focus on the shortest path (the 
traveling salesman problem, TSP) planning or the maximization of the economic efficiency of 
allocation while considering time window constraints. Li et al.(11) proposed to solve the vehicle 
routing problem (VRP) with a soft time window by introducing the interindividual merit search 
strategy of fireflies into the ant colony algorithm to improve the robustness and feasibility of the 
algorithm, thereby solving the logistics scheduling distribution. Zheng(12) proposed the machine 
learning algorithm using the Gaussian process to speed up the convergence of the algorithm. In 
deterministic time window algorithm planning, Fan et al.(13) developed an adaptive perturbation 
mechanism with a variable neighborhood descent search as the main body. They solved the soft 
time window vehicle path problem with simultaneous set dispensing by combining the domain 
search strategy with the particle swarm algorithm, which improved the ability to explore the 
solution space and the algorithm’s global search capacity. In addition, Lu et al.(14) combined the 
simulated annealing algorithm with the A* (A-star) algorithm to solve the path planning logistics 
scheduling problem for different purposes. Tiwari et al.(15) proposed a study of UAV trajectory 
planning in dynamic environments using multiverse algorithms.
 With the rapid development of UAV logistics scheduling, many researchers have conducted 
in-depth studies on the UAV logistics delivery problem. However, in the construction of the delivery 
model, the mission planning of the UAV in a two-dimensional environment is mainly considered 
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while ignoring the different limitations in a three-dimensional environment. Therefore, in this 
paper, the 3D path planning of UAVs is combined with mission path planning to construct a multi-
UAV scheduling model in a multidimensional constrained environment. Moreover, the concept of 
multisource heterogeneous sensors is introduced to help the UAVs perform timely obstacle avoidance 
and path correction during actual missions. Finally, an improved whale optimization algorithm is 
designed for the UAV’s 3D obstacle avoidance path determination and optimal path task assignment.

2. Task Description

 To solve the problem of difficult rural delivery, we have established a delivery model for multiple 
UAVs, whose task description is shown below. It is first assumed that the rural shipping point 
receives the order for goods. Then the goods are loaded onto the UAV at the rural shipping point, 
and delivery is performed following the planned path. The UAV performs real-time obstacle 
avoidance through the use of multisource heterogeneous sensors during the delivery task. Finally, 
the UAV returns to the shipping point after delivering the goods to the receiving point, i.e., the 
ground-based cold delivery vehicle, with multiple time windows. The delivery path diagram of 
the UAV is shown in Fig. 1. The technical framework of this study is shown in Fig. 2.
 In Fig. 1, the red stars (numbers 1, 2, and 3) are rural delivery points. Afterwards, the UAVs 
further deliver the goods to the ground-based cold delivery vehicles, i.e., the receiving points 
(numbers 4, 5, 6, 7, and 8).
 The UAV first loads cargo at the rural shipping point. Then, under the performance constraints 
of the maximum load, the longest running time, elevation angle, and deflection angle, the path 
planning model of the UAV from the rural shipping point to the cold transport vehicle (receiving 
point) is established, and the three-dimensional virtual path of the UAV is obtained through the 
algorithm designed in this paper. On this basis, to ensure that the UAV is not affected by dynamic 
obstacles in the distribution process, multisource heterogeneous sensors are added to the UAV. 
These sensors perform the dynamic real-time obstacle avoidance of the UAV. When the sensor 
detects obstacles in the front, it will change the current UAV path. The sensor will plan the UAV 

Fig. 1. (Color online) UAV delivery path diagram.



3342 Sensors and Materials, Vol. 34, No. 8 (2022)

to fly back to the original path when the obstacle in front has been avoided. Finally, the cost of 
the UAV distribution path, the cost of fresh agricultural products, and the service time window of 
each cold delivery vehicle (receiving point) are considered as crucial factors for the development 
of the multi-UAV logistics scheduling task planning model. Finally, the algorithm is designed to 
solve the model, and the optimal UAV order distribution scheme (vehicle dispatch model) is 
obtained.

2.1 Model assumptions

 The delivery tasks of UAVs have the requirements of long-distance transportation and high 
timeliness. Therefore, their dispatching process is different from that of general ground vehicles. 
Consequently, the 3D path planning of UAVs and the logistics scheduling and distribution scheme 
should be simultaneously considered in the model construction. In this study, the following 
assumptions are made.
(1) The locations of the rural shipping point and the ground cold delivery vehicle receiving point 

are known. The number of orders received at each rural shipping point is known, and the 
number of UAVs is definitively fixed.

(2) The unloading service time for UAVs delivering products to cold delivery vehicles is fixed, 
allowing multiple UAVs to simultaneously unload. 

(3) Each ground cold delivery vehicle has a specific time window that the UAV needs to meet to 
minimize the cost of the resulting time window violation penalties during the delivery process.

(4) No complex movements of UAVs are involved in the delivery process.
(5) The UAVs should return to the rural shipping point after completing the delivery task.

Fig. 2. (Color online) Scheduling task architecture.
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Table 1
Descriptions of mathematical model symbols.
Symbols Meaning
i The i-th rural (shipping point) i = 1, 2, ..., I.
j The j-th ground cold delivery vehicle (receiving point).

k
iU The k-th UAV at shipping point i, k = 1, 2, ..., K.

,
k
i jx 0–1 variable indicating whether the k-th UAV departs from shipping point i to 

reach receiving point j.
[ , ]i i

start finishT T Working time window for the i-th rural shipping point.

[ , ]jj
start finishT T Working time window for the j-th cold delivery vehicle (receiving point).

,
k
i jt Time required for the k-th UAV at the i-th shipping point to travel to the j-th 

receiving point.
k
tv Speed of the k-th UAV

,
k
i startt Time of departure of the k-th UAV from shipping point i.

,
k
i finisht Time of return to shipping point i for the k-th UAV

,
k
j startt Time of arrival of the k-th UAV at receiving point j.

,
k
j finisht Time when the k-th UAV leaves receiving point j.

ijDis Euclidean distance between shipping point i and receiving point j.

jR Order requirements for the j-th receiving point.

1
jp Penalty factor for early arrival of the UAV at receiving point j.

2
jp Penalty factor for delayed arrival of the UAV at receiving point j.

,
k
i jd Delivery distance of the k-th UAV.

tmax Maximum endurance of the UAV.
wmax UAV Maximum payload.

k
mα Coefficient of freshness per unit mass of raw product m with time t.
k
tm Weight of the k-th UAV at moment t.

βmax UAV turning angle.
λmax UAV pitch angle.
dmax Maximum range of the UAV.
Hmax Maximum flight height of the UAV.
Hmin Minimum flight altitude for the UAV.

M Maximum load that the UAV can handle.

up Price per unit quality of fresh produce.
a UAV delivery cost.
b UAV cost per kilometer of delivery path.

Dmax Maximum flight distance of the UAV.

iR Maximum number of shipments that can be provided by shipping point i.
A
safed Danger-warning distance for sensor-aware radar.

( )* * *, ,i i ix y z′ ′ ′ Coordinates of the i-th obstacle.

2.2	 Symbol	definition

 The variables and symbols used in this paper are shown in Table 1. 
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2.3 Model construction
 
2.3.1 Decision variable

 In this study, ,
k
i jx  denotes that the k-th UAV performs the transportation mission from 

shipping point i to receiving point j. If this delivery exists, ,
k
i jx  takes the value of 1. If not, it takes 

the value of 0. If the order of the j-th receiving point is served by the k-th UAV, then k
jy  = 1. If it 

does not exist, k
jy  = 0.

2.3.2 Objective function

 The optimization objectives of this study are to minimize the logistics delivery cost (Z1), the 
value loss of fresh commodities (Z2), and the penalty costs incurred by the violation of the time 
window (Z3 and Z4). The proposed model of UAV delivery under the considered time window is 
summarized as follows.
 The logistics cost incurred in UAV delivery is composed of the number of UAVs and the path 
length of the UAVs.
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The cost of time loss of fresh commodities arising during UAV transport is given below.
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1,

min [1 ( )]
J

k k k k
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The total cost of waiting time incurred by the UAV throughout the soft time window violation is 
computed as follows.

 3 , , , ,1 1
1 1 1 1 1 1

min [max( ,0)] [max( ,0)]
K I J K I J

j jk j k k i k
i j start i j i j finish j i

k i j k i j
Z x p T t x p T t

= = = = = =
= − + −∑∑∑ ∑∑∑  (4)

The total cost in excess of time incurred by the UAVs throughout the violation of the soft time 
window is calculated.

 4 , , , ,2 2
1 1 1 1 1 1

min [max( ,0)] [max( ,0)]
K I J K I J

j jk k j k k i
i j i j start i j j i finish

k i j k i j
Z x p t T x p t T

= = = = = =
= − + −∑∑∑ ∑∑∑  (5)
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The objective function of our established model is to minimize the cost of drone scheduling, 
minimize the cost of raw loss, and minimize the penalty cost incurred by the drone for violating 
the time window. The established objective function is shown as Eq. (6).

 1 2 3 4min( )y Z Z Z Z= + + +  (6)
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k
i j i j max
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 Equation (7) indicates that the flight distance of the UAV is less than its maximum flight 
distance. Equation (8) indicates that the flight height of the UAV is limited. Equation (9) represents 
the UAV delivery to a maximum of two receiving points in one mission. Equation (10) indicates 
that the UAV should return to the rural delivery point after completing the delivery task. Equation 
(11) indicates that the maximum load limit should be satisfied during the delivery by the UAV. 
Equation (12) indicates that the UAV should satisfy the turning angle constraint. Equation (13) 
indicates that the UAV should satisfy the pitch angle constraint. Equation (14) indicates that the 
UAV should satisfy the actual time constraint throughout the delivery time. Equation (15) indicates 
that the flight speed of the UAV at each stage should meet its performance speed constraint. 
Equation (16) indicates that the total flight time of the UAV should satisfy its performance. Equation 
(17) indicates that the UAVs required for delivery is within the limit of the total number of UAVs 
allowed. Equation (18) shows that the quantity of goods provided by rural shipping points can 
fully meet the demand of order quantity. Equation (19) indicates that the distance between the 
UAV and the obstacle is greater than the hazard sensing distance of the sensor radar.

3.	 Differential	Evolution	Strategy	Based	on	Improved	Whale	Optimization	Algorithm	
(DEIWOA)

3.1	 Traditional	whale	optimization	algorithm

 The WOA is a novel population intelligence optimization algorithm inspired by the bubble 
predation strategy. It has three main stages: contraction surround process, random search prey 
process, and bubble net attack process. In the traditional whale algorithm, the number of whales 
and the search space dimension are defined as Nop and D, respectively. In addition, the location 
is defined as 1 2( , ,..., );    1,2,...,D

i i i iW W W W i Nop= = , and Fitnessi represents each whale’s 
corresponding fitness function value, where the position of the prey is the optimal position of the 
whale. Compared with other swarm intelligence optimization algorithms, the whale optimization 
algorithm is characterized by a high search ability, few required parameters, and easy 
implementation. Therefore, this algorithm is widely used in the field of logistics scheduling.

3.1.1 Contraction surround process

 In the global search, the best search position of the whale population is usually the known 
optimal solution (prey) or the position of the whale nearest the target. Moreover, the rest of the 
whale individuals approach the optimal solution (i.e., the optimal whale position) by gradually 
encircling the prey, thus performing the global search. The mathematical model of this update is 
given by
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 *( ) ( )D C W t W t= ⋅ − , (20)

 ( 1) *( )W t W t A D+ = − ⋅ , (21)

where D is the distance between an individual whale and the optimal whale in the population, t is 
the current number of iterations, W*(t) is the optimal position of the whale individual, W(t) is the 
position of the whale individual in the current iteration, W(t + 1) is the position of an individual 
whale in the next generation of the whale population, and A and C are the coefficient vectors 
expressed as

 12A a r a= ⋅ ⋅ − , (22)

 22C r= ⋅ , (23)

 2 2 ta
T

= − ⋅ , (24)

where a is the convergence factor, which decreases as the number of iterations increases, and r1 
and r2 are random numbers between 0 and 1.

3.1.2	 Bubble	net	attack	process

 This stage is a unique hunting strategy for whales, in which they spiral upward while spitting 
bubbles, rise to sea surface, and form a net to enclose the prey. The mathematical model of this 
stage is expressed as

 ( 1) cos(2 ) *( )blW t D e l W tπ′+ = ⋅ ⋅ + , (25)

where b is a constant of the logarithmic linear spiral and controls the shape of the logarithmic 
spiral. It takes the default value of 1. l is a random number between −1 and 1.
 To simultaneously update both the encircling predation and air bubble net attack predation, a 
random parameter p is introduced: if p < 0.5, shrinking encircling is performed, and if 0.5p ≥ , 
spiral update is performed. These tasks are expressed as

 
cos(2 ) *( ),    if  0.5( 1)

*( ) * ,                      if  0.5

blD e l W t pW t
W t A D p

 ′ ⋅ ⋅ π + ≥+ = 
− <

 (26)

where W(t + 1) is the updated position of the next generation of individual whales and p is a random 
number between 0 and 1.
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3.1.3	 Random	search	prey	process

 In addition to the predation strategies described above, individuals in the whale population also 
change their position depending on the individuals around them and thus come to search for prey.  
This action is typical of the exploration phase and is a behavioral mechanism that emphasizes 
exploration and allows the WOA algorithm to perform a global search. Its mathematical model is 
given by

 ( ) ( )randD C W t W t= ⋅ − , (27)

 ( 1) ( )randW t W t A D+ = − ⋅ , (28)

where Wrand represents the individual position of a random whale.

3.2	 Improvement	strategies

3.2.1	 Iteration-based	population	initialization

 In the iterative update of the algorithm, a good or bad position of the initial population directly 
affects the convergence speed and accuracy of the algorithm. A random initialization of the 
population can destroy the diversity and convergence of the population. Therefore, the chaos theory 
in Ref. 16 is introduced to construct the initial population. This strategy produces the initial 
population by iteration so that the population has better uniformity, randomness, and search space 
traversal. The mathematical model of this strategy is expressed as

 1 sini
i

rW
W+
 π

=  
 

, (29)

where Wi+1 is the initial generated population and r is a random number between 0 and 1.

3.2.2	 Differential	evolution	strategy

1. Generate the variant whale population. 
 This involves randomly selecting the location of any two whales in the current whale population 
with individuals for information transfer to generate a variant whale location. The specific 
mathematical model is expressed as

 1 2( ) ( ) * ( ( ) ( ))n n rand randV t W t C W t W t= + − , (30)

where Vn(t) is the individual whale position produced by the variation strategy at the current 
iteration number, t is the current iteration number, C is the variation operator ranging between 0 
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and 2, and 1( )randW t  and 2 ( )randW t  are the positions of any two whales randomly selected at the 
current iteration.
2. Generate crossover whale population.
  Here, the generated mutant whales and the initial whales are selected and replaced in accordance 
with the random crossover probability to form a new whale population.

 
( ), if  

( )
( ), if  

n
n

n

V t rand CR
U t

X t rand CR

 ≤= 
≥

 (31)

Un(t) is the new whale population generated by the crossover operation at the current iteration, CR 
is the crossover operator ranging between 0 and 1, and rand is a random number between 0 and 
1.
3. Select the best whale.
 This involves selecting the variant whale individuals and the initial whale individuals in 
accordance with the magnitude of the fitness function value. The specific mathematical model is 
given by

 
( ), if ( ( )) ( ( )) 

( )
( ), if  ( ( )) ( ( ))

n n n
n

n n n

U t fitness U t fitness W t
W t

X t fitness X t fitness U t

 <= 
<

 (32)

where Wn(t) is the best whale selected in the current iteration and t is the current number of iterations.

3.2.3	 Whale	cooperative	competition

 In the traditional whale algorithm, although each individual in the whale population continuously 
iterates its position, the whale individuals only rely on the guidance of the following individuals 
to update their positions. Since there is no information exchange between the whale population 
individuals, the global solving ability and the solving accuracy of the algorithm cannot be guaranteed. 
Consequently, a cooperative competition mechanism is introduced to emulate the information 
transfer process of whales. For each whale Wi(t), another random whale Wj(t) is randomly selected 
in the population for information exchange. If the fitness function value of the position of whale 
Wi(t) is better than the fitness function value of random whale Wj(t), then Wj(t) approaches Wi(t) 
in accordance with Eq. (33) and Wi(t) moves away from Wj(t) in accordance with Eq. (34). Otherwise, 
the opposite operation is executed. If the whale position is not optimized after the move, this move 
is cancelled.

 ( )( ) ( ) ( ) ( )j j i jW t W t rand W t W t′ = + −  (33)

 ( )( ) ( ) ( ) ( )i i i jW t W t rand W t W t′ = + −  (34)
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Here, ( )( ) ( ) ( ) ( )i i i jW t W t rand W t W t′ = + − and ( )( ) ( ) ( ) ( )j j i jW t W t rand W t W t′ = + − are, respectively, the locations of the ith and jth individual whales after the 
cooperative competition mechanism.

3.2.4	 Nonlinear	fit	convergence	factor

 To accelerate the global survey and local development ability of the algorithm, the convergence 
factor A is regulated by the strategy of nonlinear fitting to make the algorithm more robust in the 
updating process:

 ( ) log( / )a t t Tγ= − ⋅ , (35)

where t is the number of current iterations, T is the maximum number of iterations, and γ is a 
constant.

3.2.5	 Adaptive	inertia

 To meet the requirements of the whale optimization algorithm to satisfy different stages of the 
optimization search throughout different iterations and to improve the convergence speed and 
global convergence, the concept of adaptive inertia weights is introduced into the position update 
strategy for each whale in the whale population.

 
( )                                1

( 1) ( 1) ( )                   if  0.5                 

( 1) cos(2 ) ( )    if  0.5

rand

bl

W t A D A
W t W t W t A D p

W t D e l W t p

 − ⋅ >


+ = + = ∗ − ⋅ <


+ = ⋅ ⋅ + ≥

ω

ω

ω π

 (36)

Here, W(t + 1) is the position of the individual whale after the next iteration, maxω  is the 
maximum value of the adaptive weights, and minω  is the minimum value of the adaptive weights.
 As the number of iterations increases, the adaptive weights change. This update mechanism 
improves the algorithm’s local search capacity while increasing its global convergence and speeding 
up its probability of jumping out of the optimal local solution.
 The steps of the IWOADE algorithm are summarized as follows.
Step 1: According to the chaos theory, the iteration-based chaotic initial mapping population of 
whales is generated using Eq. (29).
Step 2: The following parameters of the optimization algorithm are set: number of populations 
Nop, number of iterations T, dimensionality D, variation operator C, crossover operator CR, and 
bounds of the solution space up and ul.
Step 3: The mutation operation (crossover strategy) is introduced into the original whale population 
to generate a new crossover whale population, and the fitness function value of each whale in the 
crossover population is obtained.
Step 4: The selection mechanism is introduced to replace the whale positions in the corresponding 
original whale populations with the best whale individuals in the crossover population in order to 
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form the initial population of new whales using the differential strategy. The individual fitness 
function values and individual whale positions are then recorded.
Step 5: The whale cooperative competition model is introduced and the positions of whales in the 
population are updated using Eqs. (33) and (34) to update the individual whale fitness function 
values and positions.
Step 6: The nonlinear fit convergence factor γ, the variable coefficients A and C, the random 
probability p, and the adaptive weights w are updated.
Step 7: The whale individual position update mechanism is introduced. More precisely, if p < 
0.5, when 1A < , the encircling predation mode is launched. When 1A ≥ , the random search 
predation mode phase is launched. When 0.5p ≥ , the whale population selects the spiral strategy 
to update the population position.
Step 8: It the maximum number of iterations is reached or the output condition is met, step 9 is 
launched. Otherwise, the update operation in Steps 2–7 is repeated until the condition is met.
Step 9: The current optimal whale individual and the optimal fitness function value are output, 
and the algorithm ends.
The flowchart of the adaptive swarm nonlinear fitting differential whale algorithm (IOWADE) 
based on chaos theory is shown in Fig. 3.

Fig. 3. Flowchart of the adaptive nonlinear fitting differential whale algorithm based on chaos theory.
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4.	 Model	Validation	and	Evaluation

 To evaluate the proposed algorithm, a simulation experiment based on an unmanned aircraft 
logistics scheduling task was conducted. Three rural distribution points and five ground-based 
cold delivery vehicles were selected as receiving points in one scheduling task. The particle swarm 
algorithm (PSO), WOA, improved whale optimization algorithm (IWOA),(17) and gray wolf 
optimization algorithm (GWO) were used in the simulation, and their results were compared.

4.1 Construction of simulation environment

 We consider Fengshan County of Guizhou Province as the prototype of the UAV mission 
environment, as shown in Figs. 4 and 5. The established virtual environment model is shown in 
Figs. 6 and 7. The towns of Luoqi, Linsang, and Jiangna, respectively numbered 1, 2, and 3, were 

Fig. 5. (Color online) Actual UAV delivery dispatch 
map.

Fig. 6. (Color online) Anthropomorphic mountain 
model.

Fig. 7. (Color online) Distribution of shipping and 
receiving points.

Fig. 4. (Color online) Aerial view of the distribution 
area
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used as the rural shipping points for the UAVs. Wenlin, Panfeng, Xiaotong, Niu Tong, and Iwane 
were used as receiving stops for the cold delivery vehicle, and are numbered 4, 5, 6, 7, and 8, 
respectively. Table 2 shows the Manhattan distances between each rural UAV shipping point and 
cold delivery vehicle stops.
 In this study, we use the Mix One multi-rotor UAV as the first-kilometer delivery UAV. According 
to the information on the official website, the UAV is an oil-electric hybrid UAV. Table 3 shows 
the performance parameters and data used in the simulation.

4.2	 UAV	path	solution	in	three-dimensional	environment

 To obtain delivery routes that satisfy the UAV performance constraints in complex mountainous 
environments, the IWOADE algorithm is used for UAV path planning; thus, the trajectories of 
UAVs from each rural distribution point to different cold delivery vehicles are obtained. The 
planned route maps are shown in Figs. 8–13. Table 4 shows the Euclidean distances between the 
UAVs at rural shipping points and the cold delivery vehicles.

4.3	 UAV	mission	order	allocation

 The price of fresh matsutake mushrooms is 1500 CNY/kg in July and August, which is the 
peak season of mushroom growth. The total daily order of matsutake mushrooms can reach 
1200–1500 pounds. To increase the coordination and controllability of order distribution in the 
rural areas and improve the economic level of the overall poor mountain farmers, the required 
orders will be made public, and the three rural areas will jointly fulfill the daily demand of 
matsutake mushroom orders. We use a reasonable UAV dispatch allocation for the matsutake 
orders that each cold delivery vehicle is responsible for in one day. Tables 5 and 6 show the matsutake 
orders of each rugged transport truck and the service time windows of the cold delivery vehicle, 
respectively.

Table 2
Manhattan distance matrix.
Distance 4 (km) 5 (km) 6 (km) 7 (km) 8 (km)
1 3.9102 4.635 5.963 5.9926 6.1829
2 3.7381 3.042 2.868 3.572 3.2990
3 5.436 4.224 1.445 1.868 2.9404

Table 3
UAV parameters.
Delivery speed (m/s) 15
UAV weight (including battery) (kg) 15.5
UAV cost per kilometer (RMB) 10
Maximum flying altitude (m) 7000
Maximum flight time (min) 300
Maximum range (km) 30
Maximum takeoff weight (kg) 22
Weight of matsutake load (kg) 5
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Fig. 8. (Color online) Top view of the first UAV 
path plan.

Fig. 10. (Color online) Top view of the second UAV 
path plan.

Fig. 12. (Color online) Top view of the third UAV 
path plan.

Fig. 9. (Color online) Oblique view of the first UAV 
path plan.

Fig. 11. (Color online) Oblique view of the second 
UAV path plan.

Fig. 13. (Color online) Oblique view of the third 
UAV path plan.
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 To determine the optimal scheduling scheme undertaken by each UAV, the PSO, WOA, inertia 
weight-based whale algorithm (IWOA),(17) gray wolf algorithm (GWO), and proposed DEIWOA 
are used to solve the model. The settings of the proposed algorithms were selected to ensure the 
fairness of the comparison and are shown in Table 7.
 Figure 14 shows the evolutionary curve of the fitness function for each algorithm run once. 
Figure 15 shows the evolutionary curve of the fitness function averaged over thirty runs of each 
algorithm. Table 8 shows the data obtained by the algorithms. Table 9 shows the best UAV order 
scheduling scheme planned by the proposed algorithms.
 From Figs. 14 and 15 and Table 8, it can be seen that PSO, WOA, IWOA, GWO, and the proposed 
DEIWOA all have a strong search capability and global convergence. From Table 8, the proposed 
optimization algorithm is seen to show an improvement of 39, 50, 36, and 23% in solving the 
logistics order scheduling problem, compared with PSO, GWO, WOA, and IWOA, respectively.
 Because of the randomness of the population intelligence optimization algorithm in solving 
large-scale problems, to ensure the accuracy of the experiment, the adaptation function of each 
algorithm used to solve the same logistics scheduling order problem was applied 30 times. The 
results of simulation experiments show that our proposed DEIOWA algorithm exhibits excellent 
stability as well as searchability after thirty runs. Figure 16 shows the metrics embodied by each 

Table 4
Euclidean distance path.
Distance 4 (km) 5 (km) 6 (km) 7 (km) 8 (km)
1 3.923 4.6951 6.0438 6.039 6.228
2 3.758 3.0623 2.9079 3.5769 3.318
3 5.554 4.3442 1.4451 1.8681 2.9536

Table 5
Matsutake orders (kg).
Weight 4 5 6 7 8
1 483 433 401 487 441 

Table 6
Service time windows.

4 5 6 7 8
Time window 8:10–11:20 9:00–12:00 10:00–1:00 10:30–1:30 11:00–2:00

Table 7
Parameter settings of the proposed algorithms.
Algorithm Parameter setting Numerical value

PSO

νmax 1
νmin −1
c1 1.5
c2 1.5

IWOA
wmax 0.9
wmin 0.2

b 1

DEIWOA F0 0.4
CR 0.1
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Table 8
Simulation data.

Indicators Algorithm
PSO WOA IWOA GWO DEIWOA

Fitness 9.372 × 104 9.3 × 104 7.68 × 104 1.173 × 104 5.918 × 104

Average fitness 9.914 × 104 9.774 × 104 8.603 × 104 1.2 × 104 6.342 × 104

Table 9
UAV logistics dispatch distribution solution.
UAV number UAV delivery order sequence

1 56→84→111→139→167→170→195→227
2 12→41→69→98→133→162→190→219
3 39→42→70→105→134→163→191→220
4 22→43→71→104→136→166→194→225
5 47→79→82→112→140→168→196
6 48→53→75→110→137→164→192→221
7 49→72→86→99→131→159→189→217
8 2→44→73→100→135→165→193→222
9 31→49→59→87→114→145→171→199

10 31→32→64→94→122→155→182→210
11 5→33→60→92→120→150→177→207
12 3→34→61→88→115→148→174→201
13 35→48→65→95→126→156→184→214
14 26→36→66→89→119→152→175→205
15 6→37→58→91→118→149→176→206
16 38→46→67→90→125→154→181→209
17 39→62→86→113→144→173→200
18 33→40→68→93→121→151→178→208
19 13→50→80→101→128→157→186→213
20 24→51→76→96→116→141→179→211
21 7→52→77→97→117→142→169→197→223
22 29→63→102→104→123→146→180→212
23 45→55→74→106→138→161→188→216
24 18→53→81→108→130→160→187→215
25 30→57→85→127→147→172→185→198→218
26 46→78→91→107→129→153→183→203→228
27 42→54→82→109→132→158→185→204→226
28 35→55→83→103→124→143→170→202→224

Fig. 14. (Color online) Evolutionary curve of the 
fitness function for each algorithm run once.

Fig. 15. (Color online) Evolutionary curve of the 
fitness function averaged over thirty runs of each 
algorithm.
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Fig. 16. (Color online) Simulation results analysis 
picture.

Fig. 17. (Color on l ine) Act ual UAV log is t ics 
dispatching distribution scheme.

algorithm. The proposed DEIWOA reduces the consumption cost of solving the scheduling problem 
by 35720, 56580, 34320, and 22610 CNY and increases the economic return by 36, 47, 35, and 
26% compared with the PSO, WOA, IWOA, and GWO, respectively. Finally, Fig. 16 shows the 
raw loss cost of fresh produce and the average number of time window violations during the drone 
delivery process using DEIWOA as 2025.6CNY and 55 violations, respectively. Compared with 
the PSO, WOA, IOWA, and GWO algorithms, our proposed DEIOWA algorithm can also effectively 
reduce the raw loss cost while enabling the UAV to reach the cold delivery vehicle on the ground 
within the specified time. Figure 17 is a schematic diagram of some UAV mission delivery. The 
obtained results show that the introduction of chaotic mapping of the initial population, the DE 
strategy, the cooperative competition mechanism, the nonlinear fitting convergence factor, and 
inertia weights significantly improves the global search capability, robustness, and convergence 
of the whale algorithm, effectively avoiding the problem of traditional algorithms falling into local 
optima when solving large-scale complex problems.
 Therefore, the proposed DEIWOA algorithm is more efficient in solving the UAV logistics 
scheduling problem than the PSO, WOA, IWOA, and GWO algorithms. It can also better handle 
such complex and large-scale problems.

5. Conclusion

 To solve the problem of “first kilometer” delivery in rural mountainous areas, in this paper, 
we proposed a delivery method using UAVs as a carrier. Several constraints, such as UAV 
performance, delivery time window, new loss cost, and UAV delivery cost, were considered, and 
a multi-UAV logistics delivery model was proposed. An adaptive nonlinear fitting whale algorithm 
based on chaos theory was proposed to solve the model and deal with the problem faced by the 
traditional whale optimization algorithm, which has poor global searchability and quickly falls 
into a local optimum. In solving the UAV delivery path, the static path of the UAV was first solved 
using the IWOADE algorithm. In the actual UAV delivery process, multisource heterogeneous 
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sensors are loaded onto the UAV to help the UAV achieve dynamic obstacle avoidance in the actual 
flight process. Finally, the logistics distribution model was solved using the IWOADE algorithm 
to obtain the optimal UAV delivery scheme. Comparison with the PSO, WOA, IWOA, and GWO 
algorithms showed that the proposed IWOADE algorithm outperforms these algorithms in terms 
of solution accuracy, global convergence, and robustness, which further verifies the superiority 
and adaptability of IWOADE. 
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