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This paper is concerned with the modeling of resonant silicon microsensors using 
analytical as well as finite-element methods. In the case of simple resonator structures, 
ideal boundary conditions and isotropic material properties, analytical methods can be 
used to model the dynamic behavior of resonant microsensors. For more complex 
resonator structures, arbitrary boundary conditions, anisotropic material properties, multi­
layer structures, and in the presence of coupled-field effects, the finite-element method is 
well suited for simulating the behavior of resonant microstructures. Beamlike force and 
diaphragm pressure sensors are used to demonstrate the capability of this method to 
calculate eigenfrequencies, mode shapes, load-dependent frequency changes and cross­
sensitivities as well as to optimize the resonator geometry with respect to mode selectivity, 
mode decoupling, electromechanical coupling efficiency, and measuring range and sensi­
tivity. The numerical results are compared to experimental data in order to verify the finite­
element models. 
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1. Introduction

Resonant sensors, which change their output frequency as a function of the quantity to 
be measured, are attractive because of their high sensitivity, high resolution, and semi­
digital output. Their operation is based on the fact that the frequency of acoustic waves in 

solids is a highly sensitive probe for parameters that alter the internal energy, the geometry 

or the boundary conditions of the resonating structure. In this paper we focus on silicon 
microsensors vibrating at their mechanical resonance frequency_C1-3l They are fabricated 
from single-crystal silicon using bulk micromachining technologies such as anisotropic 
wet etching and thin film deposition. C4l

For ideal boundary conditions, the dynamic behavior of simple resonator structures, for 
example, doubly clamped prismatic beams or all-around clamped flat diaphragms, may be 
modeled analytically with sufficient accuracy. In the case of arbitrary boundary conditions 

or of more complex resonator structures such as nonprismatic beams, 'butterfly' resona­
tors,<5l 'H' -shaped resonators, C6l 'beam-on-diaphragm' structures,C?-10l or triple-beam<11l and
quadruple-beam<12l resonators it is very difficult or even impossible to perform the analysis
using analytical models. Instead, numerical methods such as the finite-element methodC13l 
(FEM) can be used to study the behavior of such resonators and to enable efficient sensor 
design. 

2. Principle of Resonant Silicon Microsensors

The general layout of a resonant pressure or force microsensor, which is resonated by 
piezoelectric thin films, is shown in Fig. 1. The resonant element consists of a silicon 
diaphragm or a beam. Piezoelectric thin films, for example zinc oxide (ZnO) layers,c14l are
used to excite and detect the vibrations of the resonator, which is connected to the feedback 

loop of an oscillator circuit. . The fabrication process<11J starts with the patterning and

excitation 

F 
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amplifier 

lL 
LiT 

detection 

F 

Fig. 1. General layout of a piezoelectrically driven resonant pressure or force microsensor. 
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doping of the ground electrode areas. In order to achieve a high electromechanical 
coupling efficiency, ZnO has to be grown with its c-axis perpendicular to the film plane and 
the silicon substrate. Well-oriented ZnO films may be deposited by r. f. sputtering from a 

Zn or ZnO target in an Ar/O2 plasma. The ZnO is wet etched in a stirred solution of HAc, 

H3PO4, and H2O in order to form the piezoelectrically active regions. A sputtered and

patterned Al metallization layer is used as the top electrode contact for the ZnO film. After 
completing the planar front-side process, anisotropic wet etching from the rear is applied to 
produce the desired beam or diaphragm thickness. In the case of beamlike resonators, in 
the final step deep trenching is performed by plasma etching the diaphragm from the front 
side. 

Mechanical loading of the resonator due to a pressure difference !1p at the diaphragm or

due to external forces F and moments M exerted on the beam results in tensile stress in the 

resonator element. Stress stiffening effects occur, which increase the stiffness of the 

resonator, thus changing its resonant frequency. Furthermore, a mass loading t.Jn or a 
· temperature change /1Tmay lead to a frequency change. The output of the electronic
oscillator circuit is fed to a frequency counter which records the load-dependent signal.
The resonant microsensors considered in the following study are based on this principle;
they consist of a passive resonator element and active elements for the excitation and

detection of vibrations.

3. Analytical Description

Using methods such as modal analysis or Laplace transforms<15l the dynamic behavior
of doubly clamped beams and all-around clamped flat diaphragms may be calculated 

analytically. Assuming homogeneous and isotropic material properties, the resonance 

frequencies, mode shapes, and load-dependent frequency changes can be calculated 

accurately. 

3.1 Beam resonators 

The dynamic behavior of doubly clamped beam resonators can be described using a 
one-dimensional continuous analytical model. Assuming that the beam is prismatic and 

that its thickness tis much smaller than its width w and its length l (i.e., l > w >> t) the 

following partial differential equation06l describes the vertical displacements u(x,t): 

I J4u(x, f ) _ d 2u(x, t) d 2u(x, t ) du(x, t ) _ f( ) (1) 
£ / 4 F 

O 
+ pA 2 + C :, - X, t . 

dx ax- dt at 

This equation holds for small vibration amplitudes. The bending stiffness of the beam is 

given by E' I, Fis the axial force applied to the beam, pis the homogeneous mass density 

and A is the cross-sectional :µ-ea. Beam damping is characterized by the viscous damping 

coefficient c. f(x,t) is a time- and position-dependent forcing function. The material 
behavior is assumed to be isotropic and is therefore described by the effective Young's 



504 Sensors and Materials, Vol. 9, No. 8 (1997) 

modulus E' = E/(1 - V2), where vis Poisson's ratio. For a doubly clamped beam, i.e., 
u(x,t) l=o,z = 0 and du(x,t)ldx lx=O.t = 0, the force-dependent frequency of then-th natural
mode is obtained from eq. (1) and may be approximated for the free, undamped case byC17J 

where 

� Fl2 

fn (F) � fn (0)1 + Yn --, ,
12E I 

k2 /E'I 
fn (0) = 

2: �pA/4 

(2) 

(3) 

and fn(0) = fn(F = 0). The coefficients kn and y,, can be determined from the boundary 
conditions. For n � 3 they are approximately given by kn = n(n + 1/2) and y,, = 12(kn - 2)/
k�, and for n = 1,2 we have k 1 = 4.730, k2 = 7.853, Yi= 0.295, and rz = 0.145.

3.2 Diaphragm resonators 
The static and dynamic behaviors of all-around clamped square diaphragms are de­

scribed using Kirchhoff's and Love's plate and shell theories, assuming diaphragms whose 
thickness is very small compared to their lateral dimensionsY8l To calculate the 
eigenfrequencies and mode shapes, different approximation methods are used, for example 
the Rayleigh-Ritz methodY9l The resonance frequenciesJ;j are given byC20l 

}.} t /E' 
Ju = 

21r1fi a2 fp' (4) 

where a and t are the side length and thickness of the diaphragm, respectively, and i, j are
the mode numbers. The constants At depend on the clamping conditions. Numerical 
values for At, taking into account the anisotropy of silicon, are given by Pons and 
Blasquez.(2'l For the fundamental mode they obtained Ai, = 35.16. For isotropic material
properties the values of At are slightly higher than those for anisotropic properties, e.g., 
Ai,= 35.99. 

The frequency change due to a transverse center displacement d of the diaphragm can 
be calculated from the general expression<22J 

f(d) = fo�l + c( �y, (5) 

wheref0 = f(d = 0). The constant c depends on the clamping conditions, on the shape of the
diaphragm, and on the vibration mode. For the fundamental mode of an all-around
clamped square diaphragm, a value of c � 1.25 was numerically estimated_C23l 

For square diaphragms the relationship between the pressure p and the displacement d 
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at the diaphragm center is implicitly given by(24l 

p = 16E'(�r[ 4.20( 1) + 1.ss( 1Sl 

505 

(6) 

The frequency change due to pressure loading of the diaphragm is then derived by 
simultaneously solving eqs. (5) and (6). 

3.3 Limitations of analytical methods 

Analytical solutions to the boundary-value problems involving the static and dynamic 
behavior of resonant microsensors can be obtained only in special cases by assuming 
several idealizations as described above. The main disadvantage is that the exact boundary 
conditions cannot be accounted for, especially if the stiffnesses of the resonator and the 
clamping region are of the same order of magnitude. Furthermore, nonhomogeneous and 
anisotropic material properties as well as structured multilayer systems and distributed 
loads cannot be modeled. 

4. The Finite-Element Method

As a general numerical approximation method, finite-element modeling facilitates the 
calculation of complex micromechanical resonators with arbitrary boundary conditions 
under the influence of nonlinear mechanisms. In addition, coupled-field effects such as 
electromechanical coupling can be accounted for. In the following we give an outline of 
the mathematical basis and program implementation. In section 5 the capabilities of this 
method are demonstrated with the help of several examples. 

4.1 Equation of motion 
The equation of motion for elastic solids can be derived using a variational approach 

such as the virtual work principle or Hamilton's principle. <25) The following differential 
equation, also called the 'stress-divergence theorem,' describes the static and dynamic 
behavior of a volume element dQ of an arbitrarily shaped elastic solid: 

d2u; � d<3ij Q 
p-2 = ,:..j -+ F; (i= 1,2,3),

dt dxj 

with the boundary condition at the surface 

(i == 1,2,3), 

(7a) 

(7b) 

where u; == x; - X; is the i-th component of the displacement vector, <3 is the stress tensor, 
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and pis the homogeneous mass density. FF and FF are external volume forces and 
external stresses at the boundary, respectively, and n; is the i-th component of the outward 
unit normal of a surface element dr. The stress tensor is related to the strain tensor c by the 
stiffness tensor: aij = r.k.tCiJktC:k1· 

The stress distribution and the displacements are obtained as solutions of eqs. (7a) and 
(7b ). The displacements must be continuous functions with continuous partial derivatives up 
to the second order. Equations describing specific elastic systems such as doubly clamped 
beams (eq. (1)) or all-around clamped diaphragms can be derived from eqs. (7a) and (7b).<25l 

4.2 Weakformulation 

In general, it is not possible to find closed-form analytical solutions to the elliptical 
boundary-value problem (eqs. (7a) and (7b), 'strong' formulation). Instead FEM uses a 
variational approach ('weak' formulation), which makes fewer demands on the smooth­
ness of the solution. Approximation of the 'weak' solution is performed numerically by 
finite-element discretization. <26·27l

To obtain the 'weak' formulation, both sides of eq. (7a) must be multiplied by the 
displacements, which have partial derivatives of the first order and vanish on the clamped 
surface, and then integrated over the volume Q of the solid structure. By applying Green's 
theorem the partial derivatives of a can be removed,C28l leading to: 

(8) 

The numerical solution of eq. (8) can be determined by approximating the displaces 
ments u;(x1,x2,x3) at a given point (x1,x2,x3) with a linear combination of a finite set of basis 
functions. These basis functions are the interpolation ( or shape) functions N\x1 , x2, x3) of 
the elements, which divide the whole structure into finite subdomains connected by the 
nodes at the element edges. The coefficients .ut of the shape functions are the displace­
ments at the nodes, i.e., u;(xi,x2,x3) = I.kN\xi,x2,x3) ut, where the sum is over all nodes.<26) 

4.3 Program implementation 

From eq. (8) one obtains the following matrix equation on an element level for static 
analyses: 

[K] · {u} = {F}, (9) 

where [K] is the stiffness matrix, {u} is the nodal displacement vector, and {F} is the vector 
of nodal mechanical forces. Due to geometric nonlinearities, the response of a microsensor 
varies disproportionally with the applied loads resulting in a change in the stiffness matrix 
[K] depending on the displacements:

[K(u)] · {u} = {F}. (10)
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Finite-element programs are able to account for different types of nonlinearities. The 
effects relevant in this context are 'large deflection' and 'stress stiffening.'<29J Stress 
stiffening describes an increase in structural stiffness due to the stress state. Large 
deflection represents a change in stiffness resulting from a change in element spatial 
orientation as the microstructure deflects. This effect has to be taken into account 
especially for the simulation of diaphragms. The programs account for large deflection by 
updating the element orientations as the structure deflects and calculating an appropriate 
corrective load vector.<30J Since the stiffness is affected by the displacements, eq. (10) is 
solved iteratively using, for example, the Newton-Raphson method.<29l 

Dynamic electromechanical coupled analyses are performed using piezoelectric state 
equations and by applying variational methods to obtain the coupled matrix equations on 
an element level:<31l 

[M] · {ii}+ [ C] ·{it}+ [Kuu ]· {u} +[Kuq, )· { 1/J} = {F}

[K¢u]·{u}+[K¢¢ ]·{1/J} = {Q}. 

(11) 

(12) 

In these coupled-field analyses the degrees of freedom at the nodes are the three 
components ofthe displacement vector and the electrical potential 1/J. [M] is the mass 
matrix and [Kuulis the structural stiffness matrix. Mechanical damping is described by the 
viscous damping matrix [C], which is related to the mass and stiffness matrices by the 
Rayleigh damping coefficients: [C] = a[M] + ,B[Ku,J. Electromechanical interaction is 
accomplished through the symmetrical piezoelectric coupling matrix [Ku¢]= [K¢t,] consist­
ing of the piezoelectric moduli eijk· The dielectric conductivity matrix [Kn] depends on the 
permittivity t:

ij
. { Q} is the vector of nodal electrical charges. 

5. Numerical Modeling

The time required for the design and fabrication processes of rnicrosensor devices can
be considerably reduced by utilizing computer simulations. In addition, modeling provides 
a unique insight into the mode of operation of the devices. Numerical methods such as 
FEM are powerful tools for modeling the dynamic response of resonant sensors and for 
predicting the performance of microsensors under operating conditions. Geometry related 
effects, in particular, can be studied, for example, the optimization of clamping<32•33l and 
decoupling regions,0 1

•
33l the calculation of the influence of various resonator cross-sec­

tional shapes,<34
l and the estimation of mode shapes of complex resonator structures. 

Furthermore, FEM is a valuable tool for the development of multilayer structures such as 
piezoelectrically driven microsensors and actuators. 

In the following, we report on the simulation of the static and dynamic behaviors of 
resonant force and pressure microsensors using the general-purpose finite-element code 
ANSYs.<35l Modal analysis was used to solve the eigenvalue problem and to determine the 
resonance frequencies and flexural mode shapes of beams, diaphragms, and complex 
resonator structures. The combination of static and subsequent modal analysis allows 
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calculation of the load-dependent frequency shifts. Utilizing this technique, the perfor­
mance of resonant diaphragm pressure sensors has been optimized.<23l 

5.l Eigenfrequencies and mode shapes

Finite-element modeling was used to calculate the eigenvalues and mode shapes of a
resonant pressure sensor consisting of a square silicon diaphragm 50 µm thick with sides 
9.2 mm long covered with an approximately 11-µm-thick ZnO thin film layer for piezo­
electric excitation and detection. In Table 1 the numerical (FEM) results are compared to 
analytical and experimental ones. The resonance frequencies f

u 
of the higher vibration 

modes are normalized by the frequency of the fundamental mode f11 (c;j = f;/fi i). The 
measurements were performed using piezoelectric excitation and optical detection of the 
vibrations. The analytical results agree well with the numerical ones (deviations of less 
than 4% ). The influence of the anisotropic elastic material properties of silicon on the 
resonance frequencies is less than 4%. The measured values differ slightly from the results 

Table 1 Analytical, numerical (FEM), and experimental values of normalized frequencies c
u 

= f;jf11 of a pressure sensor consisting of a square Si-ZnO-bimorph diaphragm resonator. 
Vibration mode 
ij Shape 
12

� 

22.
� 

31 � 
13� 
33 

Analytical results using eq. (4) and Jct values from ref. 21 
Numerical (FEM) results 

Isotropic Anisotropic 2D/isotropic 3D/anisotropic 
2.039 1.998 2.038 2.066 

3.007 2.899 3.004 3.031 

3.662 3.615 3.652 3.754 

3.679 3.631 3.669 3.770 

6.122 5.872 6.105 6.021 

Optical measurements 

2.10 

2.86 

3.94 

6.35 
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calculated using a 3D, anisotropic finite-element model ( deviations of less than 6% ). 

The main problem in calculating the resonance frequencies accurately arises from the 
unknown intrinsic stress of the ZnO thin films due to the compressive stress induced during 
the fabrication process. From the difference between the measured resonance frequency of 
the fundamental mode and the calculated value, the magnitude of the intrinsic stress can be 

estimated at about -15 MPa. 

5 .2 Load-dependent frequency change 
The diaphragm deflection due to pressure difference was calculated by performing a 

nonlinear analysis using the Newton-Raphson method and taking into account stress 
stiffening and large deflection effects. The static solution provides a load-dependent 

stiffness matrix for the sensor structure which is used in a subsequent modal analysis to 

determine the frequency shifts. Different finite-element models were used to investigate 
the influence of isotropic and anisotropic material behavior, different element types, 
solution methods, and boundary conditions. Model S43 uses 4-node 2D plastic shell 
elements (ANSYS element SHELIA3). The material data were weighted by the layer 
thicknesses of silicon and ZnO, and ideal clamping of the diaphragm was assumed. The 
model V95 uses 20-node 3D solid elements (ANSYS element SOLID95). The material 
behavior was assumed to be isotropic for both silicon and ZnO and the real clamping 
geometry defined by the (111) silicon crystal planes was taken into account. Model V64 
uses 8-node 3D solid elements (ANSYS element SOLID64). The material behavior was 
assumed to be anisotropic for both materials, and bulk data were taken from results 
reported by Landolt-B6rnstein.<36l 

Figure 2 shows the calculated and measured pressure-frequency characteristics for the 
fundamental flexural mode. The following parameter values have been measured: reso­
nance frequency fo = 8317 Hz, pressure sensitivity !).pl/if"' 12.4 Hz/mbar, and maximum 

displacement at the center of the diaphragm d"' 75 µm. The deviations of the measured 
values from the calculated ones are 2-7% for the resonance frequency, 5-19% for the 
diaphragm deflection, and up to 17% for the pressure sensitivity, indicating an extremely 
stif

f 

model behavior. The parameter values calculated from eqs. (5) and (6) differ from the 
measured ones by 7% (resonance frequency), 12% (maximum diaphragm deflection), and 
19% (pressure sensitivity). 

The deviations of the measured values from the calculated ones are due to the intrinsic 

residual stress in the ZnO layer, the unknown material properties of thin film ZnO, which 
are influenced by technology-dependent parameters, and the nonhomogeneous diaphragm 
thickness resulting from the fabrication process.<37> 

Further applications of dynamic finite-element simulations to resonant diaphragm 
pressure sensors and calculations of the effective electromechanical coupling factor for 
different sensor geometries and piezoelectric thin film materials are described else­
where. (38,39) 

5.3 Thermal behavior 
Temperature changes strongly influence the properties of resonant microsensors. Be­

sides the temperature dependence of the resonance frequency, buckling may occur in 
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Fig. 2. Frequency-pressure characteristic of a piezoelectrically driven silicon diaphragm pressure 
sensor. The inset shows a schematic of the sensor. The calculations were performed assuming a 
silicon diaphragm covered with ZnO and neglecting the Al metallization layer. Model S43 uses 2D 
plastic shell elements, and models V95 and V64 3D solid elements. 

doubly clamped beams and in diaphragms due to thermally induced compressive stress. 
The response of the resonance frequency to an axial load and the buckling stress for doubly 
clamped beams were studied by Bouwstra and Geijselaers.<17J The influence of tempera­
ture rise was investigated by Geijselaers and TijdemanC40) who used an approximate 
analytical model as well as finite-element simulation to characterize the dynamic behavior 

of a resonating rnass-flow sensor. 

The analytical model of Geijselaers and Tijdemanc4o) and 2D and 3D finite-element 
models were used to calculate the temperature-dependent characteristics of a doubly 
clamped bean1 resonator accounting also for the temperature drop due to heat transfer to a 
passing mass flow.<41l 

In order to verify the numerical results, optical and electrical measurements were 
performed on a doubly clamped silicon beam with a length of IO mm and a thickness of 50 

µm, frorn which the resonance frequencies and static buckling amplitudes were estimated. 

The beam was forced to vibrate by thermal excitation via metal thin film resistors (see inset 
in Fig. 3). Electrical detection was achieved using thin film strain gauges, while for optical 
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Fig. 3. Frequency-temperature characteristics of a doubly clamped silicon beam resonator. • and x 

denote the optically and electrically measured characteristics, respectively. The analytical curve was 

calculated using the model in ref. 40. 

detection a laser vibrometer and an autofocus sensor were used. Power dissipation in the 
strain gauges causes a static �verage temperature rise inducing an internal stress in the 
beam, which results in a change in its resonance frequency. By varying the power 
consumption of the strain gauges, the frequency-temperature characteristic could be 
measured. In Fig. 3 the analytical, numerical (FEM), and experimental results are 
compared. For the critical temperature difference between the beam and its surroundings 

. AT.,, at which the beam buckles, a value of about 27 K was determined from the finite­
element models which is in good agreement with the measurements. The maximum static 
deflection of the beam was calculated to be 70-77 µmin comparison to optically measured 
deflections between 56 µm and 70 µm. For !(AT= 0) the 2D model yields a resonance 
frequency of 4223 Hz and the 3D model one of 4304 Hz. Both values are close to the 
measured value of 4164 Hz. 

In the case of multilayer sensor structures such as piezoelectrically driven force or 
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pressure sensors, care has to be taken to compensate for the temperature cross-sensitivity of 
the resonance frequency. Several methods can be used to reduce the temperature depen­
dence. For the resonant diaphragm pressure sensor, a temperature compensation method 
was investigated by finite-element modeling<37

l which relies on lateral structuring of the 
electrodes and piezoelectric thin film areas. A reduction in the temperature cross­
sensitivity of a Si-ZnO-bimorph diaphragm resonator due to lateral layer structuring could 
be achieved as follows. Starting from a reference electrode configuration, which corre­
sponds to the layout for selective mode excitation of the fundamental flexural vibration 
mode and which consists of a central electrode and a symmetrical four-part outer electrode 
driven with a phase shift of 180° , the areas of the outer electrode were decreased gradually. 

- The final electrode configuration has a temperature dependence five times lower than that
of the initial electrode configuration, that is, approximately 170 ppm/K. This result arises
from the fact that by choosing a suitable layout for the ZnO areas on the silicon diaphragm,
mainly bending stresses are induced by differential thermal expansion; membrane stresses,
which are responsible for the resonance frequency shift, are minimized.

5.4 Piewelectric excitation

For piezoelectrieally driven resonant microstructures the efficiency of the conversion 
from electrical to mechanical energy and vice versa is characterized by' the effective 
electromechanical coupling factor keff, which can be approximately expressed as<42l 

(13) 

where JP and.fs are the parallel and the series resonance frequencies, respectively, as derived 
from the electrical equivalent circuit of the piezoelectric device. In Table 2 the results of a 
coupled-field finite-element analysis of silicon cantilever beams uniformly covered with a 
ZnO thin film layer are compared to experimental data. The resonance frequency Ires was 
measured optically, while the parallel and series resonance frequencies fp and .fs, were 
determined by measuring the impedance-phase characteristics of the resonant cantilever 
beams. The deviation between the calculated and measured values of kerr of up to 52% is 
probably due to the residual stress in the ZnO thin films. This assumption is supported by 
measurements of the compressive residual stress, yielding values of up to 500 MPa. <43

l In 
the case of ZnO layers with low residual stress (beams #4 and #5) the measured and 
calculated keff values agree to within a few percent, while in the case of ZnO layers with 
higher residual stress (beams #1, #2, and #3) the deviations between measured and 
calculated values are large. 

Optimization of the effective electromechanical coupling factor for bimorph resonators 
is possible by choosing the optimum value of the thickness ratio t8/tpiew· In Fig. 4, the 
effective coupling factors of bimorph silicon diaphragm resonators as a function of the 
thickness ratio are shown. Experimental data are given for ZnO thin films. The calculated 
curves show a maximum at t8/t

piezo = 3.5 (AlN), 2 (ZnO), and 1.3 (PZT) corresponding to 
maximum coupling factors keff of 0.09, 0.22, and 0.38, respectively. 
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Table 2 
Characteristics of silicon cantilever beams (length = 7 mm, width= 5 mm) uniformly covered with a 
ZnO thin film layer. 

Beam no. 

fsi [µm] 

tzao [µm] 

/res [Hz] 

J, [Hz] 
fp [Hz] 
keff 

Elements 
Nodes 

J, [Hz] 
f

p 
[Hz] 

K-eff 

Afdk[o/o] 

#1 

123.7· 
10.4 

3330 

3358 
3376 
0.103 

2080 
2781 

3474 
3502 
0.126 
-22

#2 #3 #4 #5 

124.5 137.2 124.5 124.5 
10.1 10.7 7.75 7.75 

Measurements<43J 

3410 3680 3455 3455 

3416 3642 3418 3420 
3430 3654 3439 3445 
0.090 0.081 0.110 0.120 

Finite-element modeling 

2080 4410 4410 4410 
2781 6144 6144 6144 

3495 3832 3474 3474 
3523 ·3861 3497 3497 
0.125 0.123 0.113 0.113 
-39 -52 -3 +6

A prerequisite for mode-selective excitation and detection of the vibrations is knowl­

edge of the stress patterns on the resonator surface in order to be able to choose the 

appropriate electrode design. For beamlike resonators the stress patterns can be calculated 
analytically,<15J but in the case of diaphragms FEM must be used. Linear harmonic 
response analysis must be carried out in order to determine the frequency response of the 
resonator structure. For all-around clamped silicon diaphragms, the first flexural vibration 

mode shows compressive stress areas near the clamping regions and a central tensile stress 

area. In order to obtain mode-selective excitation of the fundamental mode, the second and 

higher vibration modes must be suppressed. This can be achieved by positioning elec­

trodes according to the different stress areas (tensile/compressive) and applying opposite 
. potentials to them. <37J 

5.5 Resonator optimization 

5.5. l Mode selectivity 
Due to the induced bending moment of the silicon-ZnO bimorph structure, the flexural 

vibrations of piezoelectrically driven doubly clamped beams are out0of-plane. To achieve 
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Fig. 4. Effective electromechanical coupling factors of bimorph silicon diaphragm resonators. ® 
denotes experimental values obtained for ·si-ZnO-bimorph diaphragm pressure sensors. 

a cancellation of moments and shear forces at the clamped ends, triple-beamC11J or qua­
druple-beam(l2l structures are suitable. Finite-element modeling with 2D plastic shell 
elements has been used to simulate the dynamic behavior of a triple-beam resonator.<11J 

The resonator, which has a length of 3 llllll, a thickness of 20 µm, and beam widths of 400 
· µm (outer beams) and 200 µm (inner beam), is connected to the supporting bulk frame on
both sides via flexible decoupling zones as indicated in Fig. 5. The thickness of the
decoupling zones is equal to that of the beams, thus allowing energy transfer during
vibration. The eigenfrequencies and mode shapes were determined by modal analysis, and
in combination with static analysis, the frequency-force characteristic was derived. In
particular, the influence of the clamping region on the degree of mechanical decoupling of
the resonating structure from the supporting bulk frame was analyzed.

Figure 5 shows the dependence of the resonance frequencies of the first three flexural 
vibration modes on the decoupling zone length. The fundamental flexure mode of beams 
vibrating symmetrically in phase is denoted as Ml. A spurio_us overtone mode M2 occurs 
between mode Ml and the antisylllIIletric sensor mode M3. Good mechanical decoupling 
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Fig. 5. Dependence of the resonance frequencies of the first three flexural vibration modes M 1, M2, 
and M3 of a triple-beam structure on the length of the decoupling zone obtained by finite-element 

modeling with 2D plastic shell elements. 

and sufficient splitting of the frequencies of the three vibration modes can be realized by 
choosing a decoupling zone length of 200-300 µm, which has been verified experimen­
tally.0 1l 

5.5.2 Mode decoupling 

For the realization of resonant pressure sensors, microstructures consisting of a resonat­
ing beam connected at both ends to a diaphragm, known as 'beam-on-diaphragm' (BOD) 
structures, can be used. In such sensors, the pressure-sensitive element ( diaphragm) is 
separated from the resonator (doubly clamped beam). In recent years several BOD 
pressure sensors have peen realized.C7-9J Monolithic BOD rnicrostructures can be fabri­
cated by means oflaser machining and anisotropic etching techniques.<10l The pressure­
frequency characteristic for the latter device was measured by acoustic excitation and 
optical detection of the vibrations. In the pressure range between -0.8 bar and+ 1.0 bar the 
characteristic is almost linear with a sensitivity of about 4.5 kHz/bar at a beam resonance 
frequency of 82 kHz. 

Since there are no analytical fonnulae available for the dynamic behavior of this 
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complex sensor geometry, FEM was used to predict the sensor characteristic and to analyze 
the influence of geometric modifications on the sensor performance. C37

l A 3D model of the 
sensor structure was created using the solid model IcDEAS.C44l Finite-element simulations 
were carried out with ANSYS<35

l using one quarter of the BOD structure and assuming 
anisotropic material properties of single-crystal silicon. For these calculations a beam 
length of 1.95 mm and a thickness of 42.4 µm were assumed. The beam is located in the 
center of the diaphragm and clamped between two supporting piers, which are connected 
monolithically to the diaphragm (see inset in Fig. 6). When a pressure difference of 1 bar 
is applied, the maximum displacement of the diaphragm is about 1 µm. Due to the leverage 
principle, stress concentration occurs in the beam resulting in a maximum tensile stress of 
24.7 MPa, which is about twice that at the surface of the diaphragm. 

The diaphragm thickness was varied from 50 µm to 300 µm while the other dimensions 
were kept constant. The resonance frequencies of the fundamental flexure mode of the 
beam lft

eam
) and the first antisymmetric coupled mode of the diaphragm and the beam 

, ifaiaphragm) were calculated. While the frequency of th� beam mode is largely independent of 
the diaphragm thickness, the frequency of the diaphragm mode is approximately propor­
tional to the thickness of the diaphragm, as shown in Fig. 6 (see also eq. (4)). At a thickness 
of about 130 µm the two resonance frequencies are equal. This geometric configuration 
should be avoided, because the vibration energy of the beam will be transferred into the 
diaphragm due to mode coupling, leading to a reduction in the Q-factor. 
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Fig. 6. Calculated resonance frequency of a BOD structure as a function of the diaphragm thickness. 
Beam length of 1.95 mm and thickness of 42.4 µm were assumed. The inset shows a schematic of the 
BOD structure. 
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5.5.3 Measuring range and sensitivity 

For constant beam dimensions, the pressure sensitivity varies as a function of the side 
length and the thickness of the diaphragm. This dependence has been calculated by FEM 
for a 1 IIlIIl x 120 µm x 42.4 µm resonating doubly clamped beam and 300-µm-thick 
diaphragms with side lengths between 2.5 IIlIIl and 5 mm. The calculated pressure 
sensitivities vary from 0.5 kHz/bar to 11 kHz/bar. 

By reducing the side length, the measuring range of the sensor can be enhanced. For 
example, the fundamental resonance frequency of a diaphragm with a side length of 2 mm 
has been calculated to be 386 kHz. The pressure sensitivity is about 141 Hz/bar in the 
pressure range between O and 100 bar. At the maximum pressure difference of 100 bar, a 
tensile stress of 60 MPa mises in the beam. 

These calculations demonstrate that by variation of the dimensions of a BOD structure, 
sensors for a wide pressure range can be fabricated. 

6. Conclusion

In order to optimize the performance of resonant silicon microsensors, knowledge of 
their internal behavior is necessary. To achieve this in a reasonable time, modeling and 
numerical simulation are necessary. For simple resonator structures with ideal boundary 
conditions, analytical models may be used to calculate their characteristics accurately if 
homogeneous and isotropic material behavior is assumed. 

For more complex resonator structures, arbitrary boundary conditions, anisotropic and 
temperature-dependent mate1ial properties, and in the presence of coupled-field effects, 
FEM can be used to simulate the properties of resonant microstructures. Beamlike force 
and diaphragm pressure sensors as well as triple-beam and beam-on-diaphragm micro­
structures have been used to demonstrate the capability of this method to calculate 
eigenfrequencies, mode shapes, load-dependent frequency changes and cross-sensitivities, 
as well as to optimize the resonator geometry with respect to mode selectivity, mode 
decoupling, electromechanical coupling efficiency, and measuring range and sensitivity. 

These examples clearly demonstrate that finite-element modeling is an indispensable 
tool for the development of complex resonant microstructures as well as for development 
of the active multilayer structures used to excite the vibrations. 
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