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 Owing to the importance of the fuel economy and emission performance of parallel hybrid 
electric vehicles (PHEVs), parallel hybrid systems are a critical research topic in the vehicle 
industry. However, previous research has endeavored to reflect the real situation of optimization 
objectives, which tends to result in low-quality solutions. To address this issue, a novel multi-
objective optimization approach based on the multi-objective slime mold algorithm (MOSMA) 
is used to optimize the hybrid power system of a PHEV. Then, with the objectives of reducing 
fuel consumption, CO emission, and the sum of HC and NOx emissions, a mathematical model 
for three-objective optimization is established. The six parameters affecting the hybrid system 
performance are optimized by considering the dynamic power performance and battery charge 
state balance constraints. Finally, ADVISOR is used as a simulation platform to verify the 
optimization results. The results before and after optimization demonstrate that MOSMA can 
effectively address the multi-objective optimization of hybrid vehicles; concretely, the fuel 
consumption and the sum of HC and NOx emissions are reduced by 9.5 and 7.4%, respectively. 
More notably, the decrease in CO emission is as much as 34.4%.

1. Introduction

 Owing to their low fuel consumption and reduced emissions, parallel hybrid electric vehicles 
(PHEVs) can be used to alleviate the global energy shortage and environmental pollution. The 
efficient operation of the hybrid system depends on the effective matching of components, and 
the optimization model of the hybrid system is non-differentiable, multidimensional, and 
nonlinear. Therefore, multi-objective optimization of power system parameters is essential. The 
goal of hybrid electric vehicle performance optimization is to reduce the system cost and 
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improve the power performance, economy, and smoothness under the premise of satisfying the 
performance constraints of each component.(1) Currently, an enumeration method is often used 
to arrange and combine the decision variables in the performance optimization of hybrid 
vehicles. However, the efficiency of the combination calculation is greatly reduced with 
increasing number of decision variables.
 With the development and promotion of hybrid vehicles, various control methods and 
strategies have been used in research to reduce fuel consumption and air pollution. Optimization 
has been used to improve vehicle performance, which plays a vital role in this field in promoting 
the development of hybrid vehicles. Liu et al. established a global optimization model of the 
power allocation factor and applied an adaptive simulated annealing algorithm to optimize the 
power allocation factor offline.(2) Using a PHEV as the objective, eight energy management 
parameters were chosen as comprehensive optimization parameters for fuel economy and 
emission performance. Using the Pareto principle, Deng et al. modified and increased the 
performance of the NSGA-II algorithm and proposed a new algorithm based on multi-objective 
optimization.(3) Zhang et al. proposed an energy management strategy using the model 
predictive control (MPC) framework, which can obtain the optimal torque shunt and shift of a 
PHEV through efficient calculation.(4) Wang et al. explored the size of the lithium-ion battery 
and ultracapacitor (UC) from a new perspective, including the degree of hybridization between 
the UC power and battery power; in other words, they minimized fuel consumption by solving 
an optimization problem.(5) To optimize real-time power allocation, a new energy management 
strategy was then proposed. Bonfiglio et al. used an adaptive simulated annealing genetic 
algorithm to optimally match the drive components of hydrostatic hybrid vehicles, and the 
performance of each component was significantly improved.(6) Thus, the optimization of 
relevant parameters using appropriate optimization methods can effectively enhance the 
capability of the whole vehicle. The above-mentioned parameters also provide guidance in the 
control of the whole vehicle and the selection of materials for different components. These 
parameters can indirectly reflect how different materials should be selected for each component 
to meet the application requirements. For example, the real-time acquisition of the motor, engine, 
and battery status through power sensors and current sensors can improve the control of a 
vehicle to achieve better performance.
 In this study, we propose a three-objective optimization model of a parallel hybrid system 
with constraints. We first design a multi-objective optimization algorithm for a parallel hybrid 
system based on the multi-objective slime mold algorithm (MOSMA). Then, the fuel 
consumption, the total emission of hydrocarbons and nitrogen oxides (HC + NOx), and carbon 
monoxide (CO) emission are selected as the optimization objectives. Furthermore, to ensure the 
dynamic performance and accurate fuel consumption of vehicles under various road conditions, 
the dynamic performance and battery charging state balance are used as constraints for 
optimization. The results show that the optimized system can effectively reduce fuel 
consumption and pollutant emissions while simultaneously ensuring the power performance. 
The optimized system can also improve fuel economy.
 The major contributions of this paper are summarized as follows:
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1.  We design a fresh multi-objective optimization approach based on MOSMA to optimize the 
hybrid power system of a PHEV, which effectively reduces fuel consumption and pollutant 
emissions and ensures the power performance.

2.  A comparative analysis before and after optimization of the motor efficiency, engine 
efficiency, and engine working point distribution is also performed. The results of 
comparative experiments show that the working conditions of the engine markedly improved, 
and the performance of the motor is maximized.

2. Hybrid Power System Optimization Model

 The optimization of a parallel hybrid system involves optimizing the parameters of the power 
components and controllers under various constraints to reduce the fuel consumption and 
emissions of different pollutants of the vehicle under certain cycle conditions. In the optimization 
process, several inharmonious objective functions are optimized in a suitable region.(7) The 
optimization model is non-differentiable, regardless of whether it is discontinuous, 
multidimensional, constrained, or nonlinear, making this a typical multi-objective problem.(8) 
The discovery of solutions to multi-objective optimization problems is different from the general 
mathematical solution process, which is an NP-complete problem.(9)

 In terms of solving problems by multi-objective optimization, the following factors must be 
considered. 1) In most cases, there is some kind of equilibrium among the objectives for each 
candidate solution, i.e., if one solution is used to improve a certain target value, it is extremely 
likely to make other target values worse. 2) After the optimization process, there is more than 
one solution, and when preference information is not considered, there is no superiority among 
the Pareto optimal solutions. Usually, the structure of a multi-objective optimization problem 
must be adjusted accordingly, that is, transformed into a maximization or minimization 
problem.(10) The mathematical model is expressed as follows:
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In this formula, n denotes the number of variables to be optimized; k denotes the number of 
objective functions designed; m and p denote the numbers of inequality constraints and equality 
constraints, respectively, gi denotes the ith inequality constraint; hi denotes the ith equation 
constraint; [Lbl, Ubi] indicates the upper and lower bounds of the ith variable.
 Among the pollutant emissions, CO emission is about 10 times greater than those of 
hydrocarbons and nitrogen oxides.(11) Thus, in this study, fuel consumption, total hydrocarbon 
and nitrogen oxide emissions (HC + NOx), and CO emission were selected as the targets as 
below:
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where QFuel (x), QCO (x), and QHC (x) + QNO (x) represent the fuel consumption, CO emission, and 
total of HC and NOx emissions, respectively.

2.1 Constraint conditions

 In this study, the power performance and battery charge state of the PHEV are used as the 
main constraints. In general, the acceleration performance, maximum speed, and maximum 
climbing gradient are important indicators reflecting the power performance of a vehicle,(12) and 
the specific contents of the constraints are listed in Table 1.

2.1.1 Power performance constraint

 Vehicle acceleration characteristics and the maximum climbing gradient of the vehicle are the 
main indexes used to estimate the dynamic behavior of the vehicle. The acceleration 
characteristics of the vehicle are classified into two types: the start-up accelerating performance 
and the overtaking acceleration performance. However, it is difficult to measure the acceleration 
value in an actual experiment; thus, the acceleration ability of the vehicle is generally expressed 
by the acceleration time. The constraints on the acceleration characteristics and climbing 
gradient are to ensure that the vehicle exhibits good dynamic performance under various driving 
conditions.

2.1.2 Battery charge state balance constraints

 PHEVs have a generator and an engine, i.e., two independent energy supply systems. The 
energy consumption of a vehicle refers to not only the fuel consumption, but also the power 
consumption of the battery. During the simulation-based optimization process, it is necessary 
and feasible to reflect the actual fuel consumption of PHEVs. Generally, the electric energy 
consumed in the whole cycle is considered, and the consumption of the battery before and after 
the relevant driving condition is converted into the fuel consumption of the engine, or the 
simulation is considered effective when the difference in the battery charge state before and after 

Table 1
PHEV powertrain constraints.
Indicator Specific content Condition

Power performance
Acceleration time within 100 km/h ≤14 s

40–100 km/h acceleration time ≤14 s
Climbing gradient ≥30%

Battery charge state balance Difference between initial and final state of charge ≤0.5%
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the restriction is less than or equal to a given small value; thus, the impact of the battery power 
supply on engine fuel economy is minimized. In this test, to obtain an accurate value for engine 
fuel consumption, we regarded a difference in the state of charge (SOC) of within 0.5% before 
and after the relevant driving condition as an effective working condition.

2.2 Optimization parameters

 A PHEV is a highly intricate nonlinear system with multiple factors affecting its power 
system. When all these variables are considered, the problem becomes complicated and the 
corresponding optimization becomes very difficult. Thus, in this paper, we select the parameters 
that dominate the power system performance as the optimization object of this experiment.(13) 
Usually, the driving speed and the maximum speed achieved by PHEVs are influenced by the 
maximum power of the engine (Pe); the number of modules of the battery (Nb) determines the 
pure electric driving range of the vehicle; the power factor of the electric motor (Me) and the 
final drive ratio (Rb) govern the hill climbing and acceleration ability of the vehicle; and the 
upper (Hsoc) and lower (Lsoc) limits of the SOC of the battery almost completely determine the 
working range of the battery. Not only do the limits affect the average stable working power of 
the battery under specific road conditions, but they also have a major impact on the charging and 
discharging efficiency of the battery system. Moreover, they also strongly affect the power 
performance, emission performance, and fuel economy performance of the hybrid power 
system. Thus, the above parameters are selected as the optimization object of this simulation-
based test, and the optimization parameters and their corresponding ranges of values are shown 
in Table 2.

3. Multi-objective Optimization Algorithm

 The power system of a PHEV is a very complex nonlinear system whose performance is 
influenced by many control parameters, signifying a typical multi-objective problem. When 
dealing with complex nonlinear multi-objective engineering problems, relational operators are 
no longer adapted to compare problems with multiple objectives, and the new operator of Pareto 
optimality is applied. The principle of Pareto optimality is an important concept in game theory, 
as the Pareto solution set has a good distribution and convergence. Pareto optimality means an 
ideal state of resource allocation based on a symbolic definition in this regard,(14) and the 
following important concepts can be shown:

Table 2
Optimization parameters of PHEV and corresponding ranges.
Parameter Range of values
Maximum engine power (Pe) [35, 70]
Power factor of electric motor (Me) [0.6, 1.5]
Lower limit of battery charge state (Lsoc) [0.3, 0.55]
Number of modules of battery (Nb) {20, 21, ..., 49, 50}
Final drive ratio (Rb) [0.5, 2.5]
Upper limit of charge state of battery (Hsoc) [0.5, 0.9]
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Definition 1: Pareto dominance
 For two vectors 1 2( , ,..., )kx xx x=

  and 1 2( , ,..., )ky yy y=
 , vector x is said to dominate y 

(expressed as x y<
 

) if and only if
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Definition 2: Pareto optimal solutions
 Solution a is Pareto optimal if and only if

 | ( ) ( )X Fy Fx y∃ ∈ <
   . (4)

Definition 3: Pareto optimal solution set
 Pareto optimal solutions are often multiple instead of single, and the following constitutes the 
Pareto solution set:

 { }, | ( ) ( )sP x y X F Fy x= ∈ ∃ >
  . (5)

Definition 4: Pareto optimal frontier (the set of all Pareto efficient allocations)
 There are generally many Pareto optimal solutions, and each solution has a corresponding 
objective function. The corresponding objective function values of all solutions constitute the 
Pareto solution set:

 ( ){ }|f sP F x x P= ∈
  . (6)

3.1 MOSMA algorithm

 The slime mold algorithm (SMA), proposed by Li et al., is a meta-heuristic algorithm based 
on a population that was inspired by observing the oscillatory behavior of slime molds.(15) The 
SMA uses a positive and negative feedback system combined with an optimal food path design. 
The slime molds modulate their search paths in real time in accordance with the food quality. 
The SMA simulates three basic principles, namely, search, wrap, and approach phenomena. The 
search phenomenon prevents the collision of slime bacteria searching for food, the wrap 
phenomenon indicates the flowing speed of slime bacteria, and the approach phenomenon 
explains how slime bacteria approach and snap the food more efficiently

3.1.1 SMA algorithm

 At the beginning of the SMA, populations are randomly generated within their upper and 
lower boundaries, where N denotes the population size (i.e., number of slime bacteria) and dim 
denotes the dimensionality of the problem to be optimized. Then, the objective function is used 
to evaluate the overall population. In the next stage, the population is updated by executing the 
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search, wrap, and approach phenomena in each iteration.. Parameters such as the slime mold 
fitness weight (W) control the progression of the SMA, not only ensuring rapid convergence, but 
also avoiding local solutions. The vibration parameter (vb) guarantees the accuracy of the search 
in the early stages and the later development of individual slime bacteria.
 Slime bacteria can approach food on the basis of airborne odors, and their approach behavior 
is represented by(15)

 ( )( ) ( ) ( ) , ,
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where vb


 and vc


 are parameters in the intervals [−a, a] and [−b, b], respectively, t is the number 
of iterations, bX



 is the individual location with the greatest flavor potency found up to the 
current time, X



 is the current position of the slime, AX


 and BX


 are two individuals randomly 
selected among the slime, and W



 is the weighting factor of the slime.
 p can be expressed as follows:
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where condition means that S(i) is in the top half of the total, r is a random value in the interval 
[0, 1], Max_t is the maximum number of iterations, Max_iter is the ith iteration, bF is the optimal 
fitness obtained in the current iteration, wF is the lowest fitness obtained in the current iteration, 
and SmellIndex indicates the order of the fitness values (ascending in the minimum value 
problem).
 By first searching for the position of individual X



, then locating the best position bX


 by 
finely adjusting parameters vb



, vc


, and W


,  the optimal solution of the algorithm can be found. 
Equation (7) ensures the optimal solution at different positions.
 Equation (13) simulates the feedback mechanism of the slime mold, that is, the positive and 
negative feedback between the width of the leaf veins of the slime mold and the density of the 
food, and the components in Eq. (13) simulate the uncertainty of the vein contraction pattern. 
The logarithm is used to moderate the rate of change of the numerical values, which markedly 
slows the frequency change of vein contraction, and the condition simulates the slime adjusting 
its search pattern according to the density of the food. The weight of a region with a high food 
concentration is larger. As the food is consumed, the weight of the region decreases, and then the 
slime mold moves to other regions to search for food. Figure 1 shows the evaluation process of 
the slime mold fitness value.
 According to the above principle, the mathematical formula used to update the individual 
positions of slime molds when searching for food is as follows:

 ( ) ( )*

( ) ,( 0.03),

( ) ( ) ( ) , ,
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b A B
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tX X vb X XW t t r p

vc X t

 ⋅ − + <
= + ⋅ ⋅ − <


⋅
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where Lb represents the upper limit of the search range, Ub represents the lower limit of the 
search range, and rand and r denote random values in [0, 1]. The oscillation process vb



 imitates 
the status of the slime bacteria, determining whether the bacteria approach or seek other food 

Fig. 1. (Color online) Assessment of fitness.
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sources, and it also increases the likelihood that slime bacteria search for high-quality food, 
preventing the algorithm from falling into a local optimum.

3.1.2 Framework of MOSMA algorithm

 An elite non-dominated ranking (NDR) and a crowding distance mechanism are applied to 
MOSMA to maintain diversity.(16) The NDR process is given in Fig. 2, where two frontiers are 
given. The rank index of the solution in the first frontier is 0 because it is not dominated by any 
solution, while the solution in the second frontier is dominated by at least one solution in the first 
frontier. The NDR of these solutions equals the number of solutions dominating them. The 
crowding distance mechanism is shown in Fig. 3, which is used to sustain the diversity among 
the obtained solutions.
 The mathematical expression for the crowding distance (CD) is

 
1 1

max min

i i
j ji

j
j j

f f
CD

f f

+ −−
=

−
, (16)

where min
jf  and max

jf  are the minimum and maximum values of the jth objective function, 
respectively. A schematic representation of the NDR algorithm is shown in Fig. 3.
 The MOSMA process is described as follows:
1)  Define the initial value of the control parameters, i.e., the size of the initial population (Npop), 

the loop termination criterion, and the maximum number of iterations (Max_t).
2)  Randomly generate parent populations P0 in region S of the feasible search space, and 

evaluate each objective function of the objective space vector F in the search space of P0.

Fig. 2. (Color online) NDR.
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3)  Apply the elite-based NDR sum CD to P0, obtain the NDR and Pareto frontiers for all 
individuals X



, and calculate the CD for each frontier.
4)  From the results obtained in step 3), calculate the corresponding vb



, vc


, and W


, and update the 
positions of individuals X



 in the population to create a new population Pj.
5)  Merge Pi with P0 to obtain the population Pi ( 0i jP P P= ∪ ) and evaluate each objective 

function of Pi in the objective space vector F, applying the elite-based NDR and CD and 
selecting Npop individuals to replace P0.

6)  Satisfy the loop termination criterion, then output P0. Otherwise, return to step 2).
 MOSMA applies the elite-based NDR, and CD guarantees the diversity of population 
positions; the adaptive weight W ensures that individuals rapidly converge while maintaining a 
certain perturbation rate to avoid optimal local trapping in the rapid convergence process; the 
vibration parameter Vb allows individual positions to contract in a particular pathway, thereby 
ensuring the efficiency of the pre-search and the accuracy of the post-approach; the position 
update decision parameter p and the use of three different position updates ensure that the shape 
memory formed during the search process has better adaptability in different search stages to 
improve the scalability of the individual position update process in the population as shown in 
Fig. 4. The figure also illustrates the position adjustment of the searching individual in 3D space. 
The formula rand in makes the individual form a search vector at any angle, in other words, 
search the solution space in any orientation, to simulate the circular fan structure of the slime as 
it approaches the food. This concept can also be extended to hyperdimensional space.

3.2 Design based on MOSMA algorithm

 The computation of the MOSMA-based parallel hybrid system optimization algorithm with 
constraints involves the following steps (see Fig. 5 for a flowchart):

Fig. 3. (Color online) Crowding calculation.
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Fig. 4. (Color online) Schematic of population location update in MOSMA.

Fig. 5. (Color online) Flowchart of MOSMA.
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1)  Initialize the vehicle model, the population size Npop, and the maximum number of iterations 
Max_t, and set t = 0.

2)  Initialize the locations of the slime xi (i = 1, 2, …, n) in the feasible search space region S and 
generate a parent population P0.

3)  0ix P∀ ∈ , calculate the objective functions f1(xi), f2(xi), and f3(xi).
4)  Apply the elite-based NDR and CD to P0, find the NDR and Pareto frontiers for all 

individuals xi, and calculate the crowding distance for each frontier.
5)  Calculate the weight coefficients W for each individual based on the optimal fitness value wF 

and the worst fitness value bF of the current iteration.
6)  Update the best fitness DF and obtain the corresponding vc



, vb


 in all iterations to create a 
new population Pj by generating new slime mold positions xi (i = 1, 2, …, n).

7)  i jx P∀ ∈ , calculate the objective functions f1(xi), f2(xi), and f3(xi), and merge Pj with P0 to 
obtain the population iP ( 0i jP P P= ∪ ). 

8)  Evaluate each objective function of the target space vector F of Pi and select Npop individuals 
to replace P0 based on the NDR and CD; t = t + 1.

9)  If the loop termination criterion is satisfied, output P0; otherwise, return to step 5).
 The number of slime X



 represents the size of the population, and each slime position 
xi (i = 1, 2, …, N) represents a candidate solution. When initializing the slime positions, an 
individual slime position Npop is generated, and the initialized population P0 is obtained. In 
addition, the best fitness DF is updated and the corresponding vb



 and vc


 are obtained in all 
iterations to generate a new population Pj, and Pj is merged with P0 to obtain the population Pi 
( 0i jP P P= ∪ ). The ADVISOR simulation software is used for i ox P∀ ∈  and i ix P∀ ∈  to determine 
the power performance of the given model by calculating the objective functions f1(xi), f2(xi), and 
f3(xi). If the performance constraints are met, then the simulated model is driven under the given 
road conditions and the following values for the objective functions are obtained on the basis of 
the returned results: f1(xi) = fuel consumption, f2(xi) = sum of HC and NOx emissions, and 
f3(xi) = CO emission. Otherwise, a sufficiently large value is assigned to f1(xi), f2(xi), and f3(xi). 
According to this simple penalty method, the poorly positioned individuals have poor adaptation 
and reduce the frequency of oscillations.

4. Multi-objective Optimization Algorithm

4.1 Experimental setup

 In this study, the proposed algorithm for multi-objective optimization of a parallel hybrid 
powertrain (MOSMA) is implemented on MATLAB. The vehicle model is initialized in step 1), 
and it is necessary to specify the range of values for each optimization parameter in the 
optimization variables. The ranges of values in Table 2 and the constraints in Table 1 are 
employed, and the population size and the maximum number of evolutionary generations are set 
as 30 and 100, respectively. The test model used is the “PARALLEL_defaults_in” model 
provided by ADVISOR, and its technical parameters are shown in Table 3.
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 The simulation uses the urban dynamometer driving schedule (UDDS) shown in Fig. 6. This 
schedule reflects the frequent acceleration, deceleration, and idling on suburban roads with good 
road conditions, which are very close to the actual situation.

4.2 Optimization results and analysis

 The sets of Pareto solutions  obtained by performing eight optimization processes are shown 
in Fig. 7. Observing the data distributions in Figs. 7(a)–7(h), it is evident that the eight 
optimizations obtain satisfactory convergence results. 
 The distribution of the final Pareto optimal solution obtained after optimization is shown in 
Fig. 8. The values of the variables corresponding to the positions of the Pareto optimal solution 
xi, i.e., the maximum power of the engine (Pe), the upper limit (Hsoc) and lower limit (Lsoc) of the 
battery charge state, the number of battery modules (Nb), the main drive ratio Rb, and the power 
factor of the motor Me, are shown in Table 4. f1 (fuel consumption), f2 (sum of HC and NOx 
emissions), f3 (CO emission), and the optimized percentage are shown in Table 5.

Table 3
Technical parameters of PHEV.
PHEV part Parameter Value

Overall vehicle parameters
Vehicle weight 1350 kg
Windward area 2.0 m2

Wind resistance coefficient 0.335

Engine Maximum power 41 kW/5700 r/min
Maximum output torque 81 N.m/3477 r/min

Drive motor
Maximum power 75 kW

Maximum output torque 273 N.m
Maximum torque 10000 r/min

Battery Individual module metrics 12 V, 25 Ah

Fig. 6. (Color online) UDDS road map.
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(a) (b)

(c) (d)

(e) (f)

Fig. 7. (Color online) Eight optimization processes: (a) 1st optimization, (b) 2nd optimization, (c) 3rd optimization, 
(d) 4th optimization, (e) 5th optimization, (f) 6th optimization, (g) 7th optimization, and (h) 8th optimization..

(g) (h)
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Fig. 8. (Color online) Pareto optimal solution distribution.

 Among these results from group 0 to group 25, the data of group 0 comprise the system 
parameter values before optimization and the corresponding fuel consumption, sum of HC and 
NOx emissions, and CO emission per 100 km. According to the data in Table 4, the optimized 
results provide different possible sets of parameters according to the requirements. For example, 

Table 4
Detailed parameters of optimal Pareto solution sets (eight optimizations).
Number Pe (kW) Hsoc (%) Lsoc (%) Nb Rb Me
0 41.007 0.70 0.60 25 1.00 1.00
1 35.000 0.55 0.42 20 1.14 0.600
2 35.000 0.80 0.42 20 1.09 0.600
3 35.000 0.50 0.30 20 1.12 0.600
4 35.000 0.80 0.42 20 1.09 0.600
5 35.000 0.80 0.20 20 1.09 0.600
6 40.057 0.64 0.20 20 1.06 0.600
7 35.000 0.80 0.20 20 1.08 0.600
8 70.000 0.80 0.20 20 1.05 0.610
9 41.762 0.55 0.27 20 1.14 0.600

10 35.000 0.80 0.55 20 0.97 0.600
11 35.000 0.80 0.55 20 0.97 0.600
12 45.200 0.62 0.37 23 1.08 0.862
13 35.000 0.50 0.30 20 1.09 0.600
14 35.000 0.50 0.30 20 1.09 0.600
15 35.000 0.50 0.30 20 1.05 0.600
16 35.000 0.50 0.30 20 1.12 0.734
17 70.000 0.69 0.20 20 0.94 0.600
18 70.000 0.80 0.20 20 1.17 0.600
19 49.884 0.63 0.34 22 1.35 0.685
20 35.000 0.50 0.30 26 1.36 0.600
21 35.000 0.55 0.38 20 1.26 0.600
22 35.000 0.50 0.30 20 1.11 0.600
23 35.000 0.50 0.30 20 1.25 0.600
24 47.414 0.50 0.30 20 1.19 0.600
25 45.339 0.50 0.30 20 1.16 0.600
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when lower fuel consumption is required, the parameter values corresponding to lower values 
( f1 column) can be selected, such as groups 3, 14, and 22; when lower HC and NOx emissions are 
required, the parameter values corresponding to lower f2 values can be selected, such as groups 
21, 23, and 24; when lower CO emission is needed, the parameter values corresponding to lower 
f3 values can be selected, such as groups 2, 3, and 5. The values of f1 to f3 in groups 1 to 25 in 
Table 5 are all less than the values of 7.47, 0.758, and 2.6, respectively, before optimization in 
group 0, indicating that the optimized system can guarantee the dynamic performance. The fuel 
consumption and pollutant emission are reduced by the optimization. Thus, the fuel economy of 
the optimized system has been improved. To be specific, the fuel consumption per 100 km has 
been reduced by 9.5% on average and by a maximum of 10.6%. In addition, in terms of pollutant 
emissions, the CO emission is markedly decreased by an average of 24.3% and a maximum of 
34.4%. Moreover, the total HC and NOx emission is decreased by an average of 7.4% and a 
maximum of 10.3%.
 The optimized solution of group 1 was selected and employed in the simulation system. The 
motor efficiency, engine efficiency, and the corresponding operating point distributions of group 
1 and group 0 data are shown in Figs. 9–14, respectively, to compare the system before and after 
optimization.

Table 5
Corresponding objective values and optimization percentages of optimal Pareto solutions (eight optimizations).

Number f1 
(L/100 km)

f1 
Optimized (%)

f2 
(g/km)

f2 
Optimized (%)

f3 
(g/km)

f3 
Optimized (%)

0 7.47 0.0 0.758 0.0 2.6 0.0
1 6.660 10.8 0.690 9.0 1.684 35.2
2 6.758 9.5 0.710 6.3 1.790 31.2
3 6.680 10.6 0.695 8.3 1.707 34.3
4 6.758 9.5 0.710 6.3 1.790 31.2
5 6.764 9.5 0.710 6.3 1.793 31.0
6 6.792 9.1 0.714 5.8 1.812 30.3
7 6.780 9.2 0.710 6.3 1.829 29.7
8 6.811 8.8 0.715 5.7 1.843 29.1
9 6.692 10.4 0.693 8.6 1.919 26.2

10 6.688 10.5 0.705 7.0 1.998 23.2
11 6.688 10.5 0.705 7.0 1.998 23.2
12 7.127 4.6 0.739 2.5 2.009 22.7
13 6.678 10.6 0.702 7.4 1.764 32.2
14 6.687 10.5 0.703 7.3 1.774 31.8
15 6.700 10.3 0.704 7.1 1.784 31.4
16 6.872 8.0 0.713 5.9 1.784 31.4
17 6.794 9.0 0.713 5.9 2.228 14.3
18 6.787 9.1 0.691 8.8 2.261 13.0
19 6.928 7.3 0.696 8.2 2.324 10.6
20 6.859 8.2 0.689 9.1 2.337 10.1
21 6.760 9.5 0.683 9.9 2.455 5.6
22 6.674 10.7 0.697 8.0 1.739 33.1
23 6.730 9.9 0.680 10.3 2.463 5.3
24 6.710 10.2 0.685 9.6 2.200 15.4
25 6.699 10.3 0.691 8.8 1.894 27.2
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Fig. 9. (Color online) Motor efficiency before 
optimization.

Fig. 10. (Color online) Motor eff iciency af ter 
optimization.

 It is observed that the optimized engine efficiency is mainly distributed in the interval 
[0.1, 0.85] before optimization in Fig. 9, whereas the optimized motor efficiency is mainly 
distributed in the interval [0.3, 0.9] in Fig. 10. The number of effective working points has 
increased significantly, especially the number in the high-efficiency area; thus, the overall motor 
efficiency has been significantly improved, which is conducive to the efficient use of energy. In 
addition, the increased number of effective working points of the motor reflects the increased 
degree of participation of the motor in the vehicle drive. This phenomenon indirectly indicates 
the improved working frequency of the battery. This increase is conducive to the energy 
conversion of the parallel hybrid electric motor auxiliary drive, the recovery of energy during 
braking, and the reduction of energy loss during the driving of the vehicle.

Fig. 11. (Color online) Engine efficiency before 
optimization.

Fig. 12. (Color online) Engine eff iciency after 
optimization.
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 According to Figs. 11 and 12, the working efficiency of the engine before optimization is 
mainly distributed in the interval [0.05, 0.35], whereas after optimization, it is mainly distributed 
in the interval of [0.1, 0.35]. Moreover, by comparing the working point distributions before and 
after engine optimization (Figs. 13 and 14), we find that the number of effective working points 
of the engine is markedly reduced. These data show that the engine efficiency is significantly 
improved after optimization. The number of engine operating points is clearly reduced, and the 
points are concentrated in the high-efficiency zone, which coincides with the increase in the 
number of motor operating points. In addition, the working conditions of the engine are not only 
improved, but also the performance of the motor is maximized, thus improving its efficiency. 
Furthermore, the performance of the whole parallel hybrid power system is improved and 
pollutant emission is effectively reduced.

5. Conclusions

(1) A multi-objective optimization algorithm based on MOSMA for a parallel hybrid system was 
proposed, and six parameters that influence the performance of a hybrid system (the number 
of modules of the battery, the maximum power of the engine, the power factor of the electric 
motor, the final drive ratio, and the upper and lower limits of the SOC of the battery) were 
optimized while considering the dynamic power performance, battery charge state balance 
constraints, and the maximum power of the engine. From the results, we concluded that the 
parallel hybrid system had significantly improved fuel consumption and lower pollutant 
emissions after optimization.

(2) A three-objective mathematical model of the hybrid power system was established through 
the design of a multi-objective optimization algorithm for a parallel hybrid power system 
based on MOSMA. This model can provide a variety of optional schemes, enabling the 

Fig. 13. (Color online) Engine working point 
distribution before optimization.

Fig. 14. (Color online) Engine working point 
distribution after optimization.
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diversification of parallel hybrid system designs. It not only provides personalized product 
requirements for manufacturers, but also has practical significance for engineering. 
Furthermore, this algorithm does not set the weight of each objective function, thus 
effectively avoiding the influence of the introduction of weighting coefficients in the 
empirical design and more accurately reflecting the change in each objective value.

(3) A comparative analysis of the motor efficiency, engine efficiency, and engine working point 
distribution before and after optimization was also carried out. The results demonstrate that 
the total efficiency of the motor, engine, and system were improved significantly, illustrating 
that multi-objective optimization based on MOSMA has a major advantage in improving the 
performance of parallel hybrid systems.
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