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	 The steep gradient of artificial slopes on forest roads reduces the natural survival rate of 
vegetation. Uncovered vegetation slopes are exposed, resulting in soil displacement including 
soil erosion and sedimentation. Therefore, it is necessary to establish an optimized slope 
management plan with high accuracy for quantifying or detecting the erosion and deposition of 
artificial slopes. In this context, we investigated the possibility of using a terrestrial laser 
scanning system (TLS) to estimate soil displacement activity on a cut slope on a forest road. The 
soil displacement was estimated using time series point cloud data captured by a TLS. The 
differences among the captured point cloud data were calculated using a digital evaluation model 
of difference methodology. To validate the performance of the TLS for soil displacement 
estimation, 10 soil displacement markers were installed in a cut slope. The study revealed that 
the TLS detected the differences in soil erosion and deposition activity on an area of a steep 
slope. The differences in soil erosion and the depth of soil sediment were estimated to be 1.36 
and 0.3 cm, respectively. The results of this research indicate the feasibility of using a TLS to 
investigate the surface displacement on a slope area, despite the errors of the estimated erosion 
and deposition.

1.	 Introduction

	 The forest road network is very important in forest activities including forest management, 
timber harvesting, regeneration, and protection.(1,2) However, artificial slopes on forest roads 
have several problems such as soil erosion and sedimentation.(3–5) Several factors affect soil 
erosion on a steep slope, including vegetation cover,(6,7) the gradient of the slope,(8,9) the intensity 
of precipitation,(7,10) and the soil texture.(11–13) In addition, the soil erosion and sedimentation on 
slopes are a major concern in water drainage management of forest roads. However, the 
vegetation survival and growth rates in steep slopes are limited due to the unstable soil condition 
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and soil run-off.(14–17) For these reasons, several studies have been conducted to investigate 
efficient ways to monitor forest road displacement activity using field-based and remote sensing 
techniques.
	 In general, soil erosion and displacement on slopes are evaluated by field-based methods 
including leveling and the installation of sensors to detect soil movement.(18) However, 
conservative methods such as leveling are insufficient for the quantitative and accurate 
evaluation of slope displacement.(19) In addition, monitoring sensors are expensive to install, 
require continuous maintenance, and cannot guarantee data continuity.
	 Recently, laser or light detection and ranging (LiDAR) scanning systems have been used to 
detect soil surface displacement.(20–24) Several laser scanning systems for different types of 
applications exist. Terrestrial-fixed, terrestrial-mobile, and airborne systems are classified by the 
types of platforms to which they are applied. In forestry, airborne systems employing lasers are 
mostly used because of their ability to cover large areas. However, airborne systems have limited 
ability to detect the under-canopy inventory due to the high density of the canopy layer, which 
includes crowns and tree leaves. To overcome these limitations, terrestrial laser scanning 
systems (TLSs) are used to gather under-canopy point cloud data (PCD). The primary advantage 
of using a TLS is the ability to obtain high-intensity PCD in the under-canopy area. A TLS 
application provides precise 3D PCD for detecting the ground surface, making it suitable for 
activities such as soil displacement and erosion monitoring.(25–28)

	 In general, cross-sectional, triangular prism, grid, and digital evaluation model (DEM) of 
difference (DoD) methodologies are used to estimate surface displacement.(29–33) A cross-
sectional methodology is mainly used in landslide surveys.(31,32) The triangular prism method is 
the most accurate volume estimation method,(31–33) but it is difficult to accurately detect 
elevation changes. The DoD methodology is commonly adopted to estimate the vertical 
difference (VD) between two sets of time series data with high spatial resolution.(29,30) In 
addition, the grid methodology is widely used to estimate the volume of surface 
displacement.(31–33)

	 In this background, in this study we investigated the possibility of estimating the surface 
displacement of a slope on a forest road using a TLS-based digital terrain model (DTM). We 
estimated the VD by applying the DoD methodology. In addition, the volume of the displacement 
was estimated using the grid methodology. The results of this study will provide valuable 
information for the future application of 3D scanning systems by forest researchers and 
managers interested in cost- and labor-efficient forest road management.

2.	 Materials and Methods

2.1	 Overview

	 A flow chart of the overall research procedure is presented in Fig. 1. Time series PCD were 
acquired at research sites, and the collected PCD were processed. Then co-registration of paired 
PCD was conducted using the iterative closet point (ICP) algorithm. We used the DoD method to 
calculate the change between the June 2021 and August 2021 PCD and quantify the areas of 



Sensors and Materials, Vol. 34, No. 12 (2022)	 4789

erosion and deposition.(34) The estimated depth was validated by comparison with field-
measured ground truth data at checkpoints (CHKs).

2.2	 Site description

	 The research site was located in the research forest of Kangwon National University, Bong-
myeong, Chuncheon, Gangwon, South Korea (37°46’07.3”N, 127°50’50.2”E) (Fig. 2). The 
average soil bulk density on the slope surface (0–10 cm soil depth) was recorded as 1.32 g/cm3. 
The gradient of the forest road was approximately 17.81° and the gradient of the artificial cut 
slope was approximately 40.87°.
	 The average annual precipitation and temperature over 30 years (1992–2021) were 1319.59 
mm and 10.90 ℃, respectively. The cut slope on the forest road had been constructed with a 
1-m-high retaining wall to prevent sedimentation. The wet season of South Korea (Jangma) 
generally begins in June or early July and lasts 2–6 weeks. The daily average precipitation in the 
research period (from June 20 to August 6, 2021) was 5 mm and the total precipitation recorded 
was 240.2 mm. The daily average temperature during the study period was 25.62 ℃ at 
Hongcheon weather station, 11 km from the study site.

2.3	 Field survey and PCD acquisition

	 We used a Leica BLK360 imaging laser scanner (Leica Geosystems, Heerbrugg, Switzerland) 
for the terrestrial laser system. The weight of the scanner is 1 kg and the system can collect a 
300° × 360° field of view. The system only records the first return of the laser pulse. The 
capacity of the battery of the scanner is sufficient for one day of scanning and exporting data. 
The scanner can scan an object with a capture speed of 360000 points/s, providing 
300° (vertical) × 360° (horizontal) detection with a radius of 60 m and an accuracy of ±6 mm at 

Fig. 1.	 (Color online) Overall procedure of estimation of VD using TLS.
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10 m. As the distance between the scanner and the object increases, the accuracy slightly 
decreases. At 20 m, the accuracy is 8 mm. In this study, the BLK360 scanner was utilized as the 
TLS for the VD detection and measurement of the cut slope. The study period consisted of two 
days: one before the wet season (BW; June 20, 2021) and one after the intensive precipitation 
period (AP; August 6, 2021), during which the VD of the slope on the forest road was investigated 
to examine the impact of intensive precipitation on the slope surface. The 3D scanning PCD 
were acquired in the same position by marking scanning spots in BW and AP (Fig. 3).
	 To detect the VD between two sets of time series data, a total of 10 CHKs were installed on 
profile AB in Fig. 4, and the VD was measured at each point to validate the VD estimated using 
the TLS. A polyvinyl chloride (PVC) pipe with inner diameter of 2.6 cm and outer diameter of 
2.0 cm was installed on the slope to mark the location of the CHKs (Fig. 4). A ruler with mm 
resolution in the range of 0–50 cm was attached to the PVC pipe to measure changes in the VD. 
The ground truth data were recorded simultaneously with the collection of 3D scanning data. 
The VD on the slope was then calculated through the difference in surface height between BW 
and AP, which was used as ground-measured truth data.

2.4	 Data processing

	 The data acquired using the TLS were converted into PCD format using Autodesk ReCap 
ver. 2021 (Autodesk ReCap, 2021). Co-registration of the time series PCD is essential for 
measuring morphological changes.(35,36) Since there was no spatial information in the 3D PCD, 
the ICP algorithm was adopted in this study. This algorithm statistically minimizes errors in the 
process of the co-registration of sets of PCD (Fig. 5).(37) The ICP algorithm uses a stable 
reference PCD, which is pi ip P∈ P, to determine changes in the target PCD, which is qi iq Q∈ Q; the 
rotation R and translation t between pi and qi are calculated using the following error function 
formula:(22,37,38)

Fig. 2.	 (Color online) (a) Location of study site in experimental forest of Kangwon National University and (b) 
panoramic view of cut slope on forest road.
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Fig. 4.	 (Color online) CHK installation points for measuring surface height on slope, and profile AB showing 
locations of CHKs. The rectangle represents the target area for estimating the VD.

Fig. 3.	 (Color online) (a) BLK360 scanner used as TLS to detect VD of cut slope of forest road, (b) BLK360 
scanner installed at edge of forest road, and (c) two measurements conducted at same point by marking installation 
point with piles.

Fig. 5.	 (Color online) Process of co-registration of two time series of PCD using ICP algorithm. (a) Two time series 
of PCD before co-registration. The yellow PCD was acquired in BW, and the red PCD was acquired in AP. (b) Co-
registration completed using ICP algorithm with the two sets of PCD overlapped. (c) RGB applied to co-registered 
PCD.
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Here, pi ip P∈ P = a point from 3D reference PCD and qi iq Q∈ Q = a point from target PCD.
	 Paired PCD sets were co-registered using the ICP algorithm with a root mean square (RMS) 
difference of 0.00001, 20 iterations, and the final overlap set to 100%. CloudCompare software 
was used to perform the ICP algorithm (CloudCompare ver. 2.12 alpha). For accuracy validation 
of the co-registration alignment, the cloud-to-cloud (C2C) distance was computed with a set 
octree of level 10.
	 The paired DTM was constructed using the paired PCD to estimate the VD of the slope. 
Vegetation was filtered in CloudCompare (ver. 2.12 alpha) using the cloth simulation filter (CSF) 
tool. CSF is a classification algorithm that extracts ground points in discrete return PCD sets. 
The set parameter values were a cloth resolution of 0.1, a maximum of 500 iterations, and a 
classification threshold of 0.5.

2.5	 Assessment of VD on slope surface

	 DoD was calculated using ArcGIS 10.8 to estimate the VD of the slope surface. All vertically 
altered points from DoD were identified as erosion (positive values) or sedimentation (negative 
values). Then, the erosion and sedimentation areas were reclassified for mapping. Lastly, the 
ratio of the areas was calculated. The total volume and the erosion and sedimentation areas were 
estimated using the grid method.
	 The accuracy of the estimated VD of the CHKs was compared with the ground truth data (the 
field-measured height of the surface) at the same location. The PCD of the CHKs were manually 
segmented. The estimated VD was analyzed using MATLAB R2019B (9.7.0.1190202). 
Additionally, the accuracy was validated using the root mean square error (RMSE) and bias 
respectively defined as

	 ( )2ˆi ix x
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n
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where n is the number of estimates, ˆix  is the estimated VD of the CHKs, and xi is the field-
measured ground truth data. Data were analyzed using R statistics (R Core Team, 2021). The 
data were processed and analyzed using an AMD Ryzen 5 3500 CPU 64-bit system (3.60 GHz, 
RTX 3060 Nvidia GPU, 64.0 GB RAM).
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3.	 Results

3.1	 Results of data processing

	 As shown in Table 1, the total processing time was approximately 54 min. Field data 
collection using the BLK360 scanner took 14 min including the installation of the scanner on the 
scanning spot. Filtering using the CSF took 5 min, and the generation of DTMs required 20 s. 
The negative and positive values from DoD corresponded to the sedimentation and erosion 
areas, respectively. These areas were reclassified for the VD map. Additionally, the processing 
time for area measurements and reclassifications took 10 min, and the volumetric estimation 
took 10 min.
	 The DTMs for BW and AP, which were filtered from the respective PCD, visibly depict rill 
erosion (Fig. 6). Both DTMs are built with fine resolution (7.09 and 6.93 mm/pix, respectively) 
(Table 2). Several prior studies used the TLS-based DEM with 1–20 cm grid size to investigate 
rill erosion.(39–41)

	 As a result of the co-registration of the two time series PCD (BW and AP) using the ICP 
algorithm, we obtained a C2C distance and standard deviation of 2.4 and 2.1 cm, respectively, 

Table 1
Time requirement for each data acquisition process and entire process.

Processing time

PCD acquisition from TLS 3D scanning 14 (7 × 2) min
PCD formation 6 (3 × 2) min

Co-registration of two time series of 
PCD 3 min

Filtering using CSF 5 (2.5 × 2) min
Generation of DTMs 20 (10 × 2) s
DoD 5 min

Estimation of VD Area 10 min
Volume 10 min

Total process 54 min 20 s

Fig. 6.	 (Color online) DTMs for (a) BW and (b) AP.
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and the RMS was approximately 16.3 cm (Table 2). Sulzer et al.(42) reported that the median 
values of the vertical C2C of PCD sets based on a TLS were –3 to –3.05 cm relative to the GNSS 
control points. In addition, Ruggles et al.(43) observed that the median C2C values of PCD co-
registration using the ICP algorithm were approximately 3.3, 13.8, and 13.7 cm different from the 
TLS ground model for three platforms. RMS values of PCD co-registration using the ICP 
algorithm have been reported to range from 4 to 25 cm.(44,45) After co-registration, the areas to 
be analyzed were selected from each raw PCD set, and the two selected areas were approximately 
87.7 m2. To determine the morphological changes, bare-soil areas were selected for the DTMs; 
the numbers of selected ground points were 4,349,211 (BW) and 4,311,089 (AP) (Table 2). 

3.2	 Estimated VD in cut slope

	 DoD indicates that the segmented area in the cut slope resulted in negative and positive 
values, which were designated soil erosion and sedimentation areas, respectively. The total area 
for DoD was 66.01 m2 after removing outliers due to co-registration errors (Table 3). The 
computed erosion and segmentation rates for the selected area were 74.27% (2196610 cm3) and 
25.72% (319044 cm3), respectively (Table 3). Notably, the erosion area was 32.05 m2 larger than 
the sedimentation area (Table 3). Moreover, the total erosion volume exceeded the total 
sedimentation volume by 1,877,566 cm3 (Table 3). The area for DoD was 68 m2 before filtering 
the outliers and 66.01 m2 afterwards, while the segmented area in the cut slope was 87.7 m2 

(Tables 2 and 3).
	 The soil eroded by approximately 0–11 cm in the erosion areas and accumulated by 
approximately 0–11 cm in the sedimentation areas (Fig. 7). The erosion and sedimentation areas 
were automatically reclassified by ArcGIS software (Fig. 7). The sedimentation areas were 
mainly distributed on the right side of the slope based on DoD. In about 81% of the total 
sedimentation area, the soil was deposited to a depth of 0–3 cm (Fig. 7). Most of the erosion 
areas were separated from the sedimentation areas, except for those in which the soil was eroded 
to a depth of 0–3 cm (Fig. 7).

Table 2
Statistical results of 3D data acquisition and co-registration accuracy.

BW AP
Raw PCD 24246384 24241190
Filtered PCD from raw PCD 13129484 12759979
Segmented PCD for DTM 4349211 4311089
DTM resolution (mm/pix) 7.09 6.93
Total DoD areaa (m2) 68.0
Outlier-removed DoD area (m2) 66.01
C2C distance (cm) 2.4
RMSb (cm) 16.3
S.D.c (cm) 2.1
alength of forest road 3D scanning data
bRMS between two sets of 3D scanning data
cstandard deviation
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3.3 Validation of estimated VD at CHKs

	 The total VD depth, erosion depth, and sedimentation depth were estimated by subtracting 
the surface height values of the DTM of AP from those of the DTM of BW at the CHKs (Fig. 8, 
Table 4). As shown in Fig. 8, deposition occurred mainly at CHK Nos. 8, 9, and 10, which was 
the same result as that of DoD (Figs. 7 and 8). However, DoD includes potential errors caused by 
noise, registration error, and errors of the TLS.(34) The RMSE and bias between the ground-
measured truth data and the estimated VD were 1.01 and 0.68, respectively (Table 4). The 
ground data and the estimated soil erosion depth differed by a factor of about 2.5 (Table 4). 

Fig. 7.	 (Color online) Results of reclassified DoD to identify erosion and sedimentation areas in cut slope. Negative 
and positive values represent depths of erosion and sedimentation, respectively. *Values after colons represent the 
number of DTM pixels corresponding to each class.

Table 3
Vertical difference in cut slope on forest road estimated from BW to AP.
DoD from BW to AP Area (m2) Ratio (%) Volume (cm3)
Total 66.01 100 —
Erosion 49.03 74.27 2196610
Sedimentation 16.98 25.72 319044
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4.	 Discussion

	 The use of a LiDAR sensor is still a challenge in the practical assessment of VD in forests 
with high accuracy because of the co-registration of the time series PCD, and noise and outlier 
removal issues from the PCD. In addition, the validation of the estimated VD using ground-
measured truth data is difficult. Nevertheless, successful alignments from raw PCD sets were 
realized in this study owing to the use of recognition points, such as the forest road and the 
retaining wall, as markers for the ICP process. However, morphological features, such as rough 
surfaces, may cause shadows, which can limit the accuracy of 3D detection using a TLS. The 
estimated area of 87.7 m2 was underestimated as 68 m2 due to distortion error. 
	 In this study area, the total area of erosion in the forest road cut slope was about three times 
the total area of deposition, and the types of erosion were sheet erosion and rill erosion. However, 
scanning the rill erosion area from the side (the location of the 3D scanner) was insufficient to 
obtain the soil erosion depth. In fact, the ground-measured erosion depth was about 2.5 times the 
estimated erosion depth; thus, it is possible to detect eroded areas using ground-fixed LiDAR, 
but it appears to be difficult to accurately determine the erosion depth in centimeters. Despite 
issues relevant to the accuracy of estimating the VD on the cut slope, the results of this study 
were not only sufficient to distinguish between erosion and sedimentation but could also be used 
to evaluate where erosion occurred.

 Fig. 8.	 (Color online) Estimated surface height from TLS along profile AB on BW and AP.

Table 4
Results of RMSE and bias between estimated VD and ground truth data of CHKs.

Data VD Erosion 
(cm)

Sedimentation 
(cm)Average (cm) SEa RMSE Bias

Reference 
(Ground data) 1.71 0.27 — — 3.48 0.56

Estimated data 
(DoD) 1.03 0.25 1.01 0.68 1.36 0.3

astandard error
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5.	 Conclusions

	 In this study, TLS data were used to calculate the approximate volumes of erosion and 
sedimentation on the cut slope of a forest road, which was found to be a more objective method 
than the conventional method. In addition, it was possible to distinguish between erosion and 
sedimentation areas on the slope using a TLS. However, the VD validation process was only 
conducted at CHKs. Also, the lack of a validation process in overall target areas and the C2C 
difference (2.4 cm) indicated that the errors that occurred may have been generated from the 
equipment system, limitations of sensors, and data collection and processing phases. 
Nevertheless, despite some limitations and errors of LiDAR application in soil displacement 
detection, the results of this research indicate the feasibility of using a TLS to investigate the 
surface displacement on a slope area.
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