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 Non-invasive sensors are designed to offer ease of installation and avoid contact with 
dangerous hot wires. To optimize the array design of sensors, a multi-objective optimization 
method considering sensitivity, array arrangement, and cost is proposed in this study. The total 
array induced charge Q and the location sensitivity S1 are established to evaluate the sensor 
performance. On the basis of these evaluation indexes, design criteria for the array arrangement 
are proposed, which include the electrode shape, the array profile, and the space interval angle 
between electrode elements. Following this design basis, two objective functions for the array 
design are investigated. The first objective function is based on the entropy-CRITIC weight of 
the two regression models and the second objective function is based on the manufacturing cost. 
For the multi-objective design, the NAGA-Ⅱ algorithm is employed and the VIKOR strategy is 
used to select the decision from the Pareto set. Optimization results show that, compared with 
the original design, the value of the first objective function is improved by 74.35% and the value 
of the second objective function is reduced by 22.99%. It is found that the rectangular shape is 
suitable for the single-electrode element design. The sensing array is best designed in a ring 
profile, and the optimal number of electrodes is 3.

1. Introduction

 Voltage sensing is one of the basic measurement techniques of modern power systems and is 
used in residential, industrial, and utility applications.(1) The measurement of voltages in a cable 
enclosed in a structure is a challenging task but with great potential applications. In the 
traditional way of measuring voltage, direct contact with the metal conductor in cables is 
required, which is difficult and unsafe. Thus, researchers have been developing non-invasive 
methods of measuring voltage,(2,3) which estimate the cable voltage using harvested electric field 
energy. Non-invasive sensors offer ease of installation and avoid contact with dangerous hot 
wires.
 The principle of a non-invasive voltage sensor(4,5) is to convert the induced charge of the 
electrode in the sensor into induced voltage. The design parameters of the induced electrode can 
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directly affect the voltage measurement results. In Refs. 6 and 7, a voltage sensor with a single 
electrode was developed, which calculated the voltage of the cable by measuring the electric 
field at a fixed position around the cable. However, a single electrode cannot adequately describe 
the spatial field distribution and thus limits the overall sensing performance. To overcome this 
problem, researchers are developing sensors based on multiple electrode array designs. In Ref. 8, 
a capacitive probe with two sensor heads was implemented, and the dual-electrode probe was 
placed on only one side of the cable. This placement may have affected the sensing performance 
since the field distribution on the other side could not be detected. In Ref. 9, a novel electrode 
array composed of four uniformly distributed electrodes was developed to collect the spatially 
distributed electric field around a power cable. In Ref. 10, a spherical sensor with six electrodes 
was proposed to decrease the measurement error caused by angular deflection. In Ref. 11, an 
array of magnetic field sensors was used to measure AC currents in a bundle of inaccessible, 
enclosed conductors. The array-based non-invasive sensor was able to obtain the spatially 
distributed field and hence improve the sensor performance. An optimal array design includes 
the optimal design of the single-electrode shape, the electrode quantities, and the overall array 
arrangement. However, such optimal array design of non-invasive voltage sensors has hardly 
been discussed.
 Electrode array optimization is different from the existing optimal sensor placement (OSP) 
problem.(12) OSP is usually discussed in areas such as structural health monitoring (SHM),(13) 
load identification,(14) and response reconstruction.(15) The objective of OSP is to determine the 
most suitable sensor placement to obtain comprehensive response information, such as the 
structural health, load, or vibration of a structure, using very few sensors. Intelligent 
optimization algorithms such as the genetic algorithms(16,17) and monkey algorithm(18) are 
usually used to solve such problems. In Ref. 19, using a genetic algorithm, the OSP for deployable 
antenna module health monitoring in space solar power satellites was proposed. Similar research 
was reported in Ref. 20, in which the optimal number of sensors was suggested and the 
corresponding optimum locations were found by using the genetic algorithm and a proposed 
strategy for determining the number and placement of sensors. Unlike OSP, we aim to improve 
the overall performance of non-invasive voltage sensors by suitably designing the electrode 
array.
 It is desirable to develop sensors with very high accuracy, high stability, and a reasonable 
manufacturing cost. Toward achieving these aims, in this study, we propose a multi-objective 
optimization method for non-invasive voltage sensors considering sensitivity, array arrangement, 
and cost. Electrode array evaluation indexes are first established to evaluate the sensor 
performance, including the total array induced charge Q and location sensitivity S1. The location 
sensitivity is mainly defined to investigate the sensing stability when the relative locations 
between a hot wire and the array are changing. On the basis of such indexes, we discuss the 
array design including the electrode shape, the array profile, and the space interval angle 
between electrode elements. We investigate two objectives for the array design: the optimal 
sensing performance and a reasonable cost. For the first objective, two regression models are 
developed corresponding to Q and S1. The objective function is then constructed on the basis of 
the entropy-CRITIC weight of the two regression models. For the second objective, the objective 
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function is built according to the manufacturing cost of the electrode element and the number of 
elements. For the multi-objective design, the NAGA-Ⅱ algorithm is employed to optimize the 
problem, and the VIKOR strategy is used to finally select the decision from the Pareto set.
 The paper is organized as follows. The non-invasive voltage model and the sensing principle 
are introduced in Sect. 2. In Sect. 3, the design criteria for the array arrangement are presented. 
The proposed multi-objective functions are described in Sect. 4, which is followed by the 
optimization solution and case analysis in Sects. 5 and 6, respectively. Conclusions are given in 
Sect. 7.

2. Non-invasive Voltage Measurement

2.1 Principle of non-invasive voltage sensing

 A typical non-invasive voltage sensor, including the electrode array, the sensing area, and the 
corresponding fixtures, is depicted in Fig. 1. When a powered cable passes through the sensing 
area, the intensity of the stray electric field around the cable is determined from the cable voltage 
using only a quasi-static approximation. Therefore, it is possible to estimate the line voltage 
using the harvested electric field energy. Charge is induced on the surface of the array electrodes. 
By measuring the charge on the inducted electrode, the cable voltage can be measured non-
invasively.
 According to the principle of electrostatic induction, an induced charge q is generated on a 
metal electrode’s surface when the electrode is placed in a time-varying electric field. The 
current generated by the changing charge flows through the grounding resistance Rm, producing 
a voltage drop, and the relationship can be described by

 
0

0 0 0 0 0 eqA
q E dA E Aε ε= =∫ , (1)

 ( ) 0
0 0m eq m

dEdqV t R A R
dt dt

ε= = , (2)

Fig. 1. (Color online) Model of the non-invasive voltage sensor.
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where q is the induced charge of the electrode, ε0 is the vacuum permittivity, E0 is the electric 
field strength, A0 is the electrode surface area, Rm is the grounding resistance, and V0 is the 
voltage drop. The relationship between the cable voltage and electric field strength is expressed 
by

 0 0
1 ,E
F

ϕ = ⋅  (3)

where φ0 is the cable voltage and F is the scale factor, which is determined by the relative 
positions of the electrode and the cable. From Eqs. (2) and (3), φ0 can be described in terms of V0 
as
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 Based on this relationship, the non-invasive measurement of the cable voltage can be realized 
if the voltage drop V0 is collected.

2.2 Electrode array evaluation index

 The array arrangement and the array parameters are key factors that can affect the sensing 
performance. Optimization of the electrode array includes the design of the electrode shape, the 
array profile, and the space interval angle between electrode elements. For each electrode 
element, it is also necessary to understand how the sensing performance is affected by the 
electrode area, the electrode thickness, and the number of electrodes. To implement the optimal 
design, the evaluation indexes must first be set up. From Eq. (2), the induced voltage is directly 
determined by the total amount of charge. The measurement performance and cable voltage are 
reflected in the total charge. The total array induced charge Q is chosen as one of the evaluation 
indexes, which is calculated as

 1 1 ,

n m

ij
i j

q
Q

m
= ==
∑∑

 (5)

where n is the number of electrodes in the array, m is the number of measurements when the 
cable is placed at different locations in the sensing area, and qij is the induced charge of a single-
electrode element.
 From Fig. 1, it can be observed that the relative distance between the cable and the electrode 
array can differ if the diameter of the cable that passes through the sensor varies when the rated 
current level varies. The induced voltage may change with the relative location. In such a case, 
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the sensor should be designed so that the voltage is unlikely to change with the relative location, 
resulting in reliable sensing results. To reflect this requirement, here, we assume that if the cable 
is moved from location j to the next location j + 1, the location sensitivity S1 can be defined as 
the evaluation index to investigate the sensing reliability. S1 is defined as

 1
1 ,j j

j

Q Q
S

Q
+ −

=  (6)

where Qj represents the total array induced charge at location j. From Eq. (6), a low value of S1 
indicates a reliable sensing performance.

3. Design Criteria for Array Arrangement

 The sensing performance of the array is affected by its arrangement. We carry out simulations 
to analyze the sensing performance in terms of the total array induced charge Q and the location 
sensitivity S1 for different electrode shapes, array profiles, and space intervals between the 
electrode elements.

3.1	 Effect	of	electrode	shape

 The single-electrode shape must first be determined by comparing the induced charge q for 
different electrode shapes, which is calculated using Eq. (1), and its unit is C−12 because the 
amount of induced charge q is small. Here, we compare rectangular and circular electrodes. To 
ensure the accuracy of the experimental results, the thickness of both electrodes is 0.3 mm, the 
electrodes are both placed parallel to the cable with a distance between them of 12 mm, the 
diameter of the cable is 4 mm, and the amplitude of the cable voltage is 220 V. Then, q and S1 for 
the two electrodes with four areas are compared, and the results are shown in Table 1. For 
example, when the area of the electrode is 100 mm2 and the electrode is rectangular, the induced 
charge q is 15.416 C−12. It is found that the induced charge of the rectangular electrode is 12.23% 
higher than that of the circular electrode, whereas the location sensitivity of the rectangular 
electrode is 1.1% lower than that of the circular electrode. Therefore, the rectangular shape is 
selected for the electrode.

3.2	 Effects	of	electrode	length	and	width

 For the rectangular electrode, the length of the side parallel to the cable axis is defined as L 
and the width in the other direction is defined as WL, as shown in Fig. 2. To determine the effects 
of the electrode length and width, two groups of electrodes are set up, one to analyze the effect of 
the length and the other to analyze the effect of the width. The initial size of the rectangular 
electrode is set as 10 × 10 mm2. For the length group, the width WL remains the same, and the 
induced charge Q1 is calculated when the electrode length is increased from 10 to 20 mm. In the 
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second group, the length L remains the same, and the induced charge Q2 is calculated when the 
electrode width is increased from 10 to 20 mm. The charge ratio Q1/Q2 is calculated for each 
step increment of L or WL, and the result is shown in Fig. 3. It can be seen that Q1 is always larger 
than Q2, which means that increasing L is more effective than increasing the induced charge. If 
the electrode area needs to be designed, it is better to change L than WL.

3.3	 Effect	of	array	profile

 The array profile is also an important factor affecting the sensing performance. Here, three 
different array profiles (side by side, square, and ring) are selected for comparison as shown in 
Fig. 4. 
 The cable voltage is 220 V. In each array profile, the number of electrode elements ranges 
from 3 to 8 and the total area of the electrode elements in the array remains unchanged. The 
evaluation indexes Q and S1 are compared for the three different array profiles. To evaluate S1, 
we assume that the cable follows the arrowed path shown in Fig. 5, in which there are 16 different 
locations. Q and S1 are calculated using Eqs. (5) and (6), respectively. Comparisons of the three 
different array profiles are shown in Fig. 6, in which 3–8 electrode elements correspond to 
subplots (a)–(f). The conclusions of the comparison are given in Table 2. It can be seen that the 
ring profile demonstrates the best overall performance for the total induced charge Q, whereas 
the square profile demonstrates the best location sensitivity S1. The side-by-side profile is not 

Table 1
Comparison of rectangular and circular electrodes.

Area/mm2
Analysis100 144 196 256

q/C−12 Rectangular 15.416 22.235 30.430 40.225 Rectangular exceeds circular by 12.23%Circular 14.110 19.516 26.523 36.236

S1 × 100% Rectangular 5.107 5.075 4.688 4.446 Rectangular is better than circular by 1.11%Circular 6.142 6.205 5.973 5.422

Fig. 2. (Color online) L and WL of the rectangular electrode.
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Fig. 5. (Color online) Moving path of cable.

Fig. 4. (Color online) Three different array profiles. 

Fig. 3. (Color online) Effects of the length and width on the induced charge.
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recommended since it is produces poor values of both Q and S1. Usually the voltage sensitivity is 
a very important factor in evaluating the sensor performance. Here, we select the ring profile for 
the sensor design.

Fig. 6. (Color online) Sensing performance comparison of three different array profiles when the number of 
electrode elements ranges from 3 to 8.
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3.4	 Effect	of	space	interval	angle	between	electrode	elements

 The number of electrode elements in the ring-shaped array and the optimal space interval 
angle between them have an inverse relationship. Here, the effect of the space interval angle on 
the sensing performance is investigated. As shown in Fig. 7, the space interval angle is defined 
as the angle θ between electrode elements. Here, we vary the number of elements from 2 to 7 and 
calculate the total charge Q for different angles. The change in the electrode space interval angle 
is shown in Fig. 8, in which one of the elements is kept stationary and other elements rotate by a 
given angle while satisfying θ1 = θ2. The total charge Q is calculated until the front element 
reaches the element that is kept stationary. The results are shown in Fig. 9, in which the red dot-
dashed lines are the fitted results showing the change in Q with the rotation angle. It can be seen 
that the optimal space interval angle is 180° when there are two elements. Similarly, the optimal 
angles for three to seven elements are 120, 90, 72, 60, and 51.4°, respectively, which means that 
the electrode elements in the sensing array should be uniformly distributed.

3.5 Summary

 On the basis of the above analysis, the following design criteria are obtained:
(1) A rectangular electrode should be used. Moreover, the induced charge is more sensitive to 

the electrode length than the width.
(2) A ring shape is recommended for the array profile.
(3) When the array consists of multiple electrode elements, they should be distributed uniformly.

Table 2
Comparison of evaluation indexes of the three different array profiles.
No. Index Performance sequence Quantitative analysis Select

3
Q/C−12 Ring > square > side-by-side Ring larger than square by 2.78%

Ring larger than side-by-side by 3.23% Ring
S1% Square < ring < side-by-side Square smaller than ring 0.69%

Square smaller than side-by-side by 2.64%

4
Q/C−12 Ring = square > side-by-side Ring equal to square

Ring larger than side-by-side by 0.42% Ring
S1% Ring = square < side-by-side Ring equal with square

Ring smaller than side-by-side by 2.49%

5
Q/C−12 Ring > side-by-side > square Ring larger than square by 2.93%

Ring larger than side-by-side by 1.78% Ring
S1% Square < side-by-side < ring Square smaller than ring by 2.34%

Square smaller than side-by-side by 2.80%

6
Q/C−12 Ring > side-by-side > square Ring larger than square by 2.99%

Ring larger than side-by-side by 1.54% Ring
S1% Square < ring < side-by-side Square smaller than ring by 2.78%

Square smaller than side-by-side by 3.20%

7
Q/C−12 Ring > side-by-side > square Ring larger than square by 3.33%

Ring larger than side-by-side by 0.96% Ring
S1% Square < side-by-side < ring Square smaller than ring by 2.92%

Square smaller than side-by-side by 2.64%

8
Q/C−12 Ring > side-by-side > square Ring larger than square by 5.68%

Ring larger than side-by-side by 1.96% Ring
S1% Square < Side-by-side < ring Square smaller than ring by 3.34%

Square smaller than side-by-side by 1.78%
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Fig. 9. (Color online) Relationship between space interval angle θ and charge Q.

Fig. 8. (Color online) Change in electrode spacing of an array with three electrodes.

Fig. 7. (Color online) Space interval angle θ.
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4.	 Multi-objective	Optimization

 In Sect. 3, the evaluation indexes Q and S1 were used to determine the electrode shape, the 
array profile, and the space interval angle between electrode elements. On the basis of these 
design criteria, the multi-objective optimization problem is discussed in this section. Usually, the 
total induced charge is larger if more electrode elements are used in the array. However, more 
elements result in a higher manufacturing cost. It is necessary to investigate the multi-objective 
optimization of the sensor array. Here, two objectives are discussed: the optimal sensing 
performance and a reasonable cost. For the first objective, two regression models are developed 
corresponding to Q and S1. The objective function is then constructed on the basis of the 
entropy-CRITIC weight of the two regression models. For the second objective, the objective 
function is built according to the manufacturing cost of the electrode element and the number of 
elements.

4.1 Construction of multiple regression model

 As shown in Fig. 10, several factors are considered in the model, including the number of 
electrode elements (factor A), the area of a single electrode (factor B), and the electrode thickness 
(factor C). We previously showed that the induced charge is more sensitive to the length than the 
width of the electrode. Thus, we change the area by changing the length L. It is assumed that the 
evaluation indexes Q and S1 are dependent on factors A, B, and C. We use the multiple linear 
regression algorithm to investigate the relationship between the indexes and factors A, B, and C. 
The general expression of the model is
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Fig. 10. (Color online) Array parameters.
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where H(X) is the predictive value vector of the model, X is the input vector, and W is the 
regression coefficient vector.
 The following loss function J(W) is developed to quantify the prediction error:

 1( ) ( ) ( ).
2

TJ = − −W XW Y XW Y , (8)

where Y is the objective value vector. When J(W) is minimized, the optimal regression 
coefficient W is obtained from the following equation:

 1( ) 0 ( ) .T TJ −∂
= ⇒ =

∂
W W X X X Y

W
 (9)

 To improve the accuracy of the regression model, in addition to factors A, B, and C, the 
products of the pairs of factors are also added as the dependent variables. Thus, the input 
variables of the model are A, B, C, A × B, A × C, and B × C, corresponding to x1, …, x6 in the 
input vector, respectively. The dependence of Q and S1 on the input variables X′ is now modeled 
as

 [ ]1 TA B C A B A C B C= × × ×X' , (10)
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where WQ is the coefficient vector of the regression model Q′ and WS is the coefficient vector of 
the regression model S1’.
 The prediction accuracy of the regression model is evaluated using the residual error (er) and 
average error (ea), which are defined as

 r i ie h y= − , (12)
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100%

n
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ii
a

e
y

e
n

=
×

=
∑

, (13)

where hi is the regression model predictive value, yi is the reference value, and n is the number of 
data sets. To verify the prediction accuracy, nine groups of finite element calculations are carried 
out as a reference, which are compared with the output of Eq. (11). The errors are calculated from 
Eqs. (12) and (13), and er and ea are shown in Table 3. It can be seen that the prediction errors for 
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both Q and S1 are regulated in a very small region, which indicates that the proposed regression 
models are accurate enough to construct the objective function.

4.2	 Construction	of	first	objective	function

 The first objective function is constructed from the two regression models Q′ and S1′. The 
entropy-CRITIC weighting is used to incorporate the influences of both the induced charge Q 
and location sensitivity S1. 
 The first objective function is developed as

 1 2 1f w Q w S′ ′= + , (14)

 ( )1 2 1 ,F w Q w S= − ′ ′+  (15)

where f is the first objective function and a large value is desirable. To simplify the optimization 
process, by negating f, the first objective function F is constructed as Eq. (15). In the 
optimization, the entropy weighting method (EW) is first used to determine the weight 
coefficient wj′. Usually, there are correlations between different indexes that are not considered 
in EW. To solve this problem, the CRITIC weighting (CRITIC) is incorporated here to obtain the 
coefficient wj′′, in which the index variability and the correlation are considered. Then, wj′ and 
wj′′ are incorporated to generate the final weight coefficient wj.

(1)	 Use	EW	to	obtain	wj′
 The original evaluation index matrix is normalized into a dimensionless non-negative 
standard matrix R = (rij)m × n,
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where i is the number of samples and j is the number of evaluation indexes.

Table 3
Prediction error of the regression model.

No. Q/C−12 S1 × 100%
er ea er × 10−3 ea

1 −0.02

0.75%

−1.79

3.29%

2 −0.90 −0.08
3 1.53 5.42
4 −1.31 −4.28
5 0.57 3.36
6 −1.07 −1.37
7 −0.17 −1.28
8 0.32 0.77
9 1.06 −0.74
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 The entropy value Hj is calculated from the standard matrix R, which is defined as
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Then, wj′ of evaluation index j is calculated as
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(2)	 Use	CRITIC	to	obtain	wj′′
 To consider the index variability, the standard deviation of the index is calculated as
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where Xj is the average of index j and Sj is the standard deviation. The correlation coefficient is 
calculated as
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where Rjk is the correlation coefficient between indexes j and k. The information given by the 
indexes is calculated using

 ,j j jC S R= ×  (21)

where Cj is the information given by the jth index and Rj represents the linear correlation 
between indexes j and k. From Eqs. (20) and (21), the correlation coefficient wj″ of index j is 
given by
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(3) Incorporate wj′ and wj″ to generate wj
 The above-mentioned nine groups of finite element calculation results are used here to 
compute coefficients wj' and wj'' from Eqs. (16)–(22), and the results are shown in Table 4. Then 
the final coefficients wj used in Eqs. (14) and (15) are calculated as

 

1

.j j
j n

j j
j

w w
w

w w

′ ′′

′

=

′′
=

∑
 (23)

4.3	 Construction	of	second	objective	function

 The manufacturing cost of the sensing array must be considered. To construct the cost 
objective function, several variables are defined here: the cost per element of the electronic 
device c1, the cost of the PCB material per square meter c2, the thickness processing fee per 
meter c3, and the labor cost per element c4. The second objective function COST is then built as 
follows:

 1 4 2 3( ) .COST c c A c A B c A= + + ⋅ +  (24)

Here, the influence of factors A, B, and C on the two objective functions is investigated. The 
effect of the number of elements on the objective functions F and COST for 3, 4, and 5 elements 
is shown in Table 5. Conflicts can be observed for factors A and B but there is no conflict for 
factor C. Thus, here, we only consider the first two factors in the optimization.

 
( , )

min
( , )

F A B
COST A B




 (25)

Table 4
Calculation results of w′ and w′′ for indexes Q and S1.
Evaluation index Hj EW coefficient w′ Sj Rj Cj CRITIC coefficient w′′
Q 0.8409 32.60% 0.09 1.294 0.116 45.09%
S1 0.7897 43.08% 0.109 1.294 0.142 54.91%

Table 5
Effects of different factors on objective functions F and COST.

A / element B / ×10−4 m2 C / ×10−4 m
3 4 5 3 4 5 3 4 5

|F| 58.87 68.29 77.71 58.87 67.31 75.75 58.87 46.42 33.98
COST 6.45 8.6 10.75 6.45 6.6 6.75 6.45 6.75 7.05
Analysis Conflict Conflict No conflict
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4.4 Constraints

(1) Constraint of factor A
 At least two electrode elements are required to form the array. The maximum number of 
electrodes is restricted by the installation space. To place the electronic devices and auxiliary 
circuit on the electrode, there is a minimum width requirement of 10 mm for the electrode, and 
this value is selected as the element width. The number of electrodes is maximum when there is 
no space interval angle between them. The constraint is expressed as

 , ,a aLB A UB A N< < ∈  (26)

where LBa is the lower limit and UBa is the upper limit.

(2) Constraint of factor B
 To place the circuit on the electrode surface, there is minimum area requirement for B. Also, 
since the electrode length must be less than the outer frame length of the sensor, the constraint 
for factor B can be expressed as

 5, 1 10b bLB B UB B N−≤ ≤ ∈ × , (27)

where LBb is the lower limit and UBb is the upper limit.

5.	 Optimization	Design	and	Design	Process	of	Electrode	Array

 In this section, the NSGA-Ⅱ algorithm is employed to optimize the problem and the VIKOR 
method is used to select the final decision from the Pareto solution set.

5.1	 Optimization	algorithms

 The NSGA-II method(21) is an evolutionary algorithm in which a population of candidate 
solutions evolves toward the best solution of a multi-objective optimization problem. The 
specific optimization procedure is shown in Fig. 11. First, the parent population Pt of Npop 
individuals is initialized with uniform random values. Then, the offspring population Qt is 
created after the crossover and mutation of Pt. The two populations Pt and Qt are combined to 
form population Rt, and non-dominated sorting is performed on Rt to rank different fronts (Fi, i 
= 1, 2, …, etc.). Next, Npop individuals are selected from Rt by sorting the crowding distance to 
create the next population Pt + 1. This procedure can be iterated many times to provide the final 
result.
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5.2 Decision-making of electrode array parameters

 A decision based on the Pareto set must usually be made. VIKOR,(22) also known as the 
compromise ranking method, is an effective tool in multicriteria decision-making. First, the 
positive and negative ideal values are determined for different objectives. Then the maximum 
group benefit value Si and the minimum individual regret value Ri are calculated for each 
individual in the Pareto set. Finally, the comprehensive evaluation value Qi is calculated for each 
individual. The optimal individual can be selected on the basis of Qi. 
 The corresponding negative ideal value (y−) and positive ideal value (y+) are determined as 
follows:

 1 2

1 2
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k n
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where n is the number of objective functions and m is the size of the Pareto set.
 Then, wk of each objective function is obtained by the EW. Si and Ri are calculated for each 
individual as follows.
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Fig. 11. (Color online) NSGA-II algorithm optimization procedure.
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Lastly, the comprehensive evaluation value Qi is calculated as
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where v is the coefficient of the decision-making mechanism. When v = 0.5, it means that the 
decision-maker chooses a compromise to make decisions, in which the compromise mechanism 
can be fully used to minimize Ri and maximize Si. A smaller value of Qi means a higher priority 
in the selection.

6. Case Analysis

6.1	 Optimization	solution

 In this section, the initial population number of the NSGA-II genetic algorithm is set to 20, 
the maximum number of iterations is 200, the crossover rate is 0.8, and the mutation rate is 0.05. 
The obtained Pareto set is shown in Fig. 12, in which the red dot represents the original scheme 
(A = 4, B = 0.00048, C = 0.0003) and the blue dots represent the optimized results. The 20 
optimized solutions are shown in Table 6. It can be clearly seen from the optimization results 
that the optimized schemes are better than the original scheme.

6.2 Solution decision

 VIKOR is used on the optimized schemes, and the decision results are shown in Fig. 13, in 
which the optimized schemes are listed from 1 to 20. Scheme 21 is the original scheme, for 

Fig. 12. (Color online) Pareto set.
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which the absolute value of the first objective function is 81.92 and that of the second objective 
function is 8.96. 
 In Fig. 13, Qi for each scheme is listed on the right of the bar graph. It can be seen that scheme 
11, for which the absolute value of the first objective function is 142.83 and that of the second 
objective function is 6.90, is the optimal scheme. Compared with the original scheme, the first 
objective function value is increased by 74.35% and the second objective function value is 
decreased by 22.99%.

Fig. 13. (Color online) Decision of the optimized results.

Table 6
Optimized solutions for the electrode array design.
No. Optimized scheme [A, B] |F| COST
1 [8, 0.001] 190.06 18.40
2 [2, 0.00039] 81.87 3.99
3 [2, 0.0004] 82.70 4.00
4 [8, 0.0095] 185.87 18.20
5 [8, 0.00089] 180.81 17.96
6 [4, 0.00089] 143.00 8.98
7 [6, 0.00089] 161.91 13.47
8 [5, 0.00089] 152.45 11.225
9 [3, 0.00089] 133.54 6.735

10 [7, 0.00089] 171.36 15.715
11 [3, 0.001] 142.83 6.90
12 [4, 0.001] 152.28 9.20
13 [7, 0.001] 180.62 16.10
14 [6, 0.001] 171.17 13.80
15 [2, 0.001] 133.38 4.60
16 [5, 0.001] 161.72 11.50
17 [2, 0.00079] 115.64 4.39
18 [2, 0.00063] 102.13 4.23
19 [2, 0.00089] 124.09 4.49
20 [2, 0.00069] 107.21 4.29
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7. Conclusion

 A multi-objective optimization method for non-invasive voltage sensors that considers the 
sensitivity, array arrangement, and cost is proposed in this paper. The total array induced charge 
Q and the location sensitivity S1 are used to evaluate the sensor performance. Design criteria for 
the array arrangement based on these evaluation indexes are proposed, which include the 
electrode shape, the array profile, and the space interval angle between electrode elements. On 
the basis of the design criteria, two objective functions corresponding to the overall sensing 
performance and the manufacturing cost for the array design are investigated. The NSGA-Ⅱ 
algorithm is employed to optimize the problem and the VIKOR strategy is finally used to select 
the decision from the Pareto set. Optimization results show that a rectangular shape is most 
suitable for the single electrode element, the sensing array is best designed in a ring profile, and 
the optimal number of electrodes is 3.
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