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 The development of underground spaces such as tunnels, subways, logistics warehouses, and 
complex facilities is continuing. However, owing to poor planning and reckless expansion, there 
has also been an increase in underground accidents. As such, it is important to obtain accurate 
geotechnical data on underground spaces for optimal construction outcomes and to ensure the 
safety of workers. Borehole cores contain essential geological information towards achieving 
these ends; however, rock classification using borehole cores takes a long time and the 
classification depends on the interpreter. To address these issues, we performed rock 
classification based on borehole sensing images using a convolutional neural network (CNN) 
combined with deep learning techniques. The data used for the training were collected from 
images of borehole cores in Hang-dong, Guro-gu, Seoul, and Hyeol-dong, Taebaek, Republic of 
Korea. We used the collected two datasets: a rod dataset labeled by the rock type of the borehole 
core rod unit and a grid dataset labeled by the rock type unit. The rock types were classified into 
basalt, gneiss, limestone, mudstone, and shale. In addition, mixed-rock and loss classes were 
added to the classifications. For the image classification process, we proposed three methods: 
general deep-learning-based image classification, multiregion image classification, and 
multiregion image classification using a scoring process. An experiment was conducted to 
validate these methods. A maximum accuracy of 99.02% was achieved in the validation process. 
The proposed methods introduced here are expected to reduce the time and costs associated with 
creating geotechnical databases.

1. Introduction

 Recently, the development of underground tunnels, subways, logistics warehouses, and 
complex facilities has expanded markedly in range and scope. However, owing to reckless 
development, underground accidents are also increasing, as the geotechnical data necessary for 
planning and safe implementation are lacking. Since a borehole image contains various 
geological information, it is very useful for obtaining geotechnical information. Various types of 
methods have been used to collect borehole core data. Research on deep learning technology for 
obtaining geotechnical information is also being actively conducted.(1–7)
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 The geotechnical information currently available has some inaccuracies due to investigator 
bias; the data are dependent on the investigator and the nature of the borehole survey. In addition, 
there are issues regarding the utilization of currently available geological borehole data. To 
address these issues, we apply deep learning technology to borehole sensing information; this 
technology can collect accurate geotechnical data on borehole constituents via an easy-to-use, 
accessible framework. This framework is useful for practical applications, such as underground 
space development, social overhead capital, and construction design and planning. In addition, at 
the policy level, sustainable and systematic real-time visualization of geological data for 
underground works is necessary to ensure safety and efficiency. This study was conducted to 
address the need to improve borehole surveys and the transparency of geotechnical information 
to aid construction planning and mitigate safety issues.
 Various studies on the automatic classification of rocks have been performed. Prior to the 
development of deep learning, studies using machine learning to classify rocks were performed. 
These included a study to classify minerals using a multilayer perceptron neural network,(8) 
studies to classify and analyze rocks using a support vector machine,(9,10) and a study to classify 
limestone using a probabilistic neural network.(11) Recently, with the development of graphics 
processing units, various deep learning technologies have been developed to improve 
computational power. Therefore, various studies applying deep learning to rock classification 
have been conducted.(12–15)

 In this study, we use deep learning for the rock classification of borehole core images. Among 
the deep learning technologies, a convolutional neural network (CNN) uses a convolution filter 
to extract features such as the color, texture, and shape of an image. Therefore, it shows good 
performance in image classification, and CNNs are widely used for image classification.(16) 
Currently, various CNN models exist, with different models having different features. In this 
study, various CNN models were compared to find a model suitable for borehole core image 
classification.
 Deep learning networks generally improve model performance through their deeper layers; 
however, problems can arise, one of the most common being overfitting. When overfitting 
occurs, the details of the training data are memorized such that the accuracy tends to be high, 
but the accuracy decreases for the actual test data. This issue has been addressed using the 
GoogLeNet (Inception-V1) model, which has a network with 22 layers based on the network-in-
network method.(17,18) GoogLeNet uses sparse connections to increase the depth of the network 
while also effectively reducing the number of dimensions. The sparse connections connect 
highly correlated layers and control the number of channels by calculating the correlations 
between them. Also, an inception module is used to reduce dimensionality by applying multiple 
1 × 1 convolutions to one input. After that, the operation is performed in parallel and then 
concatenated. GoogLeNet has 12 times fewer parameters than AlexNet but still shows higher 
performance.(19)

 Gradient vanishing is a problem that can occur when deep learning layers are configured for 
a network. When gradient vanishing occurs, the weights of the input layer are not updated; thus, 
the optimal parameters cannot be found. A residual network (ResNet) uses a shortcut connection 
to solve this problem.(20) In general, the value of the input layer is changed as it passes through 
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the layer. The shortcut connection maintains the weight of the input layer by adding its value to 
that of the output layer. Therefore, gradient vanishing does not occur even if the network layer is 
deep. In addition, since the addition operation is used, the learning time does not increase 
significantly. However, even if a shortcut connection is applied, the amount of computation 
increases if the layer is deep. In ResNet, 1 × 1 convolution is applied to the shortcut connection 
to adjust the dimensions and reduce the amount of computation required to solve the problem.
 The Xception module is similar to the existing inception module, with some modifications; 
its name refers to an “extreme” version of the inception module.(21) In the inception module, a 
1 × 1 convolution is used to perform cross-channel correlations, and then N × N convolutions are 
used to perform spatial correlations. However, the Xception module calculates cross-channel 
and spatial correlations independently. The Xception module is a variant of depthwise separable 
convolution, which adjusts the number of channels via a 1 × 1 convolution after performing 
depthwise convolution for each channel. The Xception module divides the number of channels 
into N segments by performing a 1 × 1 convolution, where N is a hyperparameter. For each 
segment divided in this way, a 3 × 3 convolution is performed. By this method, cross-channel 
and spatial correlations can be calculated independently. Also, Xception does not use a nonlinear 
function because information loss occurs when using the ReLU nonlinear function. The 
Xception module reduces the amount of computation and achieves higher accuracy than the 
existing inception module.
 InceptionResNet-V2 is the second version of InceptionResNet-V1 in the inception model 
series.(22,23) InceptionResNet uses InceptionResNet modules that combine the shortcut 
connection of ResNet with the inception module. Inception-V4, which has an improved inception 
module, has high accuracy but also a high learning curve. InceptionResNet-V2 shows slight 
differences from Inception-V4 in terms of accuracy; however, the learning rate is faster.
 In consideration of the features of the deep learning models above, in this study GoogLeNet, 
ResNet, Xception, and InceptionResNet-V2 were selected as representative models. In addition, 
image processing was used to improve the deep learning performance.
 In this study, CNN techniques were used to analyze borehole core images. As a first step, 
red–green–blue (RGB) images of borehole cores in Hang-dong, Guro-gu, Seoul, and Hyeol-
dong, Taebaek, Republic of Korea, were collected. The data were then configured as a “borehole 
core box” including various rock types. Individual rocks were classified and labeled by dividing 
the samples into rod units, each unit representing one borehole core. The labeled data were then 
used to construct a pre-trained deep learning model. Image processing technology was applied 
to improve performance and for comparative analysis. The trained model was evaluated using 
fourfold cross-validation, a confusion matrix, and various evaluation metrics. The main 
contributions of this work are as follows.
• A method of constructing a structured training dataset is proposed.
• The rock in borehole images is classified using various methods (deep learning and image 

processing).
• Multiple classification of mixed rocks in borehole images
• A comparative analysis of deep learning networks and various methods is performed.
 The proposed method can reduce the time and cost required to obtain geotechnical 
information.
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2. Data

2.1 Data collection

 Borehole core images were acquired from the Geoscience Data Repository (GDR) of Korea 
Institute of Geoscience and Mineral Resources (KIGAM).(24) Original images were collected 
from boreholes in Hang-dong, Guro-gu, Seoul, and Hyeol-dong, Taebaek, Republic of Korea. 
The borehole cores were composed of hard rock strata with a depth of 10.5–502.1 m, excluding 
the 0.0–10.5-m-deep laminated and buried layers. The top parts were covered with sedimentary 
rocks and buried layers (gravel mixed with sand, boulders) up to 10.5 m below the surface, and 
hard rock appeared at the bottom of borehole core images. Most of the rocks were in good 
condition but were partially in clay form due to erosion. Moreover, closely spaced cracks had 
developed on the surface of the cores. The rocks were mainly basalt, gneiss, limestone, 
mudstone, and shale.
 The borehole core images were in JPG format. A total of 120 RGB borehole core images were 
acquired. Specifically, there were 103 images of the TB-19A borehole (depth, 10.5–502.1 m), 
eight images of the BH-08 borehole (surface, ~60.0 m), and nine images of the BH-13 borehole 
(surface, ~63.2 m).

2.2 Data preprocessing

 Owing to the geological characteristics of Korea, many types of rock are mixed. Given that a 
borehole contains a mixture of rock types, a process for labeling and classifying each rock to 
obtain training data was required. In this study, training data were constructed by first creating 
a diagram of the data structure, as shown in Fig. 1.
 First, rod units, each representing one borehole core in the borehole core box image, were 
distinguished. The pixel size of the cropped images was 3679 × 187; severely damaged parts 
were excluded. The cropped images were classified on the basis of the rocks in the borehole 
core; these included basalt, gneiss, limestone, mudstone, and shale. In the case of borehole cores 
comprising more than one rock type, the labeling was based on the predominant rock type. An 
example of a rod-labeled dataset is shown in Fig. 2(a).

Fig. 1. Proposed data construction method.
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 Second, specific pieces of rock were demarcated by grid units; the pixel size of the cropped 
image was 187 × 187. The cropped image also comprised five rock types (basalt, gneiss, 
limestone, mudstone, and shale). Grid-labeled dataset 1 is shown as an example in Fig. 2(b).
 To solve the problem of mixed rock, mixed rock classes were added (e.g., limestone–
mudstone, mudstone–shale, and shale–limestone). In addition, the borehole core box was not in 
an intact state; it was fractured due to external forces generated during the borehole process. A 
filler was used to prevent further damage, and a “loss” class was added for the core. Grid-
labeled dataset 2 consisted of nine classes: basalt, gneiss, limestone, limestone–mudstone, 
mudstone, mudstone–shale, shale, shale–limestone, and loss; an example of a dataset is shown 
in Fig. 2(c). The rod-labeled dataset, grid-labeled dataset 1, and grid-labeled dataset 2 contained 
205, 6692, and 6692 images, respectively.

3. System Development

3.1 Proposed system

 The purpose of this study was to develop a borehole core rock classification system based on 
a CNN deep learning model. To construct and train the deep learning model and for transfer 
learning, pre-trained deep learning models (GoogLeNet, ResNet, Xception, and 
InceptionResNet-V2) were used. For transfer learning, the rod-labeled dataset, grid-labeled 

(a)

(b) (c)

Fig. 2. (Color online) Examples of datasets: (a) rod-labeled dataset, (b) grid-labeled dataset 1, and (c) grid-labeled 
dataset 2.
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dataset 1, and grid-labeled dataset 2 were used. Each dataset was divided into three parts for 
testing, with each part corresponding to a specific method (Methods 1–3). Method 1 classified 
borehole core rocks through general image classification. Method 2 classified borehole core 
rocks through multiregion image classification based on the borehole core images. Method 3 
was a modified and improved version of Method 2. A flowchart for each method is shown in Fig. 
3; a detailed description is given in Sect. 3.2.
 During the model training process, hyperparameters of the learned elements should be set. In 
this study, the hyperparameters were determined using GoogLeNet, a deep learning model with 
a relatively fast learning rate. Fourfold cross-validation was used; the training dataset was 
divided into four parts with alternation between the training and test datasets for training on all 
datasets. In this manner, generalized results could be obtained without overfitting.
 For a deep learning model, a loss function is used to evaluate performance during training. In 
general, models perform best when the loss function is minimized. Therefore, it is necessary to 

Fig. 3. Steps of the proposed methods for rock classification of the borehole core.
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determine and optimize a weight parameter that minimizes the loss function. In this study, the 
Adam optimizer was used for optimization.(25) The number of learning cycles was set to 50 or 64 
depending on the epoch and batch size. The initial learning rate was 0.1% with the Adam 
optimizer, which was decreased by 10% every 10 epochs. An NVIDIA TITAN RTX graphics 
processing unit was used for the training (NVIDIA, Santa Clara, CA, USA).

3.2 Application of proposed methods

 Method 1 classifies borehole core rocks through general image classification. First, the rod-
labeled dataset consisting of five rock types (basalt, gneiss, limestone, mudstone, and shale) was 
input into the pre-trained deep learning model. The transfer-learning-trained deep learning 
model classified the borehole core rocks.
 Method 2 classifies borehole core rocks via multiregion processing of borehole core images. 
Grid-labeled dataset 1 was input into the pre-trained deep learning model. Grid-labeled dataset 1 
included five rock types (basalt, gneiss, limestone, mudstone, and shale). The multiregion 
process divided the borehole core into multiple images to identify the dominant rock types.
 Method 3 is an improved version of Method 2. Grid-labeled dataset 2 was input into the pre-
trained deep learning model. This dataset included nine rock types (basalt, gneiss, limestone, 
limestone–mudstone, mudstone, mudstone–shale, shale, shale–limestone, and loss). The 
borehole core was divided into multiple images, as per Method 2. We used the divided images to 
calculate the prediction accuracy through deep learning. The prediction accuracy was substituted 
into Eq. (1) to obtain Scoreclass.
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Here, Accclass is the prediction accuracy for the variable class. Each Scoreclass obtained through 
Eq. (1) is substituted into Eq. (2) to obtain Total Scoreclass.

 , 
1

  
n

class class k
k

Total Score Score
=

=∑  (2)

Here, n is the number of images cut through Method 2. The maximum value among Total 
Scoreclass obtained through Eq. (2) is finally predicted. With the above method, the mixed area 
and loss area are reflected in the results. An example of the application of Method 3 is shown in 
Fig. 4. The results were evaluated through validation testing, as discussed in Sect. 4.
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4. Results

4.1 Evaluation method

 To evaluate the results of the deep-learning-based rock classification system, a confusion 
matrix and evaluation metrics were used. The classification evaluation metrics in this study were 
accuracy, recall, precision, and F1 score.
 Accuracy rates can be calculated to evaluate the performance of classification models. Here, 
accuracy was determined as the ratio between true positives and true negatives in the error 
matrix. However, when the number of data points is unbalanced among classes, the classification 
model becomes biased. Therefore, accuracy should be used in conjunction with other evaluation 
metrics. Precision and recall are complementary and inversely related evaluation metrics. 
Precision is given by the ratio between true positives and false positives and reflects the actual 
values. Recall is the ratio between true positives and false negatives and reflects the modeled 
values. However, since both indicators have different strengths and weaknesses, evaluations of 
model performance are biased if only one of the indicators is used. Therefore, we evaluated the 
model performance using the F1 score, which is the harmonic average of precision and recall.

4.2 Validation of Method 1

 Method 1 classifies the borehole core rocks through general image classification. The rod-
labeled dataset was used for model training and validation. Fourfold cross-validation was also 
performed. The confusion matrices are displayed in Fig. 5, and the classification evaluation 
metrics are listed in Table 1.

Fig. 4. (Color online) Example of application of Method 3.
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 The validation test revealed an average accuracy of 92.08% for Method 1. Xception had the 
highest accuracy at 93.66%. However, the F1 score of InceptionResNet-V2 was 88.26%, which 
was 0.72% higher than that of Xception.

(a) (b)

(c) (d)

Fig. 5. (Color online) Confusion matrices for Method 1: (a) GoogLeNet, (b) ResNet, (c) Xception, and (d) 
InceptionResNet-V2.

Table 1
Classification evaluation metrics of Method 1.

GoogLeNet ResNet Xception InceptionResNet-V2
Accuracy 0.8927 0.9220 0.9366 0.9317
Recall 0.8236 0.8315 0.8612 0.8506
Precision 0.8382 0.8973 0.8900 0.9171
F1 score 0.8308 0.8631 0.8754 0.8826
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4.3 Validation of Method 2

 Method 2 classifies borehole core rocks via multiregion classification of borehole core 
images. Grid-labeled dataset 1 was used for training, and the rod-labeled dataset was used for 
validation. Fourfold cross-validation was also performed. The classification evaluation metrics 
of Method 2 are listed in Table 2.
 The validation results showed that the average accuracy of Method 2 was 97.08% (an increase 
of 5% compared with Method 1). There was no significant difference in accuracy among the 
deep learning models. GoogLeNet showed the highest accuracy at 97.56%.

4.4 Validation of Method 3

 Method 3 is a modified version of Method 2, as stated above. Grid-labeled dataset 2 was used 
for model training, and the rod-labeled dataset was used for model validation. Fourfold cross-
validation was also performed. The classification evaluation metrics of Method 3 are listed in 
Table 3.
 The average accuracy of Method 3 was 98.66%, which was 1.58% higher than that of Method 
2. There was no significant difference in accuracy among the deep learning models. GoogLeNet 
and InceptionResNet-V2 showed the highest accuracy at 99.02%.

4.5 Discussion

 The performances of the methods proposed in this study can be seen in Table 4. Methods 2 
and 3 showed higher accuracy than Method 1, which is a general image classification method. 
The higher accuracy is expected to be due to the features of the borehole core image. The 
borehole core has an axially elongated shape. However, to use the pre-trained deep learning 

Table 2
Classification evaluation metrics of Method 2.

GoogLeNet-based 
Method 2

ResNet-based 
Method 2

Xception-based 
Method 2

InceptionResNet-V2-
based Method 2

Accuracy 0.9756 0.9707 0.9659 0.9707
Recall 0.9845 0.9824 0.9716 0.9824
Precision 0.9410 0.9327 0.9292 0.9327
F1 score 0.9623 0.9589 0.9500 0.9589

Table 3
Classification evaluation metrics of Method 3.

GoogLeNet-based 
Method 3

ResNet-based 
Method 3

Xception-based 
Method 3

InceptionResNet-V2-
based Method 3

Accuracy 0.9902 0.9854 0.9805 0.9902
Recall 0.9941 0.9904 0.9882 0.9941
Precision 0.9746 0.9614 0.9524 0.9746
F1 score 0.9843 0.9757 0.9700 0.9843
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models, they are transformed into squares through image preprocessing. Therefore, it is expected 
that the features of the borehole core are damaged and the accuracy is lowered. Methods 2 and 3 
can reflect all the features of the borehole core, so the accuracy is expected to increase.
 It can be seen that Method 3 has 1.46% higher accuracy than Method 2. Method 3 has two 
advantages over Method 2. First, it is possible to reduce the weight of a region with low accuracy. 
In general, a part with low prediction accuracy has a high probability of error. Therefore, it was 
possible to improve the final classification accuracy by reducing the proportion of the parts with 
low accuracy. Second, mixed rock can be predicted. In Method 2, the mixed rock was predicted 
to be a rock class with a high accuracy. In Method 3, the class of the mixed part was additionally 
learned, and the score of the mixed part could be calculated. Therefore, the final classification 
accuracy was improved.
 In this study, the types of rock in the borehole core were classified with an accuracy of up to 
99.02%. The main cause of error is impurities in the borehole core. The borehole core is covered 
with mud during the drilling process. In this case, it is possible to classify rocks when they are 
identified by humans. However, when making predictions using deep learning, the color of the 
surface of the borehole core changes, and the type of rock is recognized incorrectly. Therefore, 
the prediction accuracy is lowered. It is expected that the prediction accuracy can be improved if 
the training data of the part with impurities is increased.
 The methods proposed in this study do not require additional equipment except for a camera. 
Therefore, they can be applied quickly in the field. In addition, the methods showed high 
prediction accuracy even for mixed rocks. The limitation of this study is that the deep learning 
model learns incorrectly due to the color change of the surface of the drilling core. Therefore, the 
prediction accuracy is lowered. Moreover, if the borehole core is severely damaged, the error 
rate increases owing to the characteristic of the CNN. It is expected that the above shortcomings 
will be resolved if additional geological characteristics are studied.

5. Conclusions

 In this study, three methods were proposed for the rock classification of borehole core images 
using a deep learning method. Training data were obtained by processing the original borehole 
core box images. First, the training data were divided into a rod unit and grid unit in accordance  
with the image shape. The training image was labeled in these two units; each unit cropped 
image was classified on the basis of the type of rock
 To validate the proposed methods, an experiment was performed using training data, fourfold 
cross-validation, a confusion matrix, and classification evaluation metrics. The performance 

Table 4
Classification evaluation metrics of methods.

Method 1 Method 2 Method 3
Accuracy 0.9366 0.9756 0.9902
Recall 0.8612 0.9845 0.9941
Precision 0.8900 0.9410 0.9746
F1 score 0.8754 0.9623 0.9843
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indicators were accuracy, recall, precision, and F1 score. The maximum accuracies of Methods 
1–3 were 93.66, 97.56, and 99.02%, respectively. The conclusions of this study are as follows.
• The rock classification of the borehole core methods proposed in this study showed up to 

99.02% accuracy.
• Our system can be expected to reduce the time and cost required to obtain geotechnical 

information.
 This study had several limitations. First, the image data of a limited area were used for model 
training. However, the proposed system should be generally applicable if data from other regions 
are included during the training process. The use of additional metrics such as the strength, 
particle size, and humidity of borehole cores should further improve the classification accuracy. 
Second, rocks were classified only by general type for efficiency. Through semantic 
segmentation in future studies, the constituent components of borehole core rocks should be 
classifiable.

Acknowledgments

 This research was supported by a Korea Agency for Infrastructure Technology Advancement 
(KAIA) grant funded by the Ministry of Land, Infrastructure and Transport (Grant 
22DCRU-B158151-03) and a Basic Research Project (22-3118) of Korea Institute of Geoscience 
and Mineral Resources (KIGAM) funded by the Ministry of Science, ICT and Future Planning 
of Korea.

References

 1 K. K. Bradbury, J. P. Evans, J. S. Chester, F. M. Chester, and D. L. Kirschner: Earth Planet. Sci. Lett. 310 (2011) 
131. https://doi.org/10.1016/j.epsl.2011.07.020

 2 A. Azimian: Rock Mech. Rock Eng. 49 (2016) 1559. https://doi.org/10.1007/s00603-015-0789-8
 3 F. Tian, X. Lu, S. Zheng, H. Zhang, Y. Rong, D. Yang, and N. Liu: Open Geosci. 9 (2017) 266. https://doi.

org/10.1515/geo-2017-0022
 4 A. R. Kim, D. Kim, Y. S. Byun, and S. W. Lee: J. Korea Geotech. Sci. 34 (2018) 145. https://doi.org/10.7843/

kgs.2018.34.12.145
 5 H. Lin, W. H. Kang, J. Oh, I. Canbulat, and B. Hebblewhite: Int. J. Min. Sci. Technol. 30 (2020) 623. https://doi.

org/10.1016/j.ijmst.2020.05.019
 6 M. Shahriari, D. Pardo, A. Picón, A. Galdran, J. Del Ser, and C. Torres-Verdín: Comput. Geosci. 24 (2020) 971. 

https://doi.org/10.1007/s10596-019-09859-y
 7 W. Zhang, H. Li, Y. Li, H. Liu, Y. Chen, and X. Ding: Artif. Intell. Rev. 54 (2021) 5633. https://doi.org/10.1007/

s10462-021-09967-1
 8 N. A. Baykam and N. Yılmaz: Comput. Geosci. 36 (2010) 91. https://doi.org/10.1016/j.cageo.2009.04.009
 9 C. A. Perez, J. A. Saravia, C. F. Navarro, D. A. Schulz, C. M. Aravena, and F. J. Galdames: Int. J. Miner. 

Process. 144 (2015) 56. https://doi.org/10.1016/j.minpro.2015.09.015
 10 C. L. Bérubé, G. R. Olivo, M. Chouteau, S. Perrouty, P. Shamsipour, R. J. Enkin, and R. Thiémonge: Ore Geol. 

Rev. 96 (2018) 130. https://doi.org/10.1016/j.oregeorev.2018.04.011
 11 A. K. Patel and S. Chatterjee: Geosci. Front. 7 (2016) 53. https://doi.org/10.1016/j.gsf.2014.10.005
 12 P. Y. Zhang, J. M. Sun, Y. J. Jiang, and J. S. Gao: 79th EAGE Conf. Exhibition 2017 (EAGE, 2017) 1–5.
 13 X. Ran, L. Xue, Y. Zhang, Z. Liu, X. Sang, and J. He: Mathematics 7 (2019) 755. https://doi.org/10.3390/

math7080755
 14 X. Zou, C. Wang, H. Zhang, and S. Chen: Appl. Sci. 11 (2021) 10490. https://doi.org/10.3390/app112110490
 15 X. Zou, H. Song, and C. Wang: Rock Mech. Rock Eng. 54 (2021) 5945. https://doi.org/10.1007/s00603-021-

02588-8

https://doi.org/10.1016/j.epsl.2011.07.020
https://doi.org/10.1007/s00603-015-0789-8
https://doi.org/10.1515/geo-2017-0022
https://doi.org/10.1515/geo-2017-0022
https://doi.org/10.7843/kgs.2018.34.12.145
https://doi.org/10.7843/kgs.2018.34.12.145
https://doi.org/10.1016/j.ijmst.2020.05.019
https://doi.org/10.1016/j.ijmst.2020.05.019
https://doi.org/10.1007/s10596-019-09859-y
https://doi.org/10.1007/s10462-021-09967-1
https://doi.org/10.1007/s10462-021-09967-1
https://doi.org/10.1016/j.cageo.2009.04.009
https://doi.org/10.1016/j.minpro.2015.09.015
https://doi.org/10.1016/j.oregeorev.2018.04.011
https://doi.org/10.1016/j.gsf.2014.10.005
https://doi.org/10.3390/math7080755
https://doi.org/10.3390/math7080755
https://doi.org/10.3390/app112110490
https://doi.org/10.1007/s00603-021-02588-8
https://doi.org/10.1007/s00603-021-02588-8


Sensors and Materials, Vol. 34, No. 12 (2022) 4839

 16 W. Rawat and Z. Wang: Neural Comput. 29 (2017) 2352. https://doi.org/10.1162/neco_a_00990
 17 M. Lin, Q. Chen, and S. Yan: arXiv (2013). https://doi.org/10.48550/arXiv.1312.4400
 18 C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, and A. Rabinovich: Proc. IEEE Conf. Computer 

Vision and Pattern Recognition (IEEE, 2015) 1–9. 
 19 A. Krizhevsky, I. Sutskever, and G. E. Hinton: Adv. Neural Inf. Process. Syst. 60 (2017) 84. https://doi.

org/10.1145/3065386
 20 K. He, X. Zhang, S. Ren, and J. Sun: Proc. IEEE Conf. Computer Vision and Pattern Recognition (IEEE, 2016) 

770–778. 
 21 F. Chollet: Proc. IEEE Conf. Computer Vision and Pattern Recognition (IEEE, 2017) 1251–1258. 
 22 C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna: Proc. IEEE Conf. Computer Vision and Pattern 

Recognition (IEEE, 2016) 2818–2826. 
 23 C. Szegedy, S. Ioffe, V. Vanhoucke, and A. Alemi: Proc. AAAI Conf. Artificial Intelligence (AAAI) 31 (2017). 
 24 Geoscience Data Repository of KIGAM: Development of Underground Information Construction and Analysis 

Technology based on Artificial Intelligence through Machine Learning, https://gdr.kigam.re.kr/gdr/ (accessed 8 
September 2021).

 25 D. P. Kingma and J. Ba: arXiv (2014). https://doi.org/10.48550/arXiv.1412.6980
 26 D. L. Olson and D. Delen: Advanced Data Mining Techniques (Springer Science & Business Media, 2008) 1st 

ed., p. 138.

https://doi.org/10.1162/neco_a_00990
https://doi.org/10.48550/arXiv.1312.4400
https://doi.org/10.1145/3065386
https://doi.org/10.1145/3065386
https://gdr.kigam.re.kr/gdr/
https://doi.org/10.48550/arXiv.1412.6980

