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 In this study, an AI robot uses a camera and computer to perform face recognition and uses 
non-contact image physiological signal measurement technology to predict heartbeat and blood 
pressure. The predicted heartbeat and blood pressure are displayed on the robot tablet and are 
transmitted to a cloud database to assist healthcare management. In this study, we use RGB 
images to extract facial features and points of interest of the face and palm. The changes in 
vasoconstriction at these points of interest reflect the relationship between the absorption of light 
by blood, heartbeat, and blood pressure. Using the photoplethysmography (PPG) signal of the 
green channel in the RGB image through a convolutional neural network (CNN), deep learning 
technology can predict heartbeat and blood pressure values and even determine whether a 
subject has arrhythmia. Our results demonstrate that the predicted heart rate and blood pressure 
errors are 2.6 and 1.7%, respectively. The AI companion robot in this study can obtain the 
subject’s physical information by a non-contact method, reducing anxiety and the cost of labor in 
medical care.

1. Introduction

 Many traditional medical measurement methods require significant labor. With the current 
development of AI technology, measurements can now be obtained from training images using 
AI. The measurement of heart rate and blood pressure using non-contact methods is a new 
technology in the development of AI. One notable advantage of non-contact measurement is it 
reduces the anxiety of subjects when measuring blood pressure; anxiety frequently increases the 
measured value, especially because of the so-called white coat hypertension or white coat 
effect.(1,2) Some people experience increased blood pressure when they see medical staff, and 
some become anxious whenever their blood pressure is measured, leading to increased blood 
pressure. When people feel stressed, they become more nervous and their heart beats faster, 
leading to incorrect blood pressure measurements. Therefore, non-contact measurement allows 
subjects to have their blood pressure measured easily without generating stress. Moreover, 
measurements with robots can reduce labor costs in healthcare.
 Many studies on non-contact measurement have dealt with variations in subjects’ facial 
movement, light intensity, and detection distance.(3) Verkruysse et al.(4) proposed the use of a 

mailto:sychiang@mail.mcu.edu.tw
https://doi.org/10.18494/SAM4036
https://myukk.org/


4168 Sensors and Materials, Vol. 34, No. 11 (2022)

digital camera under an indoor ambient light source to measure the pulse signal through 
photoplethysmography (PPG). Poh et al.(5) proposed the use of independent component analysis 
(ICA) to decompose a facial region of interest (ROI) signal into three independent signals 
according to the RGB signal in color images. When using the green signal G in an RGB image as 
the PPG signal to estimate the heart rate, the ICA method is used to render the waveform of the 
signal to make it clearer and reduce noise to obtain better results. Hsieh et al.(6) proposed an 
adaptive ROI selection method that is robust against the natural movement of the human head. 
Lewandowska et al.(7) used principal component analysis combined with ICA to reduce the 
signal processing time and the amount of calculation required to measure the heart rate. 
Monkaresi et al.(8) used a common camera instead of a high-resolution camera to estimate the 
heartbeat using linear regression and k-nearest neighbors (KNN) machine learning and showed 
that a common camera coupled with a machine learning method can obtain the heart rate. 
Li et al.(9) used discriminative response map fitting to find 66 feature points of the human face, 
and they extracted nine feature points to generate a mask of the ROI. They used a model of the 
illumination variations in the ROI, divided the pulse signal into segments, and discarded 
segments contaminated by sudden non-rigid movements to obtain the heartbeat by normalizing 
the value of the signal. 
 In research on non-contact blood pressure measurement, the flow velocity of blood vessels is 
mainly calculated through PPG, and the blood pressure is deduced from parameters such as the 
outer diameter of the blood vessel wall, the thickness of the blood vessel, and the blood density. 
The waveform is measured at different positions as blood flows through the same artery. The 
waveform changes according to the difference in the pulse transit time (PTT); thus, the relative 
blood pressure can generally be obtained by dividing the transit time of the pulse wave between 
two points by the length of the blood vessel between the two points. Lewington(10) used the 
Moens–Korteweg (MK) equation and Hughes equation to express the relationship between pulse 
wave velocity (PWV) and blood pressure. Ma et al.(11) measured the two ends of the arm and 
used the time difference of the signals to calculate the relevant parameters. Fan et al.(12) proposed 
that multiple records of systolic blood pressure (SBP), diastolic blood pressure (DBP), and PWV 
of a test subject can be used to generate a linear regression equation to predict their SBP and 
DBP. Jeong and Finkelstein(13) used a high-speed camera and light source to measure the image-
PTT (iPTT) signals of the face and palm, then used the relationship between the actual test 
subject’s blood pressure and the image-PPG (iPPG) linear regression equation after obtaining 
the PWV parameters, allowing the blood pressure of a human body to be read simply from 
images. Deep learning methods have been used to improve the performance of conventional 
contactless methods for heart rate measurement, with PhysNet generating the best measurement 
outcome among the deep learning methods.(14) Even though research on non-contact 
physiological measurement using facial video has made considerable progress in the past few 
years, there are still some limitations with this technology, such as the lack of challenging 
datasets, the long time required for the estimation process, and the non-portability of the system.
(15) Liu et al.(16) proposed and demonstrated the effectiveness of personalized video-based 
cardiac measurement for non-contact pulse and heart rate monitoring, where only 18 s of the 
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video was used for customization. 
 Two main contributions are described in this paper: the first is a portable AI service robot 
and the second is a method that requires only 6 s of video to predict the subject’s heart rate and 
blood pressure. The rest of the paper is structured as follows. The hardware structure of the 
robot is introduced in Sect. 2, and the materials and methods are described in Sect. 3. The 
experimental results and conclusion are presented in Sects. 4 and 5, respectively.

2. Hardware

 The AI robot designed for this study is shown in Fig. 1. It is a service robot with a height of 
160 cm. The specifications of the computer inside the robot are an Intel® Core i7-9750H CPU, 8 
GB RAM, and a GeForce GTX 1650 graphics card. An Intel RealSense SR300 camera is set up 
on the robot head. The resolution of the experimental images is 640 × 480, and 60 images can be 
taken per second, i.e., 60 frames per second (FPS) or 60 Hz. The depth range of the camera is 
from 0.2 to 1.5 m. A Surface Go tablet computer is placed on the robot’s body to display 
information on the human heartbeat, blood pressure, and any abnormalities in the heart rhythm 
predicted through the algorithm. The actual blood pressure and heart rate measurement in the 
experiment is performed using an OMRON HEM-7121 arm sphygmomanometer. The research 
is carried out using the Robot Operating System (ROS) with OpenCV3.4.2 and Dlib19.21.0.

3. Methods

 In this study, the following methods are used to achieve fixed-location non-contact 
measurement of the heart rate and blood pressure and to determine whether the heart rate is 
abnormal. The non-contact heartbeat and blood pressure measurement system is implemented 
using RGB images captured by the camera in the AI robot. The overall structure of the 
measurement system is shown in Fig. 2. First, a video of about 6 s is recorded, wherein images 
include the correct positions of the face and hand through face detection (facial landmarks) and 

Fig. 1. (Color online) AI robot.
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hand detection (hand detector). Then the optical flow method is used for motion correction, and 
the ROIs of the face and hand in the image are captured frame by frame as the output. Second, 
the ROIs of the hand and face obtained in the first part are pre-processed, the average value of 
the green channel of the RGB image is obtained, and then the average green values of the hand 
and face are scaled to a similar range through normalization, so as to facilitate the subsequent 
PPG waveform calculation. After calculating the normalized values, bandpass filtering is used to 
filter out the noise and obtain the PPG waveform in the frequency range of the heartbeat. Then, 
the delay time between the PPG of the hand and the face is combined with deep learning to 
predict the blood pressure. The average heart rate is calculated using the time difference between 
the PPG peaks. Finally, the third part uses convolutional neural network (CNN) models and pre-
trained models for training. The training dataset uses the public MIMIC dataset, with the PPG 
waveforms of abnormal signals in the acquired dataset deleted to reduce their effect on the 
acquired characteristics of an irregular heart rate. The characteristics of arrhythmia are obtained 
during training and, finally, the trained model is incorporated into the model to judge the 
arrhythmia.

3.1 Extraction and tracking of facial feature points

 After inputting the face image, the facial feature points (facial landmarks)(4) obtained by Dlib 
training are used to obtain 66 facial features, as shown in Fig. 3(a), and palm detection (blood 
pressure measurement) is performed. The locations of 68 (x, y) coordinates indicate the positions 
of facial structures on the face image obtained by Dlib facial landmark detector. To increase the 
speed of the calculation of the heart rate, the width of the eyes and nose [Fig. 3(b)] is calculated 
using the characteristics of the human face. The width of the face is about five times the width of 
the eyes, and the height of the face is about three times the height of the bridge of the nose, which 
is used as the basis for the search box. Therefore, the width of the right eye (subtraction of 
feature points 36 and 39) is calculated as Eq. (1), the width of the left eye (subtraction of feature 
points 42 and 45) is calculated as Eq. (2), and then the average value is obtained as Eq. (3). The 

Fig. 2. (Color online) Flow chart of non-contact heart rate and blood pressure measurement system.
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height of the bridge of the nose is calculated (subtraction of feature points 33 and 27) as Eq. (4). 
The width of the search box is set as seven times the width of an eye [Fig. 3(c)], and the height is 
set as five times the height of the bridge of the nose [Fig. 3(d)].

 2 2
36 39 36 39( ) ( )REW x x y y= − + −  (1)

 2 2
42 45 42 45( ) ( )LEW x x y y= − + −  (2)

 ( ) / 2EYE LE REW W W= +  (3)

 2 2
27 33 27 33( ) ( )NOZEW x x y y= − + −  (4)

3.2 ROI calculation

 The ROI of the study takes the junction between the bridge of the nose and the inner canthus 
of the two eyes as the center of the face. Therefore, when calibrating the position of the face 
search window, this junction is used as the center of the entire window. In this study, to extend 
the results to the mobile service robot for measurement and to consider the offset of the human 
face, the positions of the ROIs are set as the forehead (ROIFH), the right cheek (ROIRF), and the 
left cheek (ROILF). When the image is taken in front of the face, the ROI position of the forehead 
is set at the height of one-half of the bridge of the nose above the bridge of the nose [as shown in 
Fig. 4(a)], when on the side, the left and right sides and the junction below the outer canthus of 
both eyes, as shown in Fig. 4(b). To change the ROI position, the right cheekbone (facial feature 
point 2) and the nose tip (facial feature point 30) are subtracted to obtain the right face W𝑅𝐹 
[Eq. (5)], as shown in Fig. 4(d); the left cheekbone (facial feature point 14) is subtracted from the 
nose tip (facial feature point 30) to obtain the left face WLF, as shown in Eq. (6). The ROIs of 30 
× 30 pixels in the images of the left and right cheeks and the forehead of the human face are 
captured for testing using Eq. (7).

Fig. 3. (Color online) Facial feature point extraction and tracking.

(a) (b) (c) (d)
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2 30 2 30( ) ( )RFW x x y y= − + −  (5)

 2 2
14 30 14 30( ) ( )LFW x x y y= − + −  (6)
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 Since blood pressure measurement requires measurement signals between two points, hand 
images are added. The hand detection in this study uses a model trained on TensorFlow(17) 
through a single shot detector (SSD) neural network to identify the hand. When detecting the 
hand, the hand is placed naturally on the table, palm facing up, with the hand and the head at the 
same level. When the hand is detected, the ROI is used to frame the palm and find the position of 
the palm center. The location of the ROI sampling point is shown in Fig. 5. The captured hand 
image is expanded by 30 × 30 pixels from the center point to obtain the ROI.

3.3 Signal processing and normalization

 The ROI is divided into the B, G, and R channels using the split function. Since blood appears 
red because it absorbs green light and reflects red light, the absorption of green light changes 
significantly when blood flows through blood vessels;(4) therefore, G (green) is discussed 
separately for the channel waveform and channel signal. The ROI pixels for the signal of the G 
(green) channel are averaged using Eq. (8) to obtain Im, as shown in Fig. 6. Also, according to the 
time series, a waveform composed of average pixel values is obtained, as shown in Fig. 7. 

 
30 30

1 1
( , ) / ( )m i j

i j
I I x y ROI

= =
=∑∑  (8)

Fig. 4. (Color online) Selection and calculation of face ROIs. (a) Head ROI, (b) face ROI, (c) forehead ROI, (d) left 
Face fOI, and (e) right face ROI.

(a) (b) (c) (d) (e)
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 To verify that the green component of the RGB image captures blood flow changes, we 
separate the RGB image into three components, R, G, and B images, as shown in Fig. 8. The left 
column of Fig. 8 shows the RGB image and the second column shows the three components, i.e., 
R, G, and B images. Next, we apply the proposed method to obtain the average PPG signals of 
the ROI of both the hand and face. The green channel of the PPG signal has a clear and regularly 
undulating rhythm. Thus, it is used in the study to predict the heart rate and blood pressure. To 
reduce the noise and jitter of the images, optical flow estimation is used to find pixelwise motion 
between consecutive images. We assume that I(x, y, t) is the intensity at t, then the variation 
between two image frames is Δx, Δy, and Δt. Thus, Eq. (9) is satisfied for a constant intensity 
between two frames. From the Taylor expansion, Eq. (10) is satisfied, and R(x, y, t) is close to 
zero. From simultaneous equations (9) and (10), we arrive at Eq. (11), which we rewrite as 
Eq. (12). 

 ( , , ) ( , , )I x y t I x x y y t t= + ∆ + ∆ + ∆  (9)

 ( , , ) ( , , ) ( , , )I I II x x y y t t I x y t x y t R x y t
x y t

∆ ∆ ∆ δ δ δ∂ ∂ ∂
+ + + = + + + +

∂ ∂ ∂
 (10)

 0I I Ix y t
x y t
∆ ∆ ∆∂ ∂ ∂

+ + =
∂ ∂ ∂

 (11)

Fig. 5. (Color online) Palm ROI. Fig. 6. (Color online) Using the signal of the G (green) channel.

Fig. 7. (Color online) Waveform of average values of ROI.
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 0I x I y I t
x t y t t t
∆ ∆ ∆
∆ ∆ ∆
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+ + =

∂ ∂ ∂
 (12)

 
 Writing Δx/Δt and Δy/Δt as the derivatives of the pixel along the x and y directions and Vx and 
Vy as the velocity components along the x and y directions, respectively, Eq. (12) can be 
simplified to Eqs. (13) and (14). Finally, using a set value with points q1 to qn to solve Vx and Vy 
gives the optical flow corresponding to the Lucas–Kanade optical flow method(18) in Eq. (15).

 0x y
I I IV V
x y t
∂ ∂ ∂

+ + =
∂ ∂ ∂

 (13)

 x x y y tI V I V I+ = −  (14)

 

1 1 1

2 2 2

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

x x y y t

x x y y t

x n x y n y t n

I q V I q V I q

I q V I q V I q

I q V I q V I q

+ = −

+ = −

+ = −


 (15)

 To make the results visible before and after correction by optical flow, we use Fig. 9 to 
explain the results of correction by optical flow. In Fig. 9, the left and right sides are the signals 
obtained before and after optical flow correction, respectively. Figures 9(a) and 9(c) show the 
PPG signals obtained from hand and face ROIs without correction, respectively. Thus, the results 
of bandpass filtering in Fig. 9(e) are less regular waveforms. Figures 9(b) and 9(d) show the PPG 

Fig. 8. (Color online) RGB and three components, i.e., R, G, and B images.
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signals obtained from hand and face ROIs after the optical flow correction, respectively. We find 
that the corrected PPG signals obtained by bandpass filtering in Fig. 9(f) are more regular 
waveforms. Hence, it can demonstrate the difference resulting from optical flow correction.
 Optical flow methods can eliminate the effect of instantaneous changes in the light of the 
external environment. However, the movement of the subject’s body back and forth may change 
the value of the green light component, resulting in the displacement of the visually presented 
waveform. We use baseline drift calibration to detrend the displacement component. We divide 
the 6 s video into three parts of 2 s each to detrend each component using a linear relationship. 
When the data baseline is corrected, we normalize the data of the hand and face to facilitate the 
subsequent calculation of the blood pressure and heartbeat, which makes it easier to observe the 
relationship between the PPG waveforms of two different parts, as shown in Fig. 10.

Fig. 9. (Color online) Waveforms before and after optical flow correction.

(a) (b)

(c) (d)

(e) (f)
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3.4	 Bandpass	filtering	and	heart	rate	calculation

 The obtained time domain signal x[n] is converted into a frequency domain signal y[k], as 
shown in Eq. (16), and then the frequency peak of the image is analyzed. The index in the 
frequency domain signal, k in Eq. (16), i.e., the frequency length after converting from the 
original time length n to the frequency, is used for systematic analysis and heart rate calculation. 
Since the heartbeat is about 40–100 beats per minute (about 0.7–4 Hz) for a human not exercising, 
a bandpass filter with frequency 0.7–4 Hz is used. The results are shown in Fig. 11.
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 To predict the heart rate, we use the interval between the peaks of the waveform (pulse wave 
interval, PWI) shown in Fig. 12. The peak times for the face and hand are calculated, the average 

Fig. 10. (Color online) Normalization and baseline calibration of hand and face PPG waveforms.



Sensors and Materials, Vol. 34, No. 11 (2022) 4177

value, PWIm, of PWI is obtained using Eq. (17), and the reciprocal of the average value multiplied 
by 60 is used as the heart rate [Eq. (18)]. 

 
1

/
n

m i
i

PWI PWI n
=

=∑  (17)

 60 /m mHR PWI=  (18)

3.5 Deep learning to predict blood pressure

 After obtaining the PPG signals of the hand and face, three physiological characteristics are 
calculated, namely, the interval between the peaks, called PWI, PTT, and PWV as shown in 
Fig. 13. These three values are used as the input of the training data of the CNN for training, and 
the output is the SBP and DBP values. This CNN model uses 1D three-stroke features as the 
input of three neurons. The output is composed of two dense layers (Dense); each dense layer has 
64 neuron outputs and finally outputs a neuron for prediction. The model is matched with the 
ReLU activation function, wherein the optimizer uses the Root Mean Square Prop (RMSprop) 
optimizer, and the loss function uses the mean square error (MSE). The architecture of the CNN 
is shown in Fig. 14.

Fig. 11. (Color online) Bandpass filtering results of hand and face PPG waveforms.

Fig. 12. (Color online) Peaks of the face and hand signal waveforms.
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Fig. 13. (Color online) Features of deep learning to predict blood pressure.

Fig. 14. (Color online) CNN architecture diagram for deep learning to predict blood pressure.

3.6 Prediction of arrhythmia

 The arrhythmia study is conducted using MIMIC data within the PhysioNet dataset, which 
comprises physiological data records from more than 90 intensive care unit (ICU) patients. The 
PPG signals in the MIMIC dataset are trained. Figure 15 shows the PPG signals of normal and 
abnormal heart rates. Next, we introduce PPG signals of different subjects into the 1D CNN 
model for training and identification and arrange the CNN architecture as shown in Fig. 16.

4. Results and Discussion

 After only one year of research, we achieved the non-contact prediction of heartbeat, blood 
pressure, and irregular heartbeat through a fixed-point robot using visual images. The 
instrument used to measure blood pressure and heart rate in this study is an OMRON HEM-7121 
arm blood pressure monitor, with accuracy of pressure measurement of ±3 mmHg and accuracy 
of pulse measurement of ±5%. The distance between the robot and the human is fixed at 30–40 
cm, as shown in Fig. 17. To obtain the approximate distance between the user and the robot, the 
depth information of an RGBD camera is used. Images of the human face and hand are captured 
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Fig. 15. (Color online) PPG waveforms of normal and abnormal heart rates in the dataset.

Fig. 16. (Color online) Structure of the CNN model for identifying arrhythmia.

through the camera on the robot for 6 s, and the ROIs of the hand and face are calculated as 
shown in Fig. 18. After adding and averaging the green channel signal in the RGB image in the 

Fig. 17. (Color online) Distance between robot and 
human subject.

Fig. 18. (Color online) ROIs of face and palm.



4180 Sensors and Materials, Vol. 34, No. 11 (2022)

Table 1
Predicted heart rate from face.
Subject PPG heart rate Measured heart rate Error (%)

1 70 68 2.94
2 72 68 5.88
3 70 65 7.69
4 66 63 4.76
5 68 67 1.49
6 70 66 6.06
7 76 73 4.11
8 63 66 4.55
9 73 69 5.80

10 64 62 3.23
Mean error (%) 4.65
Standard deviation 1.80

Table 2
Predicted heart rate from hand.
Subject PPG heart rate Measured heart rate Error (%)
1 67 69 2.90
2 64 63 1.59
3 60 58 3.45
4 73 71 2.82
5 60 61 1.64
6 62 65 4.62
7 78 77 1.30
8 68 67 1.49
9 66 64 3.13

10 67 65 3.08
Mean error (%) 2.60
Standard deviation 1.07

ROI and passing the signal through the motion filter, it becomes the PPG waveform of the face 
and hand. Since the human hand sometimes moves, when there is movement, a baseline drift 
correction is performed on the PPG signal; the 6 s signal is divided into three 2 s segments and 
then corrected. Finally, the results corrected for baseline drift are used.

4.1 Prediction of heart rate

 As shown in Sect. 3.2, a smooth waveform can be obtained after normalizing the signal and 
bandpass filtering. Using Eqs. (17) and (18), we can predict the heart rate. Several experiments 
were conducted to verify the correctness of the research results. The heart rates predicted for the 
face and hand of 10 subjects are shown in Tables 1 and 2, respectively. From Table 1, it is found 
that the mean error percentage of the heart rate predicted from the face is 4.65% with a standard 
deviation of 1.80, while from Table 2, the mean error percentage of the heart rate predicted from 
the hand is 2.60% with a standard deviation of 1.07. Therefore, it is found that the PPG signal of 
the face leads to a larger error, which is due to the changes in the breathing and face. The ROI of 
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Table 3 
Predicted heart rate for different subjects for 10 measurements.

Subject 
Measured 
mean heart 

rate 

PPG heart 
rate from 

hand

PPG heart 
rate from face

Mean error 
of heart rate 
from hand 

(%) 

Mean error 
of heart rate 

from face (%)

Standard 
deviation of 
error from 

hand 

Standard 
deviation of 
error from 

face
Subject 1 62.2 62.0 61.7 3.21 5.36 1.28 2.18
Subject 2 60.9 61.9 62.9 3.64 5.69 1.90 4.29
Subject 3 64.8 63.4 62.4 3.37 5.52 1.91 3.15
Subject 4 65.5 63.9 62.7 4.29 5.16 1.96 2.10
Subject 5 67.9 66.0 64.8 4.19 5.90 2.20 3.73
Mean 3.74 5.53 1.85 3.09

the palm is less likely to change, resulting in a smaller error. To verify that the proposed method 
can provide an acceptable result for different people, five people are chosen to perform 10 
measurements to predict their heart rate. The results are summarized in Table 3. The average 
percentage errors of the PPG heart rate from the hand and face are 3.74 and 5.33% with standard 
deviations of 1.85 and 3.09, respectively. This indicates that the results of the non-contact 
measurement for each subject are acceptable.

4.2 Prediction of blood pressure

 Next, the characteristic values of the face and hand signals are calculated as extracted 
features, which are the intervals between waveform peaks or troughs [PWI, PTT, and pulse wave 
velocity (PWV)]. In this experiment, 200 samples are used, 90% for training and 10% for 
testing. During training, the validation_split function is used on 20% of the training samples for 
verification data. We set the training period as 100 times and the batch size as five times. The 
three characteristic values of the PPG signal are input to the CNN to predict the SBP and DBP 
values through machine learning. The results are shown in Tables 4 and 5, respectively. From 
Table 4, the mean error range of SBP predicted for 15 subjects is 1.69% with a standard deviation 
of 1.03, while in Table 5, the mean error range of DBP predicted for 15 subjects is 1.32% with a 
standard deviation of 1.29. Therefore, it is found that blood pressure can be accurately predicted 
through deep learning using images. Our results are compared with those calculated using 
Fan’s(12) linear equation, as shown in Tables 4 and 5 for the predicted SBP and DBP, respectively. 
From Table 4, the mean error range of SBP predicted for 15 subjects is 2.23% with a standard 
deviation of 0.85, while in Table 5, the mean error range of DBP predicted for 15 subjects is 
3.94% with a standard deviation of 2.31. Therefore, it is found that our deep learning method can 
predict blood pressure more accurately than Fan’s method.
 To demonstrate the repeatability and deviation of the non-contact measurement for each 
subject, the SBP and DBP for five subjects for 10 measurements are predicted. The results are 
summarized in Table 6. The mean percentage errors for SBP and DBP are 1.24% and 2.52% with 
standard deviations of 0.81 and 1.82, respectively. Hence, we can conclude that the proposed 
methods can correctly predict users’ blood pressure.
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Table 6 
Predicted SBP and DBP for different subjects for 10 measurements.

Subject Measured 
mean SBP 

PPG mean 
SBP 

Measured 
mean DBP

PPG mean 
SBP

Mean error 
of SBP (%) 

Mean error 
of DBP (%)

Standard 
deviation of 
SBP error 

Standard 
deviation of 
DBP error

Subject 1 129.5 130.8 62.7 63.3 1.32 1.99 0.74 2.55
Subject 2 128.6 129.4 59.2 61.3 1.09 3.64 0.55 2.33
Subject 3 131.5 131.2 62.1 61.4 0.99 2.07 0.71 1.28
Subject 4 135.4 134.1 64.9 64.1 0.95 2.16 0.68 1.48
Subject 5 139.8 137.4 68.8 66.9 1.83 2.73 1.38 1.42
Mean 1.24 2.52 0.81 1.82

Table 4 
Predicted SBP.
Subject Measured SBP Our SBP Our error (%) Fan’s SBP(12) Fan’s error (%)(12)

1 130 130 0.00 133 2.31 
2 134 131 2.24 136 1.49 
3 130 130 0.00 134 3.08 
4 136 138 1.47 133 2.21 
5 138 137 0.72 134 2.90 
6 139 136 2.16 133 4.32 
7 129 131 1.55 131 1.55 
8 138 135 2.17 134 2.90 
9 134 130 2.99 136 1.49 

10 129 132 2.33 132 2.33 
11 133 134 0.75 135 1.50 
12 133 131 1.50 135 1.50 
13 134 132 1.49 132 1.49 
14 135 132 2.22 137 1.48 
15 135 130 3.70 131 2.96 
Mean error (%) 1.69 2.23 
Standard deviation 1.03 0.85

Table 5 
Predicted DBP.
Subject Measured DBP Our DBP Our error (%) Fan’s DBP(12) Fan’s error (%)(12)

1 66 66 0.00 65 1.52 
2 59 60 1.69 63 6.78 
3 66 66 0.00 65 1.52 
4 62 62 0.00 64 3.23 
5 60 62 3.33 64 6.67 
6 60 62 3.33 64 6.67 
7 62 62 0.00 64 3.23 
8 61 60 1.64 64 4.92 
9 64 63 1.56 65 1.56 

10 62 62 0.00 64 3.23 
11 60 62 3.33 64 6.67 
12 63 62 1.59 65 3.17 
13 59 60 1.69 63 6.78 
14 62 62 0.00 64 3.23 
15 64 63 1.56 64 0.00 
Mean error (%) 1.32 3.94 
Standard deviation 1.29 2.31
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 To inform the user of their heart rate and blood pressure, the obtained heart rate and blood 
pressure are displayed on the robot panel, as shown in Fig. 19. The panel displays the subject’s 
predicted heart rate, blood pressure value, and information such as whether the heart beat is 
regular. The panel of the AI robot in Fig. 19 indicates that the heart rate is 68 bpm and SBP and 
DBP are 136 and 63, respectively. The heart beat is normal with no arrhythmia.

5. Conclusions

 We propose an AI robot with non-contact measurement technology to predict a subject’s 
heart rate and blood pressure and to determine whether the heart beat is abnormal. The AI robot 
uses its panel to ask the subject to stand 30 to 40 cm in front of it with one hand lifted for about 6 
s, then the robot displays the subject’s heart rate and blood pressure and whether they are 
experiencing arrhythmia. The results indicate that the prediction error is within 2.5%. For 
further study, the AI robot will be trained to automatically trace a subject’s location to perform 
dynamic contactless measurement.
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