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 Structural health monitoring is of great significance to prevent structural disasters. However, 
the sensors in the structure monitoring system inevitably produce a large number of abnormal 
data. To ensure the integrity and practicability of monitoring data, it is necessary to recover 
abnormal monitoring data. Most existing data recovery methods use the correlation between 
variables and spatial correlation, rather than fully mine the temporal correlation of data. An 
abnormal data recovery framework based on a gated recurrent unit (GRU) neural network and 
temporal correlation is proposed in this study. The abnormal data recovery framework can be 
independent of other sensors. The input and output configurations of the GRU model are 
optimized. Bidirectional prediction including forward and backward prediction information is 
used to improve the prediction accuracy of the model. The framework is demonstrated using 
monitoring data of beam-end displacement and pylon tower tilt collected from Waitan Bridge in 
Ningbo, China. The results show that the framework has high accuracy in abnormal data 
recovery. After data recovery, the linear relationship between structural response and 
temperature is significantly improved.

1. Introduction

 Structural health monitoring systems are widely used in civil engineering.(1,2) However, due 
to power failure, network failure, electromagnetic interference, and other factors, sensors 
inevitably produce a large number of abnormal monitoring data.(3,4) These abnormal monitoring 
data may interfere with the structural state analysis and cause false and missing reports of 
structural problems.(5) The elimination of more abnormal monitoring data will cause serious 
data loss, adversely affecting the practical application of structural monitoring data.(6,7) To 
ensure the integrity and practicability of structural monitoring data, it is necessary to recover 
abnormal monitoring data.
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 For a long time, data nearest neighbor (NN) imputation methods have been widely used in 
the recovery of structural monitoring data.(8) However, simple data imputation cannot easily 
recover long sequences of missing data. To fully mine the correlation between data, statistical 
and machine learning methods are also used to recover structural abnormal monitoring data. On 
the one hand, some studies have focused on the correlation between different variables and have 
recovered abnormal data through the correlation model between different variables.(9,10) Wan 
and Ni proposed a Bayesian multitask learning method based on the covariance function to 
recover the abnormal data, and they recovered the acceleration data through the correlation 
between acceleration and temperature monitoring data.(10) On the other hand, the spatial 
correlation of structural monitoring data has also been fully mined. Through the spatial 
correlation of sensors, abnormal monitoring data can also be recovered.(11–13) Ma et al. used 
Gaussian process regression (GPR) technology to reconstruct the dynamic nonlinear response of 
structures by simultaneously interpreting the spatial correlation of different sensors. This 
method was applied to restoring acceleration monitoring data of Canton Tower.(13)

 With the development of computer and AI technology, a deep learning artificial neural 
network (ANN) has also been applied to the recovery of structural abnormal monitoring data. A 
deep learning neural network has major advantages in the nonlinear mapping of data and is 
suitable for data sequence prediction and recovery. Fan et al. proposed a method for recovering 
vibration monitoring data that was based on a convolution neural network (CNN), and they 
constructed the nonlinear relationship between incomplete vibration data and complete vibration 
data.(14) A recurrent neural network (RNN) has also been widely used in data sequence recovery 
and prediction.(15) Yuan et al. established a prediction model for dam deformation by using 
variational modal decomposition (VMD) and a long short-term memory (LSTM) neural 
network.(16)

 In general, the existing studies on the recovery of structural abnormal monitoring data based 
on a deep learning neural network can be summarized as follows. (i) The existing studies on 
abnormal data recovery mainly focus on mining the variable correlation and spatial correlation, 
but less on the mining time correlation. A cluster mode exists in the sensor fault of a structural 
health monitoring system.(5) When most sensors are disturbed, the variable correlation and 
spatial correlation of monitoring data may be difficult to use. (ii) Most studies use the neural 
network model of unidirectional training to predict the data sequence. The information after the 
abnormal data sequence is not fully used.
 To solve the above problems, in this study we propose an abnormal data recovery framework 
based on a gated recurrent unit (GRU) neural network and temporal correlation. Firstly, we 
introduce the specific process of the abnormal data recovery framework. This framework 
reconstructs the input and output configurations of a neural network and uses bidirectional 
prediction to improve the prediction accuracy of the model. Secondly, the accuracy and 
effectiveness of the framework are verified by taking the beam-end displacement data and pylon 
tower tilt data in the structural monitoring system of Waitan Bridge in Ningbo, China. Finally, 
the abnormal data of beam-end displacement and pylon tower tilt are recovered by using the 
framework.
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2. Abnormal Data Recovery Framework

2.1 Deep learning neural networks

 A deep learning neural network has major advantages in the nonlinear mapping of data and is 
suitable for data sequence prediction and recovery.(17) Hence, in this study we adopt a GRU 
neural network for the abnormal data recovery framework. For comparison, we also use an 
LSTM neural network to recover abnormal monitoring data. The LSTM neural network can use 
not only current characteristic information, but also intermediate results generated by previous 
training.(18) The LSTM neural network and unit are shown in Fig. 1(a). The key formulas of the 
LSTM neural unit are as 

 [ ]( )1,t f t tσ −= ⋅W h xf , (1)

 [ ]( )1,t i t tσ −= ⋅W h xi , (2)

 [ ]( )1tanh , tct t−= ⋅W hC x , (3)

(a)

(b)

Fig. 1. Neural network structures: (a) LSTM and (b) GRU.
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 [ ]( )1,t o t tσ −= ⋅W h xo , (4)

 1t t t t t−= ⋅ ⋅+C f C i C , (5)

 ( )tanht t t⋅=y o C , (6)

where Ct−1 and Ct are the unit states of the previous time and the current time; ht−1 is the unit 
output of the previous time; tC  is the candidate unit state at time t; ft, it, and ot are the statuses of 
the forget gate, input gate, and output gate at time t; Wf, Wi, Wc, and Wo are the weight matrices 
of the forget gate, input gate, unit state, and output gate; xt is the input of the network model at 
time t; yt is the output of the network model at time t; σ(·) is a nonlinear activation function, 
where the sigmoid function is generally selected; and tanh(·) is the hyperbolic tangent function, 
respectively.
 The GRU neural network and unit are shown in Fig. 1(b). The GRU neural network inherits 
the ability to deal with gradient problems from the LSTM neural network. Its gate structure can 
effectively filter out useless information and capture long-term dependences in time series data. 
The GRU neural network saves and updates useful information by controlling the opening and 
closing of the gates, offsetting the gradient in the process.(19) The key formulas of the GRU 
neural unit are

 [ ]( )1,t o t tσ −= ⋅W h xr , (7)

 [ ]( )1,t z t tσ −= ⋅z W h x , (8)

 [ ]( )1tanh ,t t t th −⋅= ⋅h W r h x , (9)

 ( ) 11 tt t t t− +⋅ ⋅= −h z h z h , (10)

 ( )t o tσ= ⋅y W h , (11)

where zt is the reset gate state at time t; rt is the update gate state at time t; th  is the candidate 
unit state at time t; ht-1 and ht are the unit states of the previous time and current time; Wr, Wz, 

hW


, and Wo are weight matrices of the update gate, reset gate, candidate unit state, and output 
layer; σ(·) is a nonlinear activation function, where the sigmoid function is generally selected; xt 
is the input of the network model at time t; yt is the output of the network model at time t; and the 
tanh(·) function is the hyperbolic tangent function, respectively.
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2.2 GRU-based data recovery framework 

 Most studies use environmental variable data (such as temperature and wind) and spatial 
correlation to recover structural monitoring data.(14–16) The neural network model usually takes 
environmental variable data or the adjacent sensor data as the input to recover the abnormal 
data.(5) The results of existing studies show that the recovery of abnormal data using the data 
correlation between adjacent sensors has high accuracy. However, environmental interference 
causes a large number of sensors to produce abnormal data. A cluster mode exists in the sensor 
fault of structural health monitoring systems. In a period of time, adjacent sensors may produce 
abnormal data such as drift, missing data, and outliers at the same time. The cluster mode makes 
it difficult to use spatial correlation. Hence, in this study, we propose an abnormal data recovery 
framework based on temporal correlation, which can be independent of other sensors. The 
framework uses the structural monitoring data of a period of time before the abnormal data as 
the input of the neural network model to predict the abnormal data sequence. The output data of 
the model at this time is used as the input of the model at the next time through a sliding window, 
and then the abnormal data of the whole sequence can be predicted and recovered. However, the 
simple forward-prediction model does not make full use of the information before and after 
abnormal data. The prediction accuracy of the neural network model for long-distance sequences 
usually decreases with increasing sequence length. Hence, in this study we propose a 
bidirectional prediction method. Bidirectional prediction can make full use of the information 
before and after abnormal data to improve the prediction accuracy of the model for long 
sequences. The recovery framework of abnormal data based on the GRU model and temporal 
correlation is shown in Fig. 2. The abnormal data recovery procedures are described below.
(i)  The structural monitoring data are divided in accordance with the length of the abnormal 

data sequence. The structural monitoring sequences 1 2, , , ,…,f f f f f
i nX X X X = … X  and 

1 2, , , , ,b b b b b
i nX X X X = … … X  before and after the abnormal data sequence, respectively, are 

extracted. To avoid gradient vanishing and gradient explosion, each data sequence should be 
normalized.(20) Each data sequence is divided into a training set and test set. The training set 
is used as the training data of the model, and the test set is used to verify the accuracy and 
generalization ability of the model.

Fig. 2. Recovery framework of abnormal monitoring data.
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(ii)  The GRU neural network model, which consists of an input layer, GRU layer, fully 
connected layer, and output layer, is constructed and trained. The input sequence of forward 
model training is f

outputX , ,
f

output i =X [ 2
f

iX − , 1
f

iX − ]T, and the output sequence is 
[ f

iX ]. The input sequence of backward model training is b
inputX , ,

b
input i =X [ 2

b
iX + , 1

b
iX + ]T, and 

the output sequence is [ b
iX ].

(ⅲ)  The trained neural network model is used for bidirectional prediction of the abnormal data 
sequence. The forward GRU model is used to predict the abnormal data sequence, and the 
forward-prediction sequence 1 2, , , ,…,f f f f f

i nY Y Y Y = … Y  is obtained. The backward GRU 
model is also used to predict the abnormal data sequence, and the backward prediction 
sequence 1 2, , , , ,b b b b b

i nY Y Y Y = … … Y  is obtained. The bidirectional prediction sequence 
1 2, , , , ,BI BI BI BI BI

i nY Y Y Y = … … Y  is calculated using Eq. (12). The bidirectional prediction 
sequence is used to recover abnormal data.

 
( 1)

2
1 ( 1)

1 1

f b
i i

BI
i

f b
i i

n

n i i n
n n

Y Y

Y Y

 + == 
− − + > − −

Y  (12)

3. Case Study: Cable-stayed Bridge

3.1 Monitoring system 

 The structural monitoring data of Waitan Bridge in Ningbo city, Zhejiang province, China 
are used to verify the accuracy of the proposed data recovery framework. As shown in Fig. 3, 
Waitan Bridge is an irregularly shaped cable-stayed bridge. The main beam adopts a separated 
steel box girder and is connected as a whole through a cross beam. The main tower adopts a 
triangular inclined tower structure composed of four parts: the front pylon, the upper tower head 
anchorage zone, the rear inclined rod, and the horizontal rod. The main tower is located in the 
middle of two separated girders. The structure monitoring system includes six pylon tower tilt 
sensors, four beam-end displacement sensors, and three structure temperature sensors. Four 
beam-end displacement sensors each are installed at the beam ends of the upstream and 
downstream main beams. Four pylon tower tilt sensors are installed at the front pylon and two 
are installed at the rear inclined rod. Two structural temperature sensors are installed at the main 
beam and one is installed in the anchorage zone of the upper tower head. Figure 3 shows the 
location of each sensor. The monitoring data are collected every 2 min.

3.2	 Configuration	of	input	and	output	
 
 Taking the monitoring data of beam-end displacement sensor BDS1-1 and pylon tower tilt 
sensor PTS1-1 from May 1 to May 9, 2020 as an example, the optimization process of the GRU 
neural network model is demonstrated. As shown in Fig. 4, each sequence contains 6480 data 
points. The data segment containing 2160 data points in the middle of the data sequence is 

f
outputX ,

f
output i =X,

f
outputX ,

f
output i =X,
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selected as the test data sequence, and the 2160 data points before and after the test data sequence 
are used as the training data for forward and backward prediction, respectively.
 GRU and LSTM neural networks have strong ability to deal with the nonlinear mapping of 
time series. In this study, these two neural networks are used to recover the test data in Fig. 4 by 
using the prediction capacity of neural networks, and the prediction accuracy of the two neural 
networks is compared. Compared with the hyperparameters of the neural network, the 
configuration of the neural network input layer has a greater impact on the prediction results.(21) 
Hence, it is necessary to investigate the prediction accuracy of the neural network with different 
input configurations. Taking the beam-end displacement and pylon tower tilt data as an example, 
the input layers of the GRU and LSTM neural networks are reconstructed. The left training data 

Fig. 3. (Color online) Structure monitoring system of Waitan Bridge.

(a) (b)

Fig. 4. (Color online) Monitoring data sequences: (a) beam-end displacement and (b) pylon tower tilt.
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sequence in Fig. 4 is used to train the neural network, and the middle test data sequence is used 
to test the accuracy of the forward-prediction neural network model. The input f

inputX  and output 
f

outputX  are constructed using the following equations.

Model-I
1 2 1

f
input nX X X − =  X 

2 3
f
output nX X X =  X 

(13)

Model-II
2 21

3 12

f n
input

n

X XX
X XX

−

−

 
=  
  

X




3 4
f
output nX X X =  X 

(14)

Model-III

31 2

22 3

3 14

n
f

ninput

n

XX X
XX X

X XX

−

−

−

 
 

=  
 
 

X






4 5
f
output nX X X =  X 

(15)

Model-IV

2 41

3 32

4 23

5 14

n

f n
input

n

n

X XX
X XX
X XX
X XX

−

−

−

−

 
 
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 
  

X









5 6
f
output nX X X =  X 

(16)

Assuming that the length of the training data is n, the structure monitoring data Xi are first 
normalized. The GRU neural network models are trained in accordance with the above four 
configurations of the network input and output. The GRU neural network model includes one 
GRU layer and one fully connected layer. In the training process, the grid search algorithm is 
used to optimize the hyperparameters of the network model.(22) The optimized learning rate and 
number of GRU units are 0.005 and 90, respectively. In addition, the Adam optimizer is used in 
network backpropagation during the training process.
 After training, the GRU neural network models are used to predict the test data. The beam-
end displacement and pylon tower tilt prediction results are shown in Figs. 5(a) and 6(a), 
respectively. Similarly, the LSTM neural network models with the same input and output 
configurations are also trained by using the same hyperparameter optimization algorithm. The 
test data are also predicted by the LSTM neural network models and the results are shown in 
Figs. 5(b) and 6(b), respectively.
 It can be seen in Figs. 5 and 6 that the prediction results of the test data for both the GRU and 
LSTM neural network models have high waveform consistency with the monitoring data in the 
time domain. The errors between the test data and the prediction results are clearly observed in 
the figure. The numerical deviation of the prediction results of Model II is the smallest, while the 
deviation of Model IV is the largest. By comparison with the waveform deviation of the time 
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domain data sequences, the errors of the LSTM neural network models appear larger than those 
of the GRU neural network models. To evaluate the prediction accuracy of the four network 
models more quantitatively, the root mean square error (RMSE) is adopted:(23) 

 ( )2

1

1 ˆ
n

q q
i

RMSE Y Yn
=

=
−∑ , (17)

where n is the length of the test data sequence, Yq (q = 1, …, n) are the monitoring data, and qY  
are the data predicted by neural network models. The RMSE values of the prediction results in 
Figs. 5 and 6 are calculated and shown in Fig. 7.
 As shown in Fig. 7, Model II results in the minimum RMSE of the GRU and LSTM neural 
networks in the prediction of two data sequences. Figure 7 also shows that the prediction 
accuracy of the GRU neural network model is significantly higher than that of the LSTM neural 
network model. Therefore, we hereafter use the GRU neural network model (Model-II) to 
recover abnormal monitoring data.

(a) (b)

(a) (b)

Fig. 5. (Color online) Prediction results of the test beam-end displacement data: (a) GRU and (b) LSTM.

Fig. 6. (Color online) Prediction results of the test pylon tower tilt data: (a) GRU and (b) LSTM.
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3.3 Bidirectional prediction

 Figures 5 and 6 further indicate that for the first 40 h, the errors between the predicted data 
and the monitoring data are relatively low. However, the prediction error increases and the 
accuracy decreases over the subsequent 32 h. When the prediction sequence is long, the accuracy 
of the GRU neural network model usually decreases. Most of the existing studies on data 
sequence prediction and recovery are based on forward prediction.(14–16) Forward prediction uses 
past information to predict future information, and it does not make full use of an information.
 Considering the above understanding, in this study we propose an abnormal data recovery 
framework based on bidirectional prediction. This framework uses the data sequences before 
and after the abnormal data sequence to train the GRU neural network model. Then, the 
abnormal data sequence is recovered by bidirectional prediction. The bidirectional prediction for 
abnormal data recovery is as follows. First, the left training data sequence in Fig. 4 is used in 
forward training of the GRU neural network, of which the input and output configurations are 
Model II. Then, the test data sequence is recovered by forward prediction. Similarly, the right 
training data sequence in Fig. 4 is used in backward training of the GRU neural network with the 
same configuration (Model II). The test data sequence is recovered by backward prediction. The 
recovery results of forward and backward prediction of beam-end displacement data are shown 
in Fig. 8(a). The recovery results of forward and backward prediction of pylon tower tilt data are 
shown in Fig. 8(b). For the backward model, the predicted results from the 32nd hour to the 72nd 
hour are in good agreement with the actual monitoring data. However, the prediction accuracy 
of the data sequences before the 32nd hour is lower.
 Therefore, to make full use of both the left and right sides of the abnormal data sequence, we 
propose a bidirectional prediction method for abnormal data recovery, which can make use of 
both the forward and backward prediction results. The bidirectional prediction results of the two 
data sequences are calculated using Eq. (12). The bidirectional prediction results are also shown 
in Fig. 8. The figure indicates that the bidirectional prediction results are almost completely 
consistent with the test data sequence. RMSE is also used to evaluate the accuracy of the three 
prediction results in the two data sequences in Fig. 8. The prediction errors are shown in Table 1.

Fig. 7. (Color online) RMSE of prediction results: (a) beam-end displacement and (b) pylon tower tilt.

(a) (b)
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 Compared with the unidirectional (forward or backward) prediction sequences, the RMSE of 
the bidirectional prediction sequence is significantly reduced. Therefore, the bidirectional 
prediction method can make full use of the information of the whole data sequence and 
effectively improve the accuracy of the GRU neural network for long-distance sequence 
prediction and abnormal data recovery.

4. Abnormal Data Recovery

 The framework proposed above is used to recover abnormal monitoring data of Waitan 
Bridge. The monitoring data sequences of beam-end displacement sensor BDS1-1 and cable 
tower tilt sensor PTS1-1 from August 21 to August 27, 2020 are selected. As shown in Figs. 9(a) 
and 10(a), there are outliers and missing data in data segments A and B, respectively. After 
abnormal data are eliminated, the monitoring data are recovered by using the data recovery 
framework. A two-day data sequence, which contains 1440 data points before each abnormal 
data segment, is selected to train the GRU neural network model for forward prediction. 
Similarly, a two-day data sequence of data after each abnormal data segment is also selected to 
train the backward prediction model. Finally, bidirectional prediction is carried out to recover 
the eliminated abnormal data. The data recovery results are shown in Figs. 9(b) and 10(b). The 
regular diurnal variation of the normal monitoring data can be found in the recovered data. The 
results in the figure indicate that abnormal data recovery ensures the integrity and practicability 
of the monitoring data of the bridge.
 To further demonstrate incorrect structural assessment caused by abnormal monitoring data, 
Figs. 11(a) and 12(a) show the correlation scatter plots of beam-end displacement–(structural) 
temperature and pylon tower tilt–temperature. In the figures, the linear regression equations of 
the structural responses and the structural temperature are also presented. In the equations, D, P, 
and T denote the beam-end displacement, pylon tower tilt, and structural temperature, 
respectively. The scatter points of abnormal data are also shown. It is found that the coefficients 
of determination R2 of the two linear equations are low. Hence, abnormal data should be 
recovered to regain the accuracy and integrity of the monitoring data.
 Figures 11(b) and 12(b) show the correlation scatter plots of beam-end displacement–
temperature and pylon tower tilt–temperature after abnormal data recovery. Compared with the 

Fig. 8. (Color online) Prediction results: (a) beam-end displacement and (b) pylon tower tilt.

(a) (b)
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Table 1
GRU neural network prediction error.
Prediction Forward Backward Bidirectional
Beam-end displacement 0.1120 0.2073 0.0768
Pylon tower tilt 0.0037 0.0026 0.0017

Fig. 9. (Color online) Beam-end displacement data: (a) original monitoring data and (b) recovery results.

Fig. 10. (Color online) Pylon tower tilt data: (a) original monitoring data and (b) recovery results.

Fig. 11. (Color online) Correlation scatter plots of beam-end displacement BDS1-1 and structure temperature ST-1: 
(a) original monitoring data and (b) recovery results.

(a) (b)

(a) (b)

(a) (b)
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results in Figs. 11(a) and 12(a), the coefficients of determination R2 are greatly improved to more 
than 0.9. This means that more accurate and reasonable linear regression equations of beam-end 
displacement–temperature and pylon tower tilt–temperature are obtained. This study 
demonstrates that abnormal monitoring data recovery can restore the actual structural response 
to a great extent and ensure the integrity and practicability of the monitoring data. The reliability 
of structural state assessment based on structural monitoring data for the bridge is thus 
improved.

5. Conclusions

(i)  There is usually much abnormal monitoring data in structural health monitoring systems. 
Such abnormal monitoring data seriously affect the accuracy and efficiency of data 
analysis, making it difficult to obtain accurate structural states.

(ⅱ)  We propose a framework for abnormal data recovery based on a GRU neural network and 
temporal correlation. The framework is independent of variable correlation and adjacent 
sensors. To improve the prediction accuracy of the proposed framework, the configurations 
of the input and output of the network are optimally determined. To make full use of the 
monitoring data, bidirectional prediction is introduced in the abnormal data recovery 
framework. 

(ⅲ)  The recovery results show that the accuracy of the GRU neural network is markedly 
higher than that of the LSTM network. Moreover, the linear correlation between structural 
response and temperature is greatly improved after abnormal data recovery. The structural 
abnormal monitoring data recovery framework proposed in this study can restore the actual 
structural response to a great extent and ensure the integrity and accuracy of the data. The 
proposed framework is suitable for the recovery of static or regular structural monitoring 
data.

Fig. 12. (Color online) Correlation scatter plots of pylon tower tilt PTS1-1 and structure temperature ST-2: (a) 
original monitoring data and (b) recovery results.

(a) (b)
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