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 With the development of synthetic aperture radar (SAR) technology, SAR images are being 
widely applied, such as in SAR image fusion and transformation detection, where image 
matching is a key procedure. In this paper, a practical and rapid subpixel matching method is 
proposed for spaceborne SAR images. The subpixel SAR-oriented features from an accelerated 
segment test (SAR-OFAST) detection operator is employed to improve the detection accuracy of 
keypoints. By determining the overlapping area of master–slave images, the search range of 
matching is reduced, and the strategy of block matching is adopted to save computing resources. 
To verify the accuracy and reliability of the proposed matching method, several groups of SAR 
images obtained with an identical observation orientation and diverse observation angles were 
tested using the proposed and other methods. Experimental results demonstrate that the proposed 
method has a higher speed than other methods with similar performance in other indicators, 
making it more suitable for scenarios requiring high efficiency.

1. Introduction

 Synthetic aperture radar (SAR), an active microwave remote sensing imaging system, has 
been widely applied in many fields such as national defense, economy, agriculture, and 
environmental monitoring because of its advantages of all-day, all-weather, and high-resolution 
imaging.(1) With the increasing number of SAR satellites, more images are being acquired by 
SAR systems under diverse polarization modes, wavebands, and viewing angles. The use of 
these images in change detection, 3D reconstruction, super-resolution reconstruction, and other 
applications requires image matching.
 Image matching is a method to automatically obtain homologous points between two images. 
A rapid and effective matching approach is required because of the large size of spaceborne SAR 
images and the long matching time. In addition, the detection accuracy of keypoints determines 
the effectiveness of feature-based matching methods.
 Early research on image matching involved optical images. In this regard, many practical and 
effective algorithms have also been proposed for detecting features such as the Harris detection 
operator,(2) the features from an accelerated segment test (FAST) detection operator,(3) the scale-

mailto:chengcailin%40126.com?subject=
https://doi.org/10.18494/SAM3982
https://myukk.org/


4706 Sensors and Materials, Vol. 34, No. 12 (2022)

invariant-feature transform (SIFT) algorithm,(4) and the speeded up robust features (SURF) 
algorithm,(5) an improved version of SIFT. By considering the efficiency of image matching, the 
oriented FAST and rotated BRIEF (ORB) algorithm(6) was proposed to greatly reduce the 
consumption time for image matching.
 Speckle noise exists in SAR images because of the different imaging mechanisms used for 
SAR images and optical images and affects SAR image matching. For this reason, some scholars 
have improved keypoint detection by developing SAR-SIFT(7,8) and the bilateral filter SIFT 
(BFSIFT)(9) algorithm. Some scholars have also improved the extraction of descriptors by 
developing the multiscale Gabor odd filter (M-GOF)(10) and the radiation-variation insensitive 
feature transform (RIFT)(11) algorithm.(12–14) However, the construction of descriptors of these 
well-performing matching methods is often complicated, markedly increasing the matching 
time.
 To address this problem, an improved ORB approach called SAR-ORB is proposed in this 
paper. By suppressing the speckle noise of SAR images, a procedure for keypoint extraction and 
descriptor construction using the ORB algorithm is proposed. A subpixel corner detection 
method to obtain subpixel keypoints is also introduced. To further improve the efficiency of 
SAR image matching, the geometric positioning information of SAR images is utilized to 
narrow the matching range of SAR images. In addition, the timeliness and accuracy of the 
matching results are improved by dividing the overlapping area of the master–slave images into 
small master–slave image pairs. The accuracy of the proposed method is evaluated using SAR 
image data with an identical observation orientation and diverse incidence angles and compared 
with experimental results obtained by SAR-SIFT, RIFT, and single-scale Gabor odd filter 
(S-GOF) algorithms. The experimental results indicate that the proposed method has an 
acceptable root mean square error (RMSE), high accuracy index, and high speed.

2. Proposed Method

 Image matching mainly includes four processes: keypoint detection, feature description, 
keypoint matching, and mismatched point filtering. Because of the large size of SAR images, 
global matching consumes a large amount of computing resources, so the method of block 
matching is adopted in this work. The matching process is shown in Fig. 1.

2.1 Calculation of overlap region

 Using the rational polynomial coefficients (RPCs) attached to spaceborne SAR images, the 
coordinates of four corners of one image in another image are calculated through forward and 

Fig. 1. Flowchart of the proposed method.
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inverse transformation to obtain the overlapping area of the master–slave images. Figure 2 
illustrates the conversion of the corner coordinates of an image into those of another image.

2.1.1 Calculation of ground coordinates

 Through the RPC forward transformation, the ground coordinates corresponding to the 
corner coordinates of images can be obtained.(15) The formulas used are
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where (X, Y) represents the regularized image coordinates, (P, L, H) represents the regularized 
geographic coordinates [P is latitude, L is longitude, and H is the elevation at (P, L)], and, 
NumP(X, Y, H), DenP(X, Y, H), NumL(X, Y, H), and DenL(X, Y, H) represent the third-order 
polynomial terms of (X, Y, H).
 Since the initial elevation H corresponding to corner O is unknown, Eq. (1) and the global 
1-km-resolution digital elevation model (DEM) are used to iteratively find H, which is 
substituted into Eq. (1) to obtain the ground coordinates (P, L, H) corresponding to corner O.

2.1.2 Calculation of image coordinates

 The image coordinates corresponding to the ground coordinates are obtained by the RPC 
inverse transformation.(16) The formulas used are
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The corresponding image coordinates (X, Y) can be obtained by substituting the geographical 
coordinates (P, L, H) obtained in Sect. 2.1.1 into Eq. (2).

Fig. 2. (Color online) Illustration of image corner coordinate conversion.
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2.1.3 Calculation of overlapping region

 Through the method described in Sects. 2.1.1 and 2.1.2, the image coordinates of four corners 
of two corresponding SAR images can be calculated. By selecting the largest inscribed 
rectangular region within the range of the four points as the overlapping region of two master–
slave SAR images, the search area is reduced. An example of overlapping areas is shown in Fig. 
3, where the red box is the ultimately selected search area.

2.2 SAR image segmentation

 The direct matching of two SAR images or their overlapping areas requires considerable 
computing resources. In this work, the search areas are divided into several non-overlapping 
small master–slave image pairs, which are matched in turn to obtain the final matching results. 
Specifically, the search area of the master image is divided into image blocks with a size of 600 
× 600 (chosen after considering the effect of the number of block images and the reduced image 
size on computing resources), and the search area of the slave images is divided into the same 
number of small master–slave image pairs with the same length:width ratio between the search 
areas of the slave and master images. Finally, several small master–slave image pairs are 
obtained. 

2.3 Subpixel SAR-OFAST

 The oriented FAST (OFAST) process, a rapid corner detection process with an orientation 
component, is greatly affected by noise in the images when using the ORB algorithm,(6) while 
SAR images contain inherent speckle noise. Since corners are common on edges, they are 
usually detected in the edges. Some SAR image edge detection algorithms, such as the ratio of 
averages (ROA)(17) and ratio of exponentially weighted averages (ROEWA),(18) can effectively 

Fig. 3. (Color online) Overlapping area of two master–slave SAR images.
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suppress speckle noise and detect SAR image edges. In this work, the ROEWA method is used to 
calculate the horizontal and vertical gradients of SAR images.

2.3.1 Calculation of SAR edge image

 As an example, the mean of a pixel 0 0( , )�  in the direction i = 3 is defined as
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where α is the exponential weight.
 The ratio gradient for orientation i is defined as
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 The ratio gradients in the horizontal (i = 3) and vertical (i = 1) directions can be calculated by 
Eq. (4). The SAR edge image can be acquired using

 2 2
, 1, 3,nG T Tα α α= + .  (5)

2.3.2 SAR-OFAST: FAST keypoint orientation

 Since FAST does not generate multiscale keypoints, the scale edge pyramid of the SAR 
image, for which each edge layer is calculated as described in Sect. 2.3.1, is employed, and the 
FAST keypoints are detected at each edge layer of the pyramid. The number of initial features 
selected from each layer decreases with decreasing scale factor per edge gradient layer. The 
intensity centroid is used to compute the orientation of corners obtained by FAST.

2.3.3 Calculation of subpixel corner

 Since most corner coordinates are not integers, more accurate corner coordinates (i.e., 
subpixel corner coordinates) must be calculated. Therefore, a subpixel corner detection method 
is introduced to calculate the keypoints obtained in Sect. 2.3.2; thereby, the coordinates of 
subpixel features are obtained. Details of the method are described as follows.
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 There are two cases for a point near a corner: one is an edge point, which is perpendicular to 
the gradient direction of the edge point, such as point p1 in Fig. 4; the other is a point located in a 
smooth area, whose gradient is 0, such as point p0 in Fig. 4. Thus, we can define

 * ( ) 0i iG p q− = , (6)

where q represents a subpixel corner, pi represents a point in the neighborhood of the corner, and 
Gi is the gradient at point pi.
 Because different points in a neighborhood have different influences on the corner, the 
Gaussian weight is introduced into Eq. (6); thus, the coordinate of corner q is
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where ωi is the Gaussian weight at point pi and N is the number of points in the corner’s 
neighborhood.
 A 7 × 7 neighborhood centered on corners detected by the SAR-OFAST operator is selected 
to solve the subpixel corners iteratively.

2.4 SAR image matching

 Using the keypoints calculated in Sect. 2.3, the BRIEF approach(6) is applied to construct 
local binary descriptors of the neighborhoods of keypoints. The Hamming distance between 
descriptors is taken as the metric criterion, and a brute force algorithm is adopted to roughly 
match the selected keypoints. The grid-based motion statistics (GMS)(19) mismatch elimination 
algorithm is used for coarse matches, and the matching result of each small master–slave image 
pair is finally obtained.
 All small segmented master–slave image pairs are matched, and the obtained matching 
results are combined. In the global scope of the overlapping region, the fast sample consensus 
(FSC) algorithm(20) is applied to remove the mismatches, and the ultimate matches of the two 
SAR images are obtained.

Fig. 4. (Color online) Example graph of subpixel corner neighborhood gradient.
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3. Experimental Results

 To verify the performance of the proposed method, we conducted experiments on several 
groups of master–slave SAR images of identical resolution with identical observation orientation 
and diverse observation angles. Details of the experimental data are given in Table 1. The 
obtained results were compared with the matching results for SAR-SIFT, RIFT, and S-GOF 
algorithms (reproduced by C++ in accordance with relevant papers). All experiments were 
performed on a desktop PC with an Intel Core i9 3.5 GHz processor and 128 GB RAM.

3.1 Assessment metrics

(1) Number of correct matches (NCM): For every master–slave SAR image pair, 100 pairs of 
homologous points are manually marked. Then the affine transformation model between 
SAR images is estimated by the marked homologous points. Finally, a distance threshold of 
1.5 pixels is used to further filter the matches filtered by the GMS algorithm. The match 
satisfying the norm (the distance threshold of 1.5 pixels) is correct.

(2) Precision: Precision is defined as NCM/NM, where NM is the number of matches filtered by 
the GMS algorithm.

(3) RMSE: The RMSE is defined as 

 ( ) ( )( )2 2
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i i i i
i
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′ ′= − + −∑ ,  (8)

where (xi, yi) is the correct keypoint of the master SAR image and (x′i, y′i) is the corresponding 
homologous point after the affine transformation.

(4) Average computational time (ACT): This is the average computational time required to match 
each small master–slave image pair. If there is only one small master–slave image pair, the 
computational time is considered as ACT.

Table 1
Experimental data.
Image Orbit Side direction Angle of incidence Image size Resolution (m)
Im1 Ascending Right 48.02 10024 × 11458 3
Im2 Ascending Right 48.83 10024 × 11432 3
Im3 Ascending Right 45.54 10024 × 11419 3
Im4 Ascending Right 53.79  11048 × 10068 3
Im5 Descending Right 54.55  11048 × 10373 3
Im6 Descending Right 50.90  10706 × 11021 3
Im7 Descending Right 46.10  10024 × 11754 3
Im8 Ascending Left 50.34  10706 × 10972 3
Im9 Ascending Left 46.99  10024 × 11730 3
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3.2 Experimental analysis

 Firstly, selecting the small master–slave SAR image pair of Im1 and Im2, we compare our 
matching results with those of the SAR-SIFT, RIFT, BFSIFT, S-GOF, and M-GOF algorithms. 
The matching results are shown in Fig. 5, which shows similar distributions on homologous 
points. Figure 5(f) shows that the proposed method has similar performance to that of the other 
methods in the abundantly textured built-up area but poor performance in the afforested and 
other areas. As can be seen from Table 2, the proposed approach has the highest performance in 
terms of efficiency (i.e., the minimum computational time), although other metrics have slightly 

Fig. 5. (Color online) Matching result of the small master–slave image pair of Im1 and Im2: (a) SAR-SIFT 
algorithm, (b) RIFT algorithm, (c) BFSIFT algorithm, (d) S-GOF algorithm, (e) M-GOF algorithm, and (f) proposed 
algorithm.

Table 2
Contrast matching results of a small master–slave SAR image pair.
Image pair Method NCM RMSE Computational time (s)

Im1 & Im2

SAR–SIFT 82 0.893 1.726
RIFT 90 0.841 17.137

BFSIFT 69 0.872 3.025
S-GOF 95 0.710 20.513
M-GOF 102 0.695 23.728

Proposed 78 0.801 0.529



Sensors and Materials, Vol. 34, No. 12 (2022) 4713

lower performance. Therefore, in the case of good performance of other indicators, the proposed 
method is more efficient than the other algorithms.
 Ten matching tests were conducted using the proposed method and the other matching 
algorithms. Table 3 shows the results obtained.

Table 3
Results obtained with diverse matching methods.
Image pair Method Blocks NM NCM Precision RMSE ACT (s)

Im1 & Im2

SAR-SIFT

195

29383 7646 0.260 1.016 1.689
RIFT 51476 11332 0.220 0.782 16.756

BFSIFT 25658 7348 0.286 0.947 3.103
S-GOF 47233 11147 0.236 0.703 21.237
M-GOF 54357 12564 0.231 0.714 24.035

Proposed 23513 7245 0.308 0.848 0.541

Im1 & Im3

SAR-SIFT

285

18632 4392 0.236 0.984 1.701
RIFT 14893 3986 0.268 0.823 16.433

BFSIFT 13765 4035 0.293 0.967 3.043
S-GOF 16260 4504 0.277 0.724 20.401
M-GOF 17943 4701 0.262 0.734 24.147

Proposed 12325 3834 0.311 0.829 0.515

Im1 & Im4

SAR-SIFT

288

4021 676 0.168 0.963 2.316
RIFT 4868 857 0.176 0.802 17.768

BFSIFT 3564 624 0.176 0.945 3.062
S-GOF 4209 926 0.220 0.764 22.329
M-GOF 4927 1034 0.210 0.743 24.357

Proposed 2298 602 0.262 0.849 0.457

Im2 & Im3

SAR-SIFT

168

9157 2320 0.253 0.986 2.436
RIFT 10635 2669 0.251 0.785 19.719

BFSIFT 8427 2347 0.279 0.941 3.049
S-GOF 14834 3817 0.257 0.717 22.780
M-GOF 15124 4018 0.266 0.728 24.146

Proposed 6785 1896 0.279 0.821 0.583

Im2 & Im4

SAR-SIFT

238

4710 1155 0.245 0.934 2.261
RIFT 5242 1236 0.236 0.802 18.937

BFSIFT 3516 917 0.261 0.951 3.082
S-GOF 7238 2106 0.291 0.756 22.038
M-GOF 7936 2284 0.288 0.762 24.316

Proposed 2919 806 0.276 0.756 0.549

Im3 & Im4

SAR-SIFT

238

4658 846 0.182 0.947 2.232
RIFT 3894 745 0.191 0.834 19.218

BFSIFT 3726 718 0.193 0.956 3.061
S-GOF 5362 1169 0.218 0.797 21.686
M-GOF 5719 1354 0.237 0.763 24.126

Proposed 2259 512 0.227 0.830 0.547

Im5 & Im6

SAR-SIFT

272

9936 2515 0.253 0.955 2.187
RIFT 15464 3929 0.254 0.794 17.651

BFSIFT 8747 2614 0.299 0.976 3.057
S-GOF 17178 4064 0.237 0.732 21.844
M-GOF 18246 4658 0.255 0.736 24.039

Proposed 7967 2397 0.301 0.805 0.509
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Table 3
(Continued).
Image Pair Method Blocks NM NCM Precision RMSE ACT (s)

Im5 & Im7

SAR-SIFT

288

3003 726 0.242 0.966 2.411
RIFT 4297 1134 0.264 0.795 22.512

BFSIFT 2865 702 0.245 0.982 3.095
S-GOF 6705 1978 0.295 0.740 23.201
M-GOF 7012 2048 0.292 0.713 24.237

Proposed 2625 671 0.256 0.790 0.573

Im6 & Im7

SAR-SIFT

252

22884 5264 0.230 0.976 2.407
RIFT 40189 9967 0.248 0.789 22.498

BFSIFT 20972 4856 0.232 0.936 3.116
S-GOF 33325 10264 0.308 0.720 22.836
M-GOF 38156 10089 0.264 0.735 24.327

Proposed 23513 7245 0.308 0.848 0.541

Im8 & Im9

SAR-SIFT

234

7218 1725 0.239 0.961 2.136
RIFT 11351 2202 0.194 0.828 21.132

BFSIFT 6436 1535 0.239 0.975 3.048
S-GOF 11349 2902 0.258 0.730 22.185
M-GOF 12647 3146 0.249 0.714 24.175

Proposed 6137 1754 0.286 0.823 0.489

 As can be seen from Table 3, although NM and NCM of the proposed method are usually the 
lowest for the ten matching pairs, the minimum NCM of the proposed method can exceed 500, 
which can meet the minimum quantity requirements of subsequent applications. In addition, in 
all the experiments, the proposed method is the fastest, usually requiring about 0.5 s. The RMSE 
of the ten experiments is less than 1 pixel, substantially superior to those for RIFT, SAR-SIFT, 
and BFSIFT and slightly inferior to those for S-GOF and M-GOF. Moreover, the precision of the 
proposed method is substantially the highest.
 The results indicate that the proposed method is generally superior to the other algorithms in 
terms of indicators, although the NCM has a low value. In general, with increasing difference in 
the incidence angle between the master and slave images, the geometric distortion between 
surface features becomes larger, resulting in a lower NCM. Moreover, homologous points are 
evenly distributed in overlapping areas but less evenly distributed in afforested and mountainous 
areas. Note that not all the tests employ parallel computing or GPU acceleration, which would 
further increase the running speed.

4. Conclusions

 In this work, a real-time and high-precision matching method based on an improved ORB 
algorithm is proposed for SAR images. The subpixel SAR-OFAST method is used to improve 
the detection accuracy of keypoints in the proposed method, and the geometric positioning 
information attached to SAR images is used to reduce the search area among master–slave SAR 
images. A method of block matching is also employed, which can effectively save computing 
resources. Experimental results on several pairs of SAR images of identical resolution with 
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identical observation orientation but diverse incidence angles demonstrate that the proposed 
method has high efficiency and accuracy in matching images with identical resolutions.
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