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 The commonly used artificial visual interpretation and existing object-oriented computer 
automatic recognition methods have some disadvantages, such as low efficiency and insufficient 
accuracy in recognizing earthquake-induced building damage in unmanned aerial vehicle 
(UAV)-based images. In this paper, we report the latest progress in research on machine learning 
algorithms in artificial intelligence, then propose a new method of recognizing earthquake-
induced building damage. Using the bag of words (BoW) model, scale-invariant feature 
transformation (SIFT) characteristics were clustered to build an eigenvector tag library with K 
clustering centers as visual words. After images were expressed by visual words as eigenvectors 
with unified dimensions, a histogram intersection kernel (HIK) was then employed to construct 
the histogram intersection kernel support vector machine (HIK-SVM) to classify images and 
recognize earthquake-induced building damage. Building damage due to the magnitude 6.0 
earthquake that occurred in Luxian, Sichuan Province on September 16, 2021 was analyzed as 
an example. When the proposed method was applied to recognize earthquake damage using 
UAV-based images, the average recognition accuracy reached 91.7%. The experimental results 
verified the feasibility and validity of the proposed method.

1. Introduction

 China has frequent earthquakes and serious earthquake disasters. The risk of earthquake 
disasters has been further aggravated with the rapid economic and social development and a 
high concentration of population and wealth coupled with the accelerated development of energy 
resources and the continuous promotion of new urbanization. The results of investigations of the 
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earthquake damage of previous destructive earthquakes at home and abroad show that casualties 
and economic losses are mostly caused by the destruction or collapse of various buildings and 
structures. It can be seen that information acquisition regarding building damage after an 
earthquake and swift disaster distribution assessment are critical for emergency rescue 
deployment.(1)

 In a traditional method, on-site investigation requires a great amount of coordination of 
human and material resources, and the period of obtaining information is long and the efficiency 
is low. The investigation is also difficult to carry out because of natural environmental factors 
such as terrain or disaster factors such as traffic and communication interruptions. Consequently, 
information acquisition by remote sensing has attracted significant research interest and related 
attention. Among the various means of remote sensing, the unmanned aerial vehicle (UAV) 
remote sensing system has the advantage of a flexible, fast, and efficient operation. It also has a 
strong ability to recognize and distinguish damaged buildings using high-resolution images, 
which can reflect obviously different characteristics of the buildings that have different damage 
conditions. Therefore, the UAV has become an important means of conveniently obtaining 
disaster information such as the level of earthquake damage of buildings. To recognize the 
earthquake damage of buildings in remote sensing images, the commonly used manual visual 
interpretation method can accurately extract the earthquake damage information, but it is very 
time-consuming. The existing object-oriented and other automatic recognition methods can 
extract earthquake damage information quickly, but the accuracy is low. With these two 
methods, it is difficult to simultaneously accommodate the requirements of information 
timeliness and accuracy for handling earthquake disasters.
 Recent machine learning developments and optimization allow new image classification 
techniques, such as random forest and the support vector machine (SVM), to be applied to 
information recognition. Remote-sensing-based seismic damage recognition for buildings is an 
image classification using damage levels based on various characteristics. UAVs are generally 
used in the most severely damaged areas to carry out earthquake damage surveys. However, the 
number of training samples on site is usually limited, and hyperspectral remote sensing 
classification has stringent requirements on the number of training samples.(2) Previous practical 
applications have shown that SVM classification can not only solve problems due to small 
samples sets, but also effectively solve problems of linear inseparability due to the large number 
of characteristic dimensions in hyperspectral remote sensing image classification.(3) Tuia et al. 
used a hierarchical tree to encode the output spatial structure and then added these relationships 
to the kernel function used to construct the SVM to design a structured output SVM that can be 
used in remote sensing image classification.(4) Patra and Bruzzone proposed an iterative active 
learning technology based on a self-organizing mapping neural network and an SVM classifier 
for remote sensing image classification.(5) Alimjan et al. proposed a new remote sensing image 
classification technology based on a combination of the SVM and K-nearest-neighbors 
algorithm, the separability of SVM classification, and the spatial and spectral characteristics of 
remote sensing images.(6) To improve the classification accuracy of remote sensing images using 
the SVM, Yu and Dong analyzed the impact of SVM parameters on the classification 
performance. They proposed an SVM parameter optimization method based on a dynamic 
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coevolution algorithm with the characteristics of optimized particle swarm optimization and the 
genetic algorithm.(7) Alafandy et al. used a trained classical deep convolutional neural network 
to extract the characteristics of remote sensing images and employed them as the input of an 
SVM classifier to classify remote sensing images.(8) It can be seen that the SVM has been widely 
used in remote sensing image classification.
 Therefore, we selected an SVM based on statistical learning theory to classify images and 
realize building damage recognition. To further improve the recognition speed and accuracy, 
building distribution data and UAV-based images were superimposed during preprocessing, and 
buildings were extracted from the images. Then, scale-invariant feature transformation (SIFT) 
was performed, and through the scale-space extremal detection and positioning of key points 
and the assignment of their directions, the image’s SIFT descriptors were generated and SIFT 
characteristics extracted. However, different images have different numbers of SIFT 
characteristic points. Thus, the bag of words (BoW) model was used to cluster the SIFT 
characteristics of the images. Then, the eigenvector tag library of UAV-based images of 
earthquake-induced building damage was constructed using K-clustering centers as visual 
words. After the sample images were expressed as eigenvectors having unified dimensions of 
characteristics by visual words, a frequency histogram was used to calculate the frequency of 
each visual word appearing in the eigenvector vector. Subsequently, the histogram intersection 
kernel SVM (HIK-SVM) was constructed for earthquake-induced building damage recognition 
using UAV remote sensing. The damaged due to the Luxian earthquake (2021, magnitude 6.0) 
was used as an example case study. The results confirmed that the proposed method can rapidly 
and accurately recognize earthquake-induced building damage from UAV-based images.

2. Materials and Methods

2.1 Extracting SIFT characteristics from UAV images

2.1.1 Image preprocessing

 UAV-based images acquired after an earthquake include various ground objects, some of 
which have similar shapes and textures to buildings, causing confusion in image feature 
extraction and building damage recognition. The first national comprehensive risk survey for 
natural disasters has recently been completed in China, and national key projects were 
implemented to reinforce buildings and facilities in earthquake prone areas to help prevent and 
control natural disasters. Therefore, we accessed the building distribution data and superimposed 
it over corresponding UAV-based images during preprocessing to accurately extract buildings 
from the images. Figure 1 shows the flowchart for the main preprocessing.
 By this preprocessing, interference from similar ground objects is filtered and the information 
processing workload is reduced, effectively improving the building damage recognition 
efficiency and accuracy.
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2.1.2 Extraction of SIFT characteristics 

 The recognition of earthquake-induced building damage from UAV-based images is mainly 
based on texture, edge, gray scale, and other basic characteristics to accurately describe an 
image. The image is classified after extraction to recognize earthquake damage, but it is often 
difficult for basic characteristics to accurately describe the image owing to differences in, for 
example, lighting conditions and the shooting method used, resulting in poor classification 
adaptability and low recognition accuracy.(9) The key to improving recognition accuracy lies in 
the selection of image characteristics. As much as possible, the selected characteristics should 
not be affected by lighting, shooting angle, or scale transformation and should have reasonable 
robustness to noise. 
 SIFT extraction can handle local characteristics well and hence satisfy the above 
requirements. Thus, we adopted SIFT to extract the image characteristics. Many UAV-based 
images were collected from buildings with recognized damage incurred during past earthquakes. 
Each image was preprocessed to extract any buildings, and the following four steps were applied 
to accurately describe image characteristics for buildings of different damage levels.
(1) Detecting extreme values in scale space
 In the computer vision analysis of unknown scenes, the computer cannot predict the object’s 
scale in the image. Only by considering the image multiscale description can the optimal scale of 
the target object be known. The scale space of the image is the image description at all scales.(10) 
Scale-space extremal detection is the process of detecting the candidate SIFT key points of the 
image. These key points are the basis of image description and they are the same at different 
scales. The Gaussian convolution kernel is the only linear kernel that can generate the scale 
space and simulate multiscale characteristics of image data.(11) Therefore, the SIFT method 
defines the scale space L(x, y, σ) of the UAV-based image as the convolution of the original 
image I(x, y) and the two-dimensional Gaussian filter function G(x, y, σ),(12)

 ( , , ) ( , , ) * ( , )L x y G x y I x yσ σ= , (1)

Fig. 1. (Color) Preprocessing of UAV-based images.
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where (x, y) are spatial coordinates for pixels within the image and σ is the scale-space factor. A 
large scale corresponds to the general appearance of the image, whereas a small scale 
corresponds to image details, which determine image smoothness. To better detect extreme 
points in the scale space, we also define the Gaussian difference operator, DOG, as the difference 
between two adjacent scale spaces,(13) i.e.,

 ( , , ) ( , , ) ( , , )D x y L x y k L x yσ σ σ= − , (3)

where k is a constant multiple for two adjacent scale spaces. Figure 2 shows the Gaussian 
difference pyramid obtained by subtracting the images from every second adjacent layer in each 
pyramid group [Eq. (3)]. Each detection point is sequentially compared with adjacent points in 
the scale space to obtain extreme points for D(x, y, σ).
 The detection point is a possible SIFT key point. It is an extreme among its surrounding 26 
adjacent points. The local extreme points form a set of candidate SIFT key points.
(2) Key point positioning 
 All candidate SIFT key points can be obtained from the UAV images through scale-space 
extreme value detection, which requires a two-step detection process. First, the key points must 
differ significantly from surrounding pixels. Therefore, key points with low contrast can be 
eliminated. Second, DOG has a strong edge response, and hence, unstable edge response points 
should be discarded. Thus, various extreme points can be eliminated by subpixel interpolation 
and edge response elimination depending on the key point location and scale to realize final 
optimal key point locations.(14) In this way, a limited  number of characteristic points are 
obtained.

Fig. 2. (Color) Gaussian difference pyramid construction and local extreme point detection.
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 DOG from Eq. (3) can be expanded in a Taylor series as
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 Then, function values are calculated for extreme points, and subpixel interpolation is 
performed. We experimentally verified that removing extreme points with ( ) .ˆ 0 03D x <  can 
effectively eliminate unstable extreme points from low-contrast areas.
 According to Harris’ corner point theory,(15) pixel values in the local window change 
significantly when the key point at the edge moves in any direction. Such a key point has a large 
principal curvature, whereas stable key points do not. Therefore, edge responses can be 
eliminated on the basis of the magnitude of the principal curvature,
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 Thus, principal curvature γ can be calculated from the Hessian matrix H at key point 
positions, where Dxx represents the double derivative in the x direction for a key point scale. 
Experimental results confirmed that extreme point stability can be effectively enhanced to 
eliminate edge responses when γ = 10 and only the extreme points satisfying Eq. (5) are retained. 
Extreme points retained after the detection steps are identified as stable key points in the 
building target area. 
  There are three common types of building structures. The brick-and-concrete structure has 
vertical-load-bearing walls made of bricks or block masonry. The roof and the floor slab can be 
one of two types, namely, prefabricated boards or cast in place. There are usually three to six 
floors in the brick-and-concrete structure. The brick-and-wood structure also has load-bearing 
walls made of bricks or block masonry, while the floor slab and the roof frame are both 
constructed from wood. The roof cover is made of tile materials. As a flat structure, there are 
usually one to three floors in the brick-and-wood structure. The frame structure is built with 
reinforced concrete, the beams and columns are connected with steel bars, and the roof is cast in 
place. There are no more than 10 floors. Among these three types of structures, the plane and 
facade of the frame structure are the most regular.
 In China’s national standard “Classification of earthquake damage to buildings and special 
structures” (GB/T 24335-2009), the building damage in the macro-ground investigation is 
classified into five levels that range from light to heavy, with level 1 being “no damage” and 
level 5 being “collapsed”. However, in remote sensing images, the building damage is generally 
divided into three levels, i.e., “not collapsed”, “partially collapsed”, and “collapsed”. The “not 
collapsed” level corresponds to the “no damage” level of the ground survey, meaning that the 
outline of the building in the image is clearly visible and neatly arranged with uniform gray 
levels and complete imaging and geometric forms. Fine cracks can only be observed after 
several times of magnification. The “partially collapsed” level corresponds to the “damaged” 
level of the ground survey, meaning that the building’s image contour can be recognized, but its 
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corners fall off in the form of bright fragments. Additionally, the building’s geometric form is no 
longer complete. The “collapsed” level corresponds to the “collapsed” level of the ground survey, 
meaning that the building’s image contour has basically disappeared leaving a messy image 
texture and bright piled-up debris covering the entire building. It also does not have any 
geometric features.
 The buildings in different damage conditions are classified in accordance with the above 
features and the associated damage levels using the UAV-based images. Figure 3 shows some 
typical images of brick-and-wood houses common to rural areas with marked key points 
extracted from the target area. The red circles represent the characteristics of roof corners. The 
yellow circles represent the characteristics of the roof surface. The green circles represent the 
characteristics of the roof and wall edges. The blue circles represent the characteristics of the 
wall.
 These key points describe building condition differences well for different damage levels, 
and provide stable “vocabulary” information to help construct the eigenvector tag library for 
UAV-based images.
(3) Assignment of key point direction 
 A key point direction is assigned by considering extreme point detection, key point position, 
and scaling, as well as gradient direction distribution characteristics for key points on 
neighboring pixels. Key points are invariant to rotation, and their gradient magnitude m(x, y) and 
direction θ(x, y) can be expressed as(16)

 2 2( , ) ( ( 1, ) ( 1, )) ( ( , 1) ( , 1))m x y L x y L x y L x y L x y= + − − + + − − , (6)

and
 

( , 1) ( , 1)( , ) arctan ,
( 1, ) ( 1, )

L x y L x yx y
L x y L x y

θ + − −
=

+ − −
 (7)

respectively. The neighborhood and gradient histogram for key points can be obtained using the 
gradient amplitude and angle, as shown in Fig. 4.
 Figure 4(a) shows typical key point neighborhood ranges, and Fig. 4(b) shows the gradient 
histogram with the horizontal axis representing amplitude angle and the vertical axis 
representing accumulated amplitude. The histogram is divided into eight directions at 45° 

(a) (b) (c)

Fig. 3. (Color) Extracted key points for typical buildings in the target area. (a) Not collapsed. (b) Partially 
collapsed. (c) Collapsed.
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intervals, and the direction with the maximum accumulated amplitude is taken to be the 
principal key point direction.
(4) SIFT descriptor generation
 Key points located by scale-space extreme point detection are actual pixel points that only 
contain the image spatial position information. Once each key point direction has been assigned, 
the point is further converted into an eigenvector to generate a SIFT descriptor, i.e., the 
mathematical expression for the key point. Thus, the pixel gradient and direction at the key point 
can be fully reflected in the UAV image, and an accurate description of the image can be 
realized. Figure 5 shows the process of generating the SIFT descriptor for each key point.
 We select an 8 × 8 pixel block adjacent to the key point, divide the pixel block into 16 2 × 2 
sub-blocks, and derive gradients for the four pixel points in each 2 × 2 sub-block using Gaussian 
weighting projected to eight directions. Each 2 × 2 sub-block is described as a 1 × 8 eigenvector; 
hence, if there are 16 sub-blocks in total, each key point is described by a 1 × 128 eigenvector.

2.2 Eigenvector tag library construction

 Each UAV-based image extracted by the SIFT algorithm is a collection of many SIFT 
descriptors of the key points. Each key point is a multidimensional eigenvector describing partial 
building information, which is inconvenient for automatic recognition and judgment, and 
various key points are highly similar.
 As a feature description method that is closer to the semantic expression of information, the 
BoW model was initially applied to natural language processing and information retrieval. It 
uses the frequency of keywords in the document to express the document’s content. Csurka et al. 
introduced the BoW model into the study of image classification.(17) Their idea was to count the 
distribution information of different local features of each image block by extracting the  
different local features of the image to correlate the image block to the words in the text, 
eventually obtaining a bag of visual words as the image model. The BoW can be regarded as the 
aggregation and integration of the low-level features of the image. As new and more stable 
extraction algorithms have been proposed to obtain such low-level features, such as the SIFT, the 

Fig. 4. (Color online) Typical neighborhood and gradient histogram for key points.

(a) (b)
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BoW was introduced into the automatic recognition of computer information in the field of 
machine vision for the classification of remote sensing satellite images.(18) It has achieved good 
application results. The bag of visual words model uses K-means clustering to gather all SIFT 
characteristic points into K clusters. It then classifies key point eigenvectors such that internal 
elements in the cluster are highly similar while ensuring low similarity among different clusters. 
Therefore, K cluster centers are treated as visual words, i.e., eigenvector tags, and the eigenvector 
tag library can be constructed using K visual words. After the sample images were expressed as 
eigenvectors having unified dimensions of characteristics by visual words, a frequency 
histogram was used to calculate the frequency of each visual word appearing in the eigenvector. 
By using these classified visual words as tags to describe the UAV-based images of the 
earthquake-induced building damage, the differences in key points between buildings of 
different damage levels can be highlighted. Additionally, the image eigenvector’s dimension can 
be reduced to effectively improve the operation efficiency of automatic computer recognition. 
Figure 6 shows the construction process of the eigenvector tag library.
 First, K points were selected as the initial clustering centers because the self-organizing 
incremental learning neural network (SOINN) can automatically discover the number of 
appropriate categories in the clustering application.(19) We utilized this feature to conduct 
incremental learning on the low-level features of the image extracted by SIFT. In this way, the 
problem of repeatedly adjusting the initial clustering center K, as in the experiment where the 
traditional bag of visual words method directly uses K-means for clustering, is avoided.
 SOINN is a competitive neural network with a two-layered structure that excludes the input 
layer. It uses a self-organizing method to conduct clustering and topological representation for 
the input data.(20) The first layer is used to accept the input of the original SIFT characteristic 
points and adaptively generate prototype neurons to represent the input data. The distribution of 
the SIFT characteristic points is reflected by the nodes and their connections. The second layer 
estimates the distances between and within the original SIFT characteristic point classes in 
accordance with the results of the network’s first layer. Then, the distances are taken as 
parameters that are to be combined with the neurons generated by the first layer as input data for 
relearning to output stable results and serve as the K-means initial clustering center.

Fig. 5. (Color) Generating the SIFT descriptor for the key point.
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 We then calculated the Euclidean distance between eigenvector X for each characteristic 
point and the ith clustering center using Eq. (8). The cluster center closest to the characteristic 
point is then identified and put into the corresponding cluster as

 ( )128 2

1
i j ij

j
D x k

=
= −∑ , (8)

where xj is the jth dimension for vector X and kij is the jth dimension for the ith cluster center.
 The centroid for each cluster is recalculated after all characteristic points are classified into K 
clusters and taken to be the new cluster center. If the distance between the new and original 
cluster centers is less than a preset threshold, clustering has achieved the expected effect and 
calculation is terminated; otherwise, steps (2) and (3) are iterated if the distance exceeds the 
preset threshold.
 The eigenvector tag library is finally obtained after K-means clustering. The library 
comprises K visual words expressed as L = (l1, l2, …, lk), where the visual word li is the 
eigenvector tag.
 Key points with similar descriptions are combined into a class that shares similar 
characteristics through clustering. Eigenvectors describing the key points are determined from 
pixel points in the neighborhood of the key points. Visual words formed by the clustering key 
point eigenvectors can be regarded as morphological damaged building features at different 
damage levels. Table 1 shows several examples.
 Thus, each UAV-based image P can be represented by a set of visual words ( f1, f2, …, fk) 
formed by clustering and is a numerical vector of 1 × K dimensions in the eigenvector tag 
library, where fi is the frequency of visual word li when describing a specific image.

Fig. 6. (Color) Construction process of the eigenvector tag library.
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2.3	 SVM	classifier	design

 After the eigenvectors are obtained by constructing the eigenvector tag library, a classifier is 
required to classify the image. SVM is a supervised machine learning model that has been 
shown to be very effective for practical applications of solving linear inseparability problems 
caused by large characteristic dimensions for images with small training sample sets and 
hyperspectral remote sensing features. SVM has been widely used in image classification and 
recognition.
 Figure 7 shows the basic SVM principle of finding a classification hyperplane that maximizes 
the minimum classification interval such that the points in the training sample can be correctly 
divided into two categories.(21)

 The sole classification hyperplane that can maximize the minimum classification interval 
can be expressed as

 ωTx + b = 0, (9)

where ω is the normal vector for the hyperplane and b is the intercept. The point closest to the 
hyperplane is the support vector. For a training dataset T = {(x1, y1), …, (xn, yn)}, yi ∈ {−1, +1}, 
i = 1, 2, …, n, xi is an n-dimensional eigenvector represented by a visual word in the tag library 
and yi is the eigenvector classification tag. The geometric distance on the hyperplane is 1/||ω||. 
The search for the hyperplane can be converted to the optimization of convex quadratic 
programming with inequality constraints:

Table 1
(Color online) Visual word examples.
Damage level Visual words

Not collapsed

...

Partially collapsed

...

Collapsed

...
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 Optimal solutions ω* and b* can be obtained by dual optimization by the Lagrange multiplier 
method. For linear inseparability in a practical application problem, SVM maps a low-
dimensional sample space to a high-dimensional characteristic space through a kernel function 
to obtain the hyperplane in the high-dimensional characteristic space.(22) Then, a discrimination 
function f(x) is constructed, where attributes for each sample are determined using the 
discrimination function,

 * *
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where ai
* is the Lagrangian optimal solution and K(x, xi) is the kernel function. Different kernel 

functions correspond to different discrimination functions, forming different SVM classifiers.
 The histogram intersection kernel (HIK) uses statistical histograms of the image 
characteristics to determine whether two images belong in the same category. Moreover, the 
HIK has high robustness and low computational complexity with respect to target background 
interference, viewing angle changes, blockage, and image resolution changes.(23) It is also 
efficient when converting low-dimensional-space linearly inseparable problems of the SVM to 
high-dimensional-space linearly separable problems and has a better recognition performance 
than linear and radial basis function (RBF) kernels in image classification, especially for images 
expressed by histogram characteristics.(24) Therefore, we adopted the HIK to construct the 
classification decision-making function. The HIK is defined as

 
1

( , ) min( , )
d

HI j j
j

K x y x y
=

=∑ , (12)

Fig. 7. (Color online) SVM classification principle.



Sensors and Materials, Vol. 34, No. 12 (2022) 4395

where x and y are a pair of histograms. Each histogram contains d stripes. In the eigenvector tag 
library, x and y represent the frequency histograms of the image, and each histogram is 
composed of d visual words. Parameters xj and yj are the values in each category of frequency 
histograms x and y. By substituting Eq. (12) into Eq. (11), the following classification decision-
making function is obtained:

 * *

1 1
( ) sgn ( , )

l d

i i j ij
i j

f x a y m x x b
= =

  
= +     

∑ ∑ . (13)

 In this way, a HIK-SVM classifier, which can be used for the UAV remote sensing recognition 
of earthquake-induced building damage, is formed.

3. Experiment and Results

3.1 Experimental data

 After the magnitude 6.0 earthquake occurred in Luxian (29.20°N,105.34°E), a Dajiang M300 
RTK UAV equipped with a PSDK 102S five-lens tilting camera was launched to take aerial 
photographs of the severely damaged Datian Community of Fuji Town (29.21°N,105.37°E) and 
Tuanshanbao Village of Jiaming Town (29.23°N,105.32°E) near the epicenter, as shown in Fig. 8.
 The main specifications of the UAV and the flight parameters, which were set in accordance 
with the requirements of Luxian’s terrain and image resolution, are presented in Table 2. The 
UAV images and digital surface model (DSM) data collected by aerial photography are displayed 
in Fig. 9. 

Fig. 8. (Color) Schematic diagram of UAV aerial photography at the earthquake site.
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3.2 Experimental process

 To verify the effectiveness of the method proposed in this paper, the images obtained from 
areas affected by the Luxian M6.0 earthquake were further processed and analyzed. The main 
process is shown in Fig. 10.

Table 2
Main specifications of the UAV.
Technical parameter Specification Flight parameter Specification
Unfolded size 810 × 670 × 430 mm3 Number of flights 4
Empty vehicle mass (including 
two batteries) 6.3 kg Flight altitude 280 m

Battery capacity 4920 m∙Ah Heading overlap ratio 70%
Camera 24.3 million pixels Side overlap ratio 70%
Maximum horizontal flight speed 23 m/s Ground average resolution >3 cm
Maximum rising and falling 
speeds 6 m/s, 5 m/s Imaging area 1.5 km2

Maximum flight time 55 min Total number of images 587 sheets
Maximum flight altitude 5000–7000 m Image format TIFF or JPEG

Fig. 9. (Color) UAV images and DSM diagrams. (a) Datian Community of Fuji Town. (b) Tuanshanbao Village of 
Jiaming Town.

(a)

(b)
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 First, the UAV-based image and building distribution vector data were superimposed, and 
building images were extracted and preprocessed, producing 2014 building images with three 
damage levels. We randomly selected 1400 images of the three damage levels to build the 
training set to construct the eigenvector tag library and train the HIK-SVM. The remaining 614 
images were used as test samples to validate the accuracy of the algorithm for classification 
recognition.
 Then, a Python algorithm program was developed in the Spyder environment of Anaconda3. 
The SIFT function was called through the SIFT characteristic extraction interface in the Python 
3.7 OpenCV extension module to detect the characteristic points of 2014 images. The positions 
of the characteristic points were marked and the SIFT descriptors were generated. After the 
SIFT characteristics were extracted from the images, SOINN was first created through the 
third-party library MiniSom for the incremental learning of the low-level features extracted 
from the SIFT image. Then, the K-means function was called to conduct a clustering analysis on 
the SIFT characteristic points of the 1400 images in the training set through the K-means 
interface in the OpenCV extension module. The K clustering centers were taken as visual words 
to obtain the eigenvector tag library composed of K visual words. We calculated the distance 
between each characteristic point and visual word in the eigenvector tag library for the 2014 
images. The characteristic point was replaced by the nearest visual word and the frequency 
histogram was used to count the number of visual words in the feature vector; then, the image 
was expressed as a 1 × K-dimensional numerical vector.

Fig. 10. (Color online) Flowchart of experiment.
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 Finally, the Python 3.7 data analysis tool sklearn was employed to construct a HIK-SVM, and 
the images expressed by the multidimensional eigenvectors in the training set were used as 
samples to train it. Images in the test set were input to the well-trained HIK-SVM to recognize 
building damage. The recognition accuracy of the classification algorithm was then tested.
 On the basis of practical experience, when the bag of visual words was used to build the 
eigenvector tag library in this process, the number of K-means clustering centers (K) was 
determined from the set threshold and the number of training samples (T) used to train the HIK-
SVM affected the recognition results. Therefore, experiments were conducted using different 
parameter settings, and then, the optimal average recognition accuracy of the buildings at three 
damage levels was adopted as the criterion for selecting the parameter settings.

3.3 Experimental results

 For the training set, the values of T were 400, 600, 800, 1000, 1200, and 1400 images, and K 
was determined to be 160 from the set threshold. The variation curve of the average recognition 
accuracy of building damage obtained by HIK-SVM training for different numbers of samples is 
presented in Fig. 11(a). To further test the effects of the numbers of samples and cluster centers 
on the algorithm, different thresholds were set to obtain the number of cluster centers with 
different numbers of samples for K values of 100, 120, 140, 160, 180, and 200. The variation 
curve of the average recognition accuracy of building damage obtained by HIK-SVM training is 
presented in Fig. 11(b).
 Figure 11(a) indicates that the average recognition accuracy increased with T in the training 
set. At T = 1200, the average recognition accuracy became stable and no further changes 
occurred. Figure 11(b) shows that the average recognition accuracy also increased with the 
number of cluster centers. This is because a larger K value results in more visual words for 
describing the images in the eigenvector tag library.  Although a more detailed description can 
lead to a higher recognition performance, the average recognition accuracy was stable when 

(a) (b)

Fig. 11. (Color) Average recognition accuracy. (a) Number of training set samples. (b) Number of cluster centers.
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K ≥ 160. For T values of 1200 and 1400, the curves overlapped and the average recognition 
accuracy reached a maximum. However, the larger the K value, the more complex the 
calculation. Therefore, K = 160 and T = 1400 were selected as the best parameter settings.
 The images expressed by the multidimensional eigenvectors in the test set were input to the 
HIK-SVM, which was trained using the optimal parameter settings, to perform building damage 
recognition. The confusion matrix of the recognition results is displayed in Fig. 12. It indicates 
that errors mainly occurred when recognizing buildings that were either partially collapsed or 
collapsed.
 The recognition accuracies of the HIK-SVM are presented in Table 3. These accuracies were 
compared with those of the commonly used pixel-based and object-oriented classification 
methods in automatic recognition methods, and the results are shown in Table 4. The pixel-based 
method cannot fully utilize the texture and structure information of remote sensing images, 
which leads to a low recognition accuracy. The object-oriented method can fully utilize the 
texture and structure information of the images; hence, it can better identify ground objects with 

Fig. 12. (Color online) Confusion matrix of the recognition results.

Table 3
Recognition accuracies of three damage levels

Building damage level Number of sample buildings Number of correctly 
recognized buildings Recognition accuracy (%)

Not collapsed 251 233 92.8
Partially collapsed 269 245 91.1
Collapsed 94 85 90.4

Table 4
Recognition accuracies of three classification methods.

Building damage level Recognition accuracy
Pixel-based method (%) Object-oriented method (%) HIK-SVM (%)

Not collapsed 80.8 97.2 92.8
Partially collapsed 84.8 85.1 91.1
Collapsed 85.1 82.9 90.4
Total accuracy 83.2 89.7 91.7
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regular shapes, and its recognition accuracy for not collapsed buildings is the highest. However, 
in complex scenes such as those with collapsed buildings, it is difficult to accurately segment the 
ground objects, which affects the classification accuracy. In this study, after the image was 
expressed as a feature vector of unified dimensions by using visual words, the HIK-SVM was 
used for image classification to ensure that all types of complex scenes in the image can be 
better processed, and its recognition accuracy was improved compared with those of the 
previous methods.
 To further analyze the causes of recognition errors, some earthquake-induced building 
damage recognition results for Datian Community and Tuanshanbao Village in the sample were 
compared with the actual situation, as shown in Fig. 13.
 The actual damage of the building can be clearly seen in the ground photographs of the 
buildings taken in the field investigation. Table 5 shows examples of recognition error.

Fig. 13. (Color) Damage recognition results of some buildings shown with field investigation results. (a) Datian 
Community. (b) Tuanshanbao Village.

(a)

(b)
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 Compared with the accurately identified images in Fig. 13, it can be observed in the 
incorrectly identified images of Table 5 that when there was interference by light illuminating 
the characteristic area of building damage classification or the external area, the effective SIFT 
key points extracted from the image were changed. This caused significant interference in 
recognizing building damage; this was particularly obvious when the damaged and destroyed 
buildings had high fragment brightness in the image.

4. Discussion

 As seen in the experimental process, the proposed method only employs SIFT characteristics 
for classification, and hence, dimensionality remains large. This affects computing resource 
requirements for SVM image classification and recognition. Moreover, in the eigenvector tag 
library of UAV-based images constructed using the bag of visual words for earthquake-induced 
building damage, the scale of the visual word is relatively simple when the order and relationship 
between the words are not considered. This problem affects the expression of some image 
features, causing changes in the effective SIFT key points extracted from the images. Therefore, 
classification and recognition errors arise when external interference exists.

Table 5
(Color online) Examples of recognition error.

UAV-based image Damage level in 
image recognition Field investigation photo Actual damage level

Not collapsed Collapsed

Partially collapsed No damage

Collapsed Damaged
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5. Conclusions

 In this paper, we proposed a recognition method for earthquake-induced building damage 
from UAV-based images using the BoW model and the HIK-SVM. After the building image 
range was determined in advance using existing building distribution data, the selected SIFT 
characteristics exhibited a strong antinoise capability. The eigenvector tag library was created 
using the BoW model to express the SIFT characteristic point sets of the image with visual 
words as eigenvectors with unified dimensions. Hence, the HIK-SVM can be used to perform 
image classification and recognition. The building damage due to the Luxian earthquake (2021, 
magnitude 6.0) was used as a sample case study to validate the proposed method. The 
experimental results verified that the proposed method is feasible and accurate for UAV-based 
image recognition.
 In future research, the SIFT features can be combined with the features that have less 
dimensions or the SIFT features can be processed to reduce their number of dimensions to 
further improve the speed of image recognition and better meet the demand for the real-time 
handling of earthquake disasters. Moreover, we are considering establishing visual words at 
different scales, forming more robust image feature expression schemes such as multiscale 
eigenvector tag libraries, reducing the effects of external factors, such as the imaging 
environment, on image recognition, and improving the adaptability of the method.
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