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 For autonomous driving systems to effectively replace human drivers, they must be able to 
adapt to harsh weather conditions. Rain and snow can cause noise to be introduced into light 
detection and ranging (LiDAR) point cloud data, which can interfere with the work of the 
perception module of autonomous driving systems. In this work, we collected LiDAR point 
cloud data of snowy weather in Beijing, China, applied current state-of-the-art point cloud 
filtering methods such as dynamic statistical outlier removal (DSOR) and dynamic radius outlier 
removal (DROR) filters, verified the effectiveness of filtering and real-time performance of 
these methods under the snowy weather environment in Beijing, and proposed possible 
improvements to the methods. Experiments showed that the DSOR filter has better performance 
than the DROR filter in snowfall scenarios and is better suited for use in automated driving 
systems.

1. Introduction

 A vehicle autonomous driving system consists of a variety of sensors working together to 
respond to various situations that occur while the vehicle is driving. Light detection and ranging 
(LiDAR) is one of the core sensors in the perception system of an autonomous vehicle (AV). 
Owing to its high precision and high acquisition frequency, LiDAR is a key sensor for prediction, 
ranging, and positioning functions in AV systems. With the continuous improvement of 
technology and the reduction of costs, the importance of LiDAR is increasing. Because of the 
short wavelength of the pulse signal and the inherent nature of the optical pulse signal, which 
easily diverges, the optical pulse signal is easily reflected by particles, resulting in the defect that 
it is easily disturbed in LiDAR. In harsh climates with, for example, sand, rain, and snow, noisy 
point signals reflected by these particles can obscure LiDAR point cloud data and reduce 
visibility. As a result, the signal-to-noise ratio of LiDAR sensor data obtained by an AV sensing 
system is significantly reduced, which will affect the performance of the AV perception system.
 Noise caused by snow particles is removed while preserving details of environmental 
features, which are required for autonomous localization and navigation. Snow particle noise can 
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easily lead to incorrect judgments in the AV perception system with LiDAR as the core sensor. 
For example, falling snow may occlude oncoming vehicles and evade Autoware’s Euclidean 
clustering for object detection.(1) The mechanism of snow noise generation is shown in Fig. 1. 
Neural networks trained on large datasets exhibit reduced performance under winter snow 
conditions, and the lack of datasets containing snow conditions is one of the possible factors.(2) 
For this purpose, Matthew et al.(3) collected a dataset of winter snowfall scenes in the Waterloo 
region of Canada that contains 7000 frames of annotated data. Martin et al.(4) proposed a 
physically based method for a snowfall scene simulation algorithm to improve the robustness of 
3D target detection.
 Conventional point cloud noises are processed by corresponding noise filter methods, and 
good filtering effects have been achieved. However, for noise in some special scenes, the 
effectiveness of conventional filtering methods is poor. The noise points generated by snow or 
rain can easily interfere with the perception ability of an AV sensing system, resulting in false 
detections. Therefore, the LiDAR point cloud must be filtered before it can be used reliably. The 
density of snow particle noise is inversely proportional to the detection distance of the LiDAR 
sensor; as the distance increases, the density of noise gradually decreases. These characteristics 
endow snow particle noise with a unique noise distribution different from that of traditional 
point cloud noise, which requires special filtering methods to filter out.

2. Literature Review

 LiDAR point cloud filtering methods can be divided into two categories: those based on 2D 
space and those based on 3D space. Filtering methods based on 2D space include spatial-
coordinate-system-based, depth-and-color-based, and segmentation-based filtering methods. 
These methods are not only unable to effectively remove snow particle noise but also have the 
negative effect of smoothing the edges of key point features. Yao et al.(5) proposed the principal-

Fig. 1. (Color online) Mechanism of snow particle noise generation.
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component-analysis-based adaptive clustering (PCAAC) filtering method by combining the 
principal-component-analysis and density-based clustering methods. The PCAAC method 
removes snow noise by filtering out sparse point cloud areas after reducing the dimensionality 
for 3D point clouds and has high scalability because of its low time complexity. However, owing 
to the inherent limitations of clustering methods, in high-density snow, their effectiveness in 
noisy areas is low, and clustering technology will classify high-density snow noise areas as 
environmental features. 3D-space-based filtering methods, including grid, statistical outlier, and 
radius outlier filtering methods, can directly process LiDAR point cloud data but lack 
adaptability to environments that are, for example, snowy. Usually, snowflake noise cannot be 
effectively filtered out. Ronnback et al.(6) analyzed the relationship between the distribution 
range of snowflakes and the LiDAR detection distance in a snowy weather environment and 
found that the gamma distribution is suitable for describing the distribution law of snowflakes in 
LiDAR sensor data. Charron et al.(7) proposed a point cloud filtering method based on an 
adaptive radius neighborhood search to obtain the local optimal solution by iteratively searching 
the neighborhood of the target point. This method has good filtering effectiveness on isolated 
noise points. However, since these methods are based on spatial proximity, single reflected 
signals that have no neighbors in the neighborhood are discarded, causing the number of signal 
points classified as noise to increase with the distance, thereby reducing the visibility of the 
sensor. Balta et al.(8) proposed a fast clustering statistical outlier filtering method based on the 
statistical outlier filtering method. This method down-samples the point cloud data and applies 
the fast clustering statistical method, which improves the algorithm performance compared with 
the statistical outlier removal (SOR) filtering method. The intensity-based filter method removes 
noise by presetting the LiDAR reflection intensity threshold. However, the reflection intensity 
depends on the laser wavelength and target reflectivity. If the target detection and classification 
is only based on the reflection intensity in a snow particle scene, it will be affected by a large 
area of snow or environmental features with the same reflection intensity as snowflakes, and it 
has the limitation of an unreliable single attribute in detection and classification. To resolve this 
problem, Park et al.(9) proposed a low-intensity outlier removal (LIOR) filtering method by 
combining the reflection intensity filtering method and radius outlier removal (ROR). This 
method sets the point cloud reflection intensity threshold for preliminary screening of the point 
cloud, and then applies ROR to the preliminary screening results as secondary screening to 
compensate for the unreliable limitation of a single attribute of the reflection intensity filtering 
method. On the basis of LIOR, Zhong et al.(10) optimized the ROR to the dynamic radius outlier 
removal (DROR), which further improved the effectiveness of the filtering method. 
Kurup et al.(11) proposed the dynamic statistical outlier removal (DSOR), which optimizes the 
SOR method by adaptively adjusting the standard deviation threshold in the SOR method as the 
LiDAR detection distance increases, which further improves the filtering accuracy compared 
with the DROR. Because it has low time complexity, there is space for further optimization in 
the future. In terms of deep-learning technology, Heinzle et al.(12) proposed a LiDAR point cloud 
filtering method based on the convolutional neural network deep-learning framework. 
Experiments showed very high filtering effectiveness in rainy scenes with this approach. 
Pfeuffer et al.(13) proposed a robust learning method that enables neural networks to learn to 
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handle unknown noise, greatly improving robustness under adverse weather conditions. The 
filtering effect in snowy scenes must be further verified, and this method requires the additional 
use of sensors, such as visual cameras, to achieve filtering functions. The recognition 
classification effect can also be impacted in low light scenes such as at night.
 Under the weather conditions of snowfall, the reflectivity of snowflakes on LiDAR light 
signals varies because of different sensor models. The collection of dataset information and the 
performance of filtering methods for datasets for adverse climate environments are very 
important in the research and development of datasets for AV performance. Michaud et al.(14) 
presented the behavioral characteristics of four LiDAR systems (Velodyne HDL-32E, SICK 
LMS151, SICK LMS200, and Hokuyo UTM-30LX-EW) under snowfall conditions and 
concluded that the snowfall has less impact outside a range of 10 m from the LiDAR.
 In the present work, we collected snowy environment point cloud data in Beijing, China, 
based on vehicle LiDAR and applied current advanced noise removal methods to the data, 
explored the characteristics and filter methods of LiDAR point cloud noise under snowy climate 
conditions in north China, and analyzed these methods. Accordingly, we evaluated the specific 
performance of each method for the snowy climate of northern China and analyzed the space for 
improvement of future denoising methods.

3. Datasets and Methods

3.1 LiDAR datasets

 The point cloud data used in this paper were collected from a 200-m-long road in the 
southeast of Beijing University of Civil Engineering and Architecture; a total of 100 GB of 
LiDAR data were captured with a volume of 3000 frames. The weather conditions were stable 
during the collection period, and there were no significant changes in snowfall, ensuring the 
stability of weather conditions in the data. The point cloud data contained environmental 
features, such as vehicles, signage, pedestrians, buildings, and streetlights, which are conducive 
to the subsequent observation of the filtering method to retain the effect of environmental 
features, as shown in Fig. 2.
 The point cloud data collection equipment included an AgileX robot, which has a stable 
moving speed of 5 m/s and the ability to absorb shocks, ensuring a stable viewing angle for 
LiDAR and ensuring that point cloud data are obtained with a uniform transition in each frame. 
The 40-line LiDAR system used in this study (Hesai Pandar40) has a detection distance of up to 
200 m, a total vertical field of view of 23° from −16° to +7°, a minimum vertical angle resolution 
of 0.33°, a minimum horizontal angle resolution of 0.2°, and an acquisition speed of 10 fps, 
enabling it to accurately obtain details of the environmental features in the collected road 
section, as shown in Fig. 3.

3.2 Filter methods

 LiDAR point cloud noise will interfere with the perception module of the AV system, causing 
the AV planning module to make incorrect decisions, resulting in potential safety hazards. In 
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snowy weather, a large quantity of snow particles diffusing in space will generate a large amount 
of snow particle noise, much of it concentrated in the area near the LiDAR sensor, which will 
cause significant interference, affecting the LiDAR sensing performance. For this reason, 
methods have been proposed to reduce the influence of snow particle noise. In the 3D point 
cloud filtering method, ROR and SOR are traditional methods for removing noise from point 
clouds in 3D space.
 ROR traverses each point in the point cloud data by predefining the threshold of the number 
of adjacent points and the search radius, and determines whether the number of adjacent points 
in the neighborhood of the search radius of the point is lower than the threshold number of 
adjacent points; if so, the point is classified as noise; otherwise, it is classified as an 
environmental feature, as shown in Fig. 4.
 SOR uses a Gaussian distribution function to describe the point cloud data model and filters 
the noise by judging the distance between the point and the set of points in its neighborhood. The 
method predefines the number of adjacent points to be queried and the standard deviation 

Fig. 2. (Color online) Road conditions during data collection.

Fig. 3. (Color online) Data collection equipment.
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multiple threshold. By traversing each point in the point cloud data, the average distance between 
the point and the adjacent points is calculated, and the sum of the distances between the point 
and all adjacent points is judged as to whether it is greater than the classification threshold; if it 
is greater than the threshold, it is classified as noise; otherwise, it is classified as an environmental 
feature. The threshold calculation formula is

 ( )Threshold µ σ β= + × , (1)

where μ is the mean, σ the standard deviation, and β a constant.
 The ROR and SOR methods cannot adapt to the special distribution law of snow particle 
noise and usually cannot retain the medium- and long-distance environmental characteristics 
while filtering out the noise. To this end, improvements have been made to these two methods to 
improve the effectiveness of filtering and time efficiency of the filtering method under snowy 
weather conditions.
 DROR is an improved method of ROR that adapts the search radius of ROR by optimizing 
the algorithm structure, enabling DROR to retain more medium- and long-distance 
environmental characteristics than ROR, as shown in Fig. 5. DROR first performs k-dimensional 
tree (KD-tree) preprocessing on the point cloud data, then traverses each point in the data, and 
determines the number of adjacent points within the search radius. Points with less than a 
threshold number of neighboring points are classified as noise and other points are classified as 
environmental features. The search radius is calculated as

 R d β α= × × , (2)

where R is the search radius, d the Euclidean distance from the point to the LiDAR sensor, β a 
constant, and α the horizontal angular resolution of LiDAR.
 DSOR is an improved method of SOR that adapts the threshold of SOR by optimizing the 
algorithm structure so that the threshold is proportional to the Euclidean distance from the point 
to the LiDAR sensor to filter out more snow particle noise. DSOR first performs KD-tree 

Fig. 4. (Color online) Principle of ROR method.
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preprocessing on the point cloud data, then traverses each point in the data, calculates the 
average distance and standard deviation from the current point to all points in the data, and 
calculates the global threshold and dynamic threshold using Eqs. (3) and (4). Points with an 
average distance less than the dynamic threshold are classified as noise and other points are 
classified as environmental features.

 ( )gT µ σ β= + ×  (3)

Here, μ is the mean, σ the standard deviation, and β a constant.

 d gT T r d= × ×  (4)

Here, Tg is the global threshold, r a constant, and d the Euclidean distance from the point to the 
LiDAR sensor.

4. Results and Discussion

 The algorithm proposed in this paper was verified using the data collected by the Hesai 
Pandar40 40-line LiDAR system. The hardware used was an AMD Ryzen 9 5800X CPU with 
32 GB RAM; all the filters were implemented on this device. The LiDAR point cloud data used 
during the experiments were collected from Beijing University of Architecture and Civil 
Engineering. The experimental scene was sleet and snowy weather. The ROR, SOR, DROR, and 
DSOR were applied to the scenarios to verify the effectiveness of denoising and their real-time 
performance for this dataset. All results were obtained using at least 100 point cloud samples.
 We uniformly sampled at least 100 frames from the collected 3000 frames of point cloud data 
as the original experimental data, applied different filtering methods to the same original data, 

Fig. 5. (Color online) Principle of DROR method.
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and compared the experimental results of the filtering methods from multiple aspects to 
comprehensively evaluate their performance. The ground-truth data of the classification results 
used to verify the filtering method were created using Cloud Compare software.(15) By manually 
labeling the noise and environmental features of all of the sampled data frames, the noise and 
environmental features were classified and extracted to obtain accurate verification results.

4.1 Filter result

 Figure 6 shows the visualization point cloud results of original data, ROR, SOR, DROR, and 
DSOR. The original point cloud shows clusters of snowflake points scattered in the area around 
the LiDAR system. Although the ROR removes the noise points, it also removes many 
environmental features. Compared with the SOR and DROR, the DSOR retains many 

(a) (b)

(c) (d)

(e)

Fig. 6. (Color online) Visualization results of (a) original point cloud and filtered point clouds of (b) ROR, (c) SOR, 
(d) DROR, and (e) DSOR.
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Fig. 7. (Color online) DSOR preserves more environmental features than SOR.

Fig. 8. (Color online) DSOR preserves more environmental features than DROR, but DROR removes more noise 
in the area around the LiDAR system.

environmental features while removing noise points, but the DROR removes more noise in the 
area around the LiDAR system. For example, the SOR removes some of the tree branches and 
building features classified as noise at medium and long distances, and the DROR removes some 
of the vehicle feature points around the LiDAR area as noise, as shown in Figs. 7 and 8.

4.2 Precision and recall

 The precision and recall are suitable evaluation indexes for the binary classification method. 
There are four types of classification results in the binary classification method, namely, true 
negative (TN), false negative (FN), true positive (TP), and false positive (FP). In Table 1, the 
column headings refer to the classification result of the ground-truth data and the row labels 
refer to the classification result of the sample data.
 LiDAR point cloud denoising in snowy weather must preserve as many environmental 
features as possible while removing snow particle noise. When using precision and recall to 
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evaluate the data quality for each filtering method, a higher precision value means that more 
environmental features are preserved, and a higher recall value means that more noise is 
removed. From the experimental results, we calculated the precision and recall using Eqs. (5) 
and (6), respectively.

 TPPrecision
TP FP

=
+

 (5)

 TPRecall
TP FN

=
+

 (6)

 As shown in Fig. 9, the ROR and SOR filters have extremely low precision due to the removal 
of many environmental feature points. The DSOR has 26.41 percentage points higher precision 
(74.63%) than the DROR (48.22%). This means that the DSOR preserves more environmental 
feature points than the DROR. The DROR has 3.78 percentage points higher recall (63.88%) than 
the DSOR (60.10%). This means that the DROR removes more noise points than the DSOR.

4.3 Real-time performance

 With increasing vehicle driving speed, the decision module of an AV system must acquire 
point cloud data with a higher frame rate to make timely corrections to the AV behavior during 
driving. The sampling frequency of the Hesai Pandar40 LiDAR sensor is 10 Hz. To make full 
use of the performance of the LiDAR sensor, the execution time of the filtering method must be 
as short as possible; the shorter the execution time of the filtering method, the stronger its real-
time performance and the higher the driving speed for which it has satisfactory performance. 
The filtering algorithm used in the present work was designed in C++ programming language to 
ensure the execution efficiency of the filtering method. The point cloud data were read, written, 
and processed using the Point Cloud Library.(16) The simulated driving scenario and the 
effectiveness of filtering were demonstrated using the Robot Operating System.(17)

 Table 2 shows the average execution times of the ROR, SOR, DROR, and DSOR, where all 
the results were obtained using at least 100 point clouds. The DROR has the longest execution 
time with an average of 706.97 ms. The ROR has the shortest execution time with an average of 
99.02 ms. The SOR and DSOR have a longer execution time than the ROR filter but are much 
faster than the DROR, both filters having an approximately 82% shorter execution time than the 
DROR.

Table 1
Four types of classification results.
Data type Environmental feature Noise
Environmental feature TN FN
Noise FP TP
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5. Conclusion

 Snowy weather can interfere with the perception system of an AV and may cause its decision-
making system to make incorrect decisions, therefore posing a potential safety hazard. In this 
paper, we introduced the current LiDAR point cloud filters for winter snowfall conditions, 
collected a winter snowfall LiDAR dataset in Beijing, China, and validated several filtering 
methods using the collected dataset to evaluate their filtering result and real-time performance.
 The results show that the ROR and SOR are unable to preserve environmental features at 
medium and long distances and thus cannot meet the data requirements for autonomous driving 
under snowfall conditions. As state-of-the-art filters, both DROR and DSOR achieved good 
filtering results. Compared with the DROR, the DSOR preserves more environmental features, 
has a higher execution speed, and has a precision 54.77 percentage points higher than that of the 
DROR. In areas close to the LiDAR sensor, the DROR removes more noise points than the 
DSOR, but the DROR cannot be used in scenarios with real-time filtering due to its average 
running time of up to 706.97 ms. Therefore, the DROR is not suitable as a filtering method for 
LiDAR data in autonomous driving scenarios. If the DSOR is used in combination with the 

Table 2
Execution times of four filters compared in this study.
Filter Average execution time (ms)
ROR 99.02
SOR 138.14
DROR 706.97
DSOR 130.11

Fig. 9. (Color online) Statistical results for precision and recall.
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intensity-based filtering method, it will be able to preserve more environmental features without 
any reduction in processing speed. In the future, we will continue to evaluate the performance of 
these filtering methods in severe climatic environments such as rainfall and sleet.
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