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 Different types of fire accidents in the urban area of Seoul, Korea are continuously occurring, 
causing risk and damage to property and life. In this study, we analyze various spatial and non-
spatial fire risk factors by applying machine learning techniques to predict their level of 
importance in future events. We use the data on fire accident for three years (2017–2019) 
published by the Korean Fire Service and the Seoul Metropolitan Government. Regarding the 
machine learning techniques, we use support vector machine (SVM), random forest (RF), and 
gradient boosted regression tree (GBRT). As the first phase, a multiple regression analysis is 
performed to select seven main factors related to fire occurrence. In the second phase, we 
calculate the mean absolute error (MAE) and root mean squared error (RMSE) using validation 
and test data for the machine learning techniques, revealing that RF obtains ideal results. In the 
third phase, we analyze the importance of the seven fire factors using RF, resulting in the 
ignition condition (produced by electrical, mechanical, and chemical reasons) being the main 
factor in fire occurrence. This study is expected to be used as an important guideline to define 
urban fire reduction and management measures in Seoul, the capital of South Korea.

1. Introduction

 In Korea, fire accidents are one of the frequent disasters along with traffic accidents. Fire 
accidents can happen at any time and place. Therefore, it is important to prevent them and take 
countermeasures, since their risk is frequently increasing. In 2020, there were 38659 fire 
accidents in Korea, resulting in 2282 casualties and an estimated $479.44 million in property 
damage.(1) Specifically, the number of fire accidents in Seoul, the capital of South Korea, has 
risen and fallen cyclically, with 5978 cases in 2017, 6368 cases in 2018, and 5881 cases in 2019. 
However, in the case of casualties, there were 283 people involved in 2017, 360 in 2018, and 398 
in 2019, increasing 40% in 2019 compared with 2017. In addition, the amount of property 
damage increased by 496% in 2019 compared with 2017, estimated at $12.21 million in 2017, 
$16.92 million in 2018, and $73.77 million in 2019 according to reports from the National Fire 
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Data System (NFDS).(1) Moreover, since a large amount of damage occurs in the urban areas of 
Seoul, urgent measures are needed to prevent and reduce fire accidents. In Korea, fire accidents 
produce considerable damage to property and life; therefore, the NFDS has been in operation 
since 2007 to prepare countermeasures. The NFDS is a database that contains fire event 
information. Since 2009, the website allows the public to review statistical data on fire accidents 
in terms of their current status, classification by region, administrative division, and damage 
report. However, in the case of NFDS, since only basic statistics are provided, it is insufficient to 
understand the in-depth risk level.
 Large and small fires causing damage in urban areas happen continuously not only in Korea 
but also abroad as reported by Lau et al.(2) and the National Fire Protection Association of the 
United States.(3) As the risk of fire accidents increases in urban areas around the world, various 
studies are actively being conducted. Zhang defined the term ‘urban fire risk’ by referring to 
both the definition of risk and the characteristics of urban fires in the International Strategy for 
Disaster Reduction enacted by the United Nations (UN) in 2004.(4) Additionally, 
the urban fire risk was comprehensively analyzed in Haikou, the capital of Hainan Province, 
China. The gray correlation degree method was applied on the basis of data from statistics of 
past fire accidents. In addition, the weight factor of the system was set and the analytic hierarchy 
process (AHP) was used on the basis of the quantitative analysis of statistical indicators, and 
through this, an urban fire risk assessment system was established.(4) Xin and Huang(5) presented 
a building fire risk analysis model based on scenario clusters and a method applied to fire risk 
management in buildings. In the building fire risk analysis, the average fire risk of a residential 
building was quantified by constructing a scenario cluster and selecting the number of fatalities 
and property losses as fire risk indicators. On the basis of analysis results, the fire safety rating 
in buildings was improved by using the appropriate fire risk model type. Hastie and Searle(6) 

confirmed through the analysis of data provided by the West Midlands Fire Service (WMFS) of 
the UK that serious fires occurred continuously from September 2010 to August 2013. The 
authors performed a regression analysis on the occurrence of fires in residential areas, 
considering the number of fires as the dependent variable and the socioeconomic and 
demographic data as independent variables. As a result, the largest number of fires was 
identified as occurring in places where a large number of black people lived, single-person 
households under the age of 65, and those who had not worked for more than five years. Song et 
al.(7) plotted the frequency-damage and rank-damage distributions of fire accidents in cities of 
China and Switzerland, and verified whether the power-law relationship was appropriate. This 
was confirmed by plotting the distributions of frequency magnitude (loss) and rank magnitude 
(Zipf plot) of urban fires. As a result, the fire data of the two countries had a useful power-law 
distribution. This power-law relationship did not change with scale and time. In other words, it 
was confirmed that both countries fit the exponential relationship well and are constant 
regardless of size and time. Telesca and Song(8) analyzed the temporal distribution of urban fires 
from 2000 to 2009, focusing on the fires in Anshan, China. As a result, it was revealed that the 
core process of city fire is a fractal process with a high degree of time clustering of events. In 
addition, time tends to cluster as losses increase after a fire. The application of multiple fractal 
trend variability analysis to urban fires suggested that the sequences are dynamically 
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heterogeneous owing to different long-range temporal correlation properties for variability 
between large and small events. Lu et al.(9) studied the frequency-damage distribution and time-
scaling characteristics for fires that caused more than three fatalities between 2002 and 2009. 
Six factors, namely, place, cause, time, season, year, and fire area, were analyzed to evaluate 
their impact on the fire, and a scaling index was used for comparative analysis. Factors such as 
nonresidential locations, electrical causes, winter months, and regions with strong economies 
have slowed down the fire frequency as the number of deaths increased. That is, the time scale 
index was found to decrease significantly as the number of deaths increased. Rohde et al.(10) 
conducted a predictive analysis of residential home fires across southeast Queensland (SEQ) in 
Australia by applying Bayesian methodology. The number of fires expected in a year was 
calculated for SEQ areas where the expected risk ranged from less than two cases per year to a 
maximum of 25 cases per year. In the service level agreement (SLA), it was analyzed that there 
was a high correlation between the population size and the number of fires, as well as between 
the number of buildings and the number of fires. These results were presented as a distribution 
map on the geographic information system (GIS), concluding that many of the fires occurred in 
residential areas. In addition, various fire-related studies such as fire risk analysis, building fire 
risk analysis, and fire correlation analysis are being conducted. However, there is a lack of 
research on predicting factors that cause fires and predicting future fires through them.
 The purpose of this study is to predict the risk of spatial and non-spatial factors (e.g., location, 
time, cause, and climate) that most affect the different types of urban fires through the use of 
machine learning techniques. A predictive analysis of fire occurrence factors was conducted for 
Seoul Metropolitan City using data provided by the Korea Fire Service for three years (2017–
2019). For the analysis, multiple regression analysis (MRA) models and machine learning 
techniques such as support vector machine (SVM), random forest (RF), and gradient boosted 
regression tree (GBRT) were used. The accuracy of each model was presented through the mean 
absolute error (MAE) and root mean squared error (RMSE), obtaining a model with a high 
degree of adjustment. The flowchart of the processes considered in this study is illustrated in 
Fig. 1.

2. Methodology

2.1 SVM

 The SVM algorithm is a nonlinear generalization algorithm and has become a solid 
foundation for statistical learning theory.(11) The basic SVM is widely used in binary 
classification problems. One side is divided into a positive class and the other side into a negative 
class centering on the hyperplane.(12) The basic idea of SVM is to find a hyperplane that can 
properly separate the data constituting two categories (positive and negative classes). SVM aims 
to find the hyperplane with the maximum distance to the nearest sample point when used for 
classes.(13)



4844 Sensors and Materials, Vol. 34, No. 12 (2022)

2.2 RF

 The RF algorithm uses the bootstrap method as an ensemble learning model. This is a method 
used to generate multiple samples and apply a decision tree model to synthesize the obtained 
results.(14) RF combines multiple decision tree models and builds the decision tree using 
bootstrap training data in the same way as bagging. The RF training process constructs several 
different decision trees. A random subset is taken from each split of the tree node for analysis. 
Furthermore, each tree is generated from a randomly selected subset of training samples via 
bootstrap sampling. Bootstrap sampling randomly selects m samples by substituting from a 
training set with n observations. Because this randomness is introduced, RF can be used to 
analyze more patterns in the data by increasing tree diversity.(15)

2.3 GBRT

 The GBRT algorithm is an ensemble method based on the classification and regression tree 
(CART) algorithm.(16) GBRT is a model that combines two techniques: boosting and regression. 
This combination improves the model accuracy and reduces the variance. Similarly to other 
boosting methods, GBRT trains multiple CART basic learners through multiple iterations and 
ultimately produces strong learners with a linear combination of these weak learners. GBRT as 
well as RF can be applied to both classification and regression, with high accuracy and no need 
for scaling. In addition, it has the advantage that it works well for continuous characteristics.(17) 

Fig 1. Flowchart of the study.
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2.4 Predictive evaluation using machine learning techniques

 In algorithm discovery and modeling in the predictive analysis of fire occurrence using 
machine learning, an algorithm for practical operation is selected and a decision is made on how 
to model the algorithm. The criterion for selecting algorithms and modeling methods is their 
applicability. Therefore, it is necessary to review how to judge this applicability. For the use of 
machine learning in predicting fire risk, the accuracy of the machine learning model must be 
recognized. The MAE and RMSE of each model are frequently compared to evaluate the 
accuracy of a numerical prediction model. In addition, they can be used to evaluate the accuracy 
of machine learning models. RMSE is one of the widely applied error index statistics.(18) It is 
generally accepted that the lower the RMSE value, the higher the model efficiency. This limits 
what is considered a low RMSE and is based on the standard deviation of observations.(19) 
Moreover, MAE is another error indicator frequently used in model evaluation. A value of 0 
indicates an ideal adjustment. The lower the RMSE and MAE values of the calculated data, the 
better the model evaluation.(20) MAE is determined using Eq. (1), where it is the average of the 
absolute error between the measured and actual values. In addition, Eq. (2) shows the formula 
for RMSE, which represents a value obtained by calculating the root mean square of the error 
between the measured and actual values.(15)
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 To increase the accuracy of the machine learning techniques, it is necessary to derive a global 
optimum that can explain the data distribution. The sufficiency of the input training data and the 
abundance of predictors are greatly affected by the hyperparameters of the training model. 
Therefore, a hyperparameter optimization process is required.(21,22) There are no established 
standards or methods for selecting hyperparameters in machine learning. It is common to find 
the hyperparameter that minimizes the error by changing it according to the actual data of 
machine learning.(21) The optimal hyperparameter can be derived through various trial and error 
tests. Therefore, in our work, a k-fold cross validation method was used.(23) The k-fold cross 
validation divides the training data into k equal parts, uses k−1	of	the	k-divided training data for 
setting the search range of the hyperparameters, and validates the model performance using the 
remaining training data as validation data. The validation process is repeated k times to 
determine the hyperparameter with the lowest generalization error as the final model to which 
the test data is applied. Through this, the error correction was greatly improved by selecting the 
ideal model and collecting the thresholds and weights as initial values. The verification process 
was repeated k times, and the hyperparameter with the lowest generalization error was appointed 
as the final model. The training and test data were divided in a 7:3 ratio and cross-verified 
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through the k-fold cross validation method. The test data was applied to the hyperparameter with 
the lowest MAE and RMSE of the validation data for each model. These processes were 
analyzed through the R Studio program. In addition, since the prediction accuracy between the 
models was comparatively analyzed, the same training data was used for all models.

3. Experimental Results

3.1 Data analysis

 The number of different types of fires that happened in Seoul, the capital of Korea, over the 
past 10 years (2010–2019) was 59060, accounting for 13.6% of the total number of fires in the 
country. Likewise, 2663 injuries (including 363 deaths) were reported in Seoul, accounting for 
12.3% of the casualties nationwide. Additionally, the percentage of property damage due to this 
hazard in Seoul was 4.4% of the total property damage that occurred nationwide. From 2010 to 
2019, the average annual increase in fire rate in Seoul was 0.09%, revealing an increasing trend, 
as presented in Fig. 2.
 In our study, we identified several fire factors that cause fire accidents in Seoul to analyze 
which of them act as important factors in the occurrence of this hazard. We used the fire data 
published by the Korea National Fire and Disaster Prevention Administration. From 2017 to 
2019, all fire data were released as public big data. However, owing to controversy over the 
invasion of privacy and the scope of public data disclosure, the latest data displays a summary of 
the fire status. Therefore, we used in this study the fire data of Seoul from 2017 to 2019, with a 
total of 18227 cases. The number of fires rose and fell cyclically, with 5978 cases in 2017, 6368 
cases in 2018, and 5881 cases in 2019. However, the numbers of victims were 283 in 2017, 360 in 
2018, and 398 in 2019, reaching a 40% increase in 2019 compared with 2017. Additionally, the 
amount of property damage increased by 496% from 2019 compared with 2017.

Fig.	2.	 Casualties	in	Seoul	fire	accidents.



Sensors and Materials, Vol. 34, No. 12 (2022) 4847

 Regarding the items related to fire accidents, 56 were disclosed in 2017, 22 in 2018, and 22 in 
2019. Investigation items include fire serial number, dispatch fire department and 911 safety 
center, date and time, weather condition, fire location, ignition condition, number of building 
floors, ignition source, facility classification, structural material, reception and dispatch time, 
distance of the fire department and 911 safety center, casualties, property damage, lifesaving 
status, mobilized personnel and equipment, and insurance purchases. Therefore, 14 elements 
related to fire occurrence  were selected and set as analysis factors. These elements are date and 
time (month, day, hour, and minutes), weather conditions (wind speed, temperature, humidity, 
and wind direction), fire location, number of building floors, facility classification, ignition 
source, ignition condition, and structural material as shown in Table 1.
 The analysis of the data for each main fire factor showed that the period with the highest 
number of fire accidents was in January, and fire accidents occurred more frequently between 
1:00 p.m. and 3:00 p.m. and between 6:00 p.m. and 8:00 p.m. In addition, in the case of days of 
the week, it is found that the rate of fire accidents is highest on Friday and Saturday. In terms of 
the facility classification, the highest rate of fire accidents happened in residential facilities, 
followed by living service and business facilities. In the case of the ignition source, the highest 
number of fire accidents occurred owing to carelessness, followed by electrical and mechanical 
reasons.

3.2	 Correlation	analysis	of	fire	accident	factors

 Correlation and iterative regression analyses were applied to find the most significant factors 
to carry out fire occurrence prediction analysis in Seoul. Likewise, factors that cause 
multicollinearity problems were excluded. First, the correlation between the occurrence of fire 
accidents and each factor was examined. Factors with high correlation and possibility of 
multicollinearity events were obtained. To solve this problem, a stepwise regression analysis was 

Table 1
Fire occurrence factors. 
Factor Description 
Month Month	of	fire
Day Day	of	fire
Hour Hour	of	fire
Minutes Minutes	of	fire
Wind speed Wind	speed	on	the	day	of	fire
Temperature Temperature	on	the	day	of	fire
Humidity Humidity	on	the	day	of	fire
Wind direction Wind	direction	on	the	day	of	fire
Fire location Buildings and structures, automobiles and railroads, garbage area, etc.
Number	of	building	floors Number	of	burning	floors	in	the	building

Facility	classification Apartment houses, detached houses, health facilities, public institutions, 
schools, sanitation facilities, power generation facilities, etc.

Ignition source Flame,	spark,	unknown,	operating	device,	firecracker,	chemical	fire,	etc.
Ignition condition Carelessness, electrical reasons, mechanical reasons, chemical reasons, etc.
Structural material Wood, reinforced concrete, brick, block, stone, steel frame, etc.
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performed. As a result, seven fire occurrence factors with high multicollinearity (minutes, day, 
wind speed, wind direction, humidity, ignition source, and number of building floors) were 
excluded, and multiple regression analysis was performed with the remaining seven factors 
(month, hour, temperature, fire location, facility classification, ignition condition, and structural 
material). Subsequently, the suitability of the factors used in the multiple regression analysis was 
determined by the Durbin–Watson method. Since the result is 1.860, which is close to 2, the 
factors are considered suitable for the regression model. As a result of the regression analysis, 
R2, which can confirm the explanatory power of the model, was 0.835, that is, 83.5%. In addition, 
all the standardization factors with the significance level α > 0.05 were rejected. Regarding the 
regression coefficient of the factors, it is assumed in the null hypothesis that the dependent and 
independent variables are different from each other. Therefore, the independent variables 
included in the models can affect the variance of the dependent variable. Table 2 shows the  
results of the multiple regression model analysis, where B is the Beta coefficient and t is the 
t-value results of the coefficient.

3.3	 Evaluation	of	machine	learning	techniques	for	the	prediction	of	fire	accident	factors

 Machine learning methods such as SVM, RF, and GBRT were comparatively analyzed to 
conduct the predictive analysis of fire accident risk factors in Seoul. In addition, the accuracy of 
the obtained results was estimated using their MAE and RMSE. After analyzing all the data of 
Seoul using three methods, a model with high predictive power was chosen. Moreover, the risk 
factors for fire accidents were analyzed, with a focus on those that cause these accidents through 
a model with high predictive power.

3.3.1 SVM

 Hyperparameters are important for determining the optimal SVM model. In this study, the 
hyperparameters were tuned for k-fold cross validation. The hyperparameters are C, γ, and ε. C 
is related to the error and its effect on the validation data. Likewise, ε is needed to determine the 
allowable error rate. Basically, by applying the kernel function, the curvature of the hyperplane 

Table 2
Results of multiple regression model analysis.

Non-standardization factor t-value Standardization 
factorB Standard error

Month 0.267 0.038 3.420 0.000
Hour 0.342 0.024 6.116 0.000
Temperature −0.543 0.235 −16.217 0.000
Fire location 0.681 0.134 9.421 0.000
Facility	classification 0.812 0.138 4.812 0.002
Ignition condition 0.581 0.347 3.546 0.001
Structural material −0.438 0.526 −10.485 0.000
R2 0.835
Durbin–Watson 1.860
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varies depending on the increasing γ. In addition, the explanatory power of the validation data 
increases. However, there may be a problem of overfitting; therefore, a model with small γ 
should be selected as the final model. Since it is related to the effect of validation data, it was 
selected to be 0.2 through analysis. In the case of ε, it was chosen to be 0.01 or 0.02. As a result 
of the hyperparameter, the model with the minimum MAE and RMSE was finally selected as 
the optimal model for SVM. The results of the adjustment showed that MAE (5.172) is the lowest 
when C = 4, γ = 0.2, and ε = 0.02, and RMSE (5.239) is the lowest when C = 4, γ = 0.2, and ε = 
0.02, which are determined as the final hyperparameters. Table 3 shows the results of the SVM 
adjustment for the fire accident data of Seoul.

3.3.2 RF

 RF is used to perform k-fold cross validation while changing the number of trees, obtaining a 
hyperparameter for each case. The combination of the number of trees with the lowest MAE and 
RMSE among validation data was chosen as the final model. The number of trees ranges from 
50 to 500, and analysis was performed in units of 50 intervals. As a result of the analysis, MAE 
and RMSE do not change significantly in the levels 250 and 450. When the number of trees 
exceeds 250, MAE is 2.765 and RMSE is 2.820. Moreover, when the number of trees is 450,  
MAE is 2.498 and RMSE is 2.593, which are minimum values. Therefore, the models with 250 
and 450 trees were selected as the final models. These final models were determined by 
considering the improvements of MAE and RMSE. Table 4 shows the RF adjustment results for 
fire accident data in Seoul.

3.3.3 GBRT

 GBRT defines the number of trees and the learning rate as the main hyperparameters. The 
learning rate is a hyperparameter that controls the amount of error correction from the previous 
tree. The learning rate was set to be 0.1 and the upper limit of the number of trees was defined as 
1000, starting from 50. Subsequently, the final model was determined considering whether 

Table 3
Results of SVM analysis.

Parameter Output Error
C γ ε MAE RMSE
1 0.2 0.01 Output1 6.145 6.592
1 0.2 0.02 Output2 6.124 6.529
2 0.2 0.01 Output1 5.965 6.312
2 0.2 0.02 Output2 5.948 6.307
3 0.2 0.01 Output1 5.618 5.994
3 0.2 0.02 Output2 5.604 5.826
4 0.2 0.01 Output1 5.248 5.490
4 0.2 0.02 Output2 5.172 5.239
5 0.2 0.01 Output1 5.424 5.797
5 0.2 0.02 Output2 5.475 5.848
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MAE and RMSE were improved. As a result of the analysis, it was observed that when the 
number of trees exceeded 400, the decrease ranges of MAE and RMSE were reduced by one or 
less, until they became the lowest when the number of trees reached the value of 1000. 
Consequently, a model with 400 trees with critical low reductions in MAE (3.334) and RMSE 
(3.621) and a model with 1000 trees displaying the lowest data for MAE (2.915) and RMSE 
(3.015) were selected as the final models, as shown in Table 5.

3.3.4 Comparative analysis of predictive power by machine learning 

 By k-fold cross validation, MAE and RMSE values   of validation and test data were derived, 
and the final model with the smallest MAE and RMSE values was selected, as shown in Table 6. 
The analysis results revealed that the MAE and RMSE values of the test data are smaller than 
those of the validation data, which means that the predictive power of the test data is correct. 
Therefore, the results of the comparative analysis of MAE and RMSE for the machine learning 
techniques SVM, RF, and GBRT revealed that the RF model has the highest predictive power, 
followed by the GBRT and SVM models with the highest accuracy. In the RF model results with 
the highest predictive power, MAE and RMSE were smaller when the number of trees was 450 
than when the number of trees was 250. Therefore, the validation data was analyzed as the MAE  
of 2.498 and the RMSE of 2.593. In the case of the test data, the MAE was 2.448 and the RMSE  
was 2.694. Through SVM, the greatest difference between the MAE and RMSE values of the 
validation and test data was obtained. Thus, the level of overfitting can be analyzed as having a 
relatively high SVM. On the other hand, the results of the RF analysis revealed that if the number 
of trees is 450, the differences between the MAE and RMSE values of the validation and test 
data are 0.05 and 0.101, respectively, which indicates that the level of overfitting is relatively low.

Table 4
Results of RF analysis.
Number 
of trees

Error
MAE RMSE

50 3.648 3.872
100 3.614 3.772
150 3.287 3.498
200 3.045 3.209
250 2.765 2.820
300 2.721 2.811
350 2.703 2.803
400 2.694 2.781
450 2.498 2.593
500 2.527 2.680

Table 5
Results of GBRT analysis.
Number 
of trees

Error
MAE RMSE

50 5.421 5.647
100 4.834 5.132
150 4.734 5.021
200 4.694 5.011
250 4.642 4.912
300 4.164 4.621
350 4.153 4.536
400 3.334 3.621
450 3.332 3.607
500 3.321 3.593
600 3.231 3.502
700 3.247 3.589
800 3.135 3.438
900 2.949 3.197

1000 2.915 3.015
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3.3.5	 Analysis	and	evaluation	of	importance	of	fire	factors	by	RF	

 Through the comparative analysis of the results in Table 6, it has been revealed that RF is the 
most significant model. Therefore, the relative importance between factors was analyzed using 
RF, which was considered to have the highest predictive power among the machine learning 
techniques selected in this study. The severity analysis identifies the important factors in fire 
occurrence . As a result of the analysis of the importance of each of the seven spatial and non-
spatial factors using RF, the ignition condition had the highest correlation with fire occurrence, 
followed by facility classification, fire location, hour, month, structural material, and 
temperature, as shown in Table 7.
 A more detailed analysis was performed using topic data in order of importance for the seven 
spatial and non-spatial factors. First, the ignition condition, which is the most important factor, 
includes carelessness and electrical and mechanical reasons. The analysis of fire data among 
these reasons demonstrates that the most frequent fire accidents occurred owing to carelessness, 
followed by electrical and mechanical reasons. The facility classification factor includes 
elements such as apartment houses, detached houses, health facilities, public institutions, 
schools, sanitation facilities, and power generation facilities. Among them, fires occurred 
generally in apartment houses, followed by detached houses, restaurants, and service facilities. 
The fire location factor includes buildings and structures, automobiles and railroads, and 
garbage area. Buildings and structures were the places where the majority of fires happened, 
followed by the garbage area, and then automobiles and railroads. The next factors are hour and 
month. The fires happened frequently between 6:00 p.m. and 9:00 p.m. In the case of months, 
the largest numbers of fires occurred in September, followed by October and August. The 

Table 6
Comparative analysis of predictive power by model for Seoul data.

Validation data

Output

Test data
MAE RMSE MAE RMSE

SVM C = 4, γ = 0.2, ε = 0.01 5.248 5.490 5.468 5.687
C = 4, γ = 0.2, ε = 0.02 5.172 5.239 5.418 5.513

RF Estimators = 250 2.765 2.820 2.678 2.719
Estimators = 450 2.498 2.593 2.448 2.694

GBRT Estimators = 400 3.334 3.621 3.508 3.897
Estimators = 1000 2.915 3.015 3.168 3.348

Table 7
Evaluation	of	importance	of	fire	factors	by	RF.

Factors Importance level for 
tree number of 250 (%)

Importance level for 
tree number of 450 (%)

Month 9.14 9.68
Hour 15.94 15.19
Temperature 2.08 2.12
Fire location 19.21 19.18
Facility	classification 20.12 20.24
Ignition condition 28.37 29.20
Structural material 5.14 4.39
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structural material factor includes wood, reinforced concrete, brick, block, stone, steel frame, 
and so forth. Among these reasons, fire accidents commonly occurred in brick structures, 
followed by wooden and block structures. Finally, regarding the temperature factor, it was 
analyzed that the majority of fire accidents occurred when the temperature was between 25 and 
29.9 °C.

4. Conclusions 

 Since fires are the second major urban disaster in Korea after traffic accidents, spatial and 
non-spatial fire risk factors have been analyzed by applying machine learning techniques to fire 
accident reports. The data of three years (2017–2019) were collected from the Korean Fire 
Service and the Seoul Metropolitan Government. Among the machine learning techniques, 
SVM, RF, and GBRT were selected, and their accuracy was evaluated by calculating MAE and 
RMSE. Furthermore, the obtained results were obtained by analyzing the importance of fire 
factors that affect the occurrence of this hazard in Seoul. 
 As the first phase, 14 factors related to fire occurrence were selected among the spatial and 
non-spatial fire factors disclosed by the Korea Fire Service, and the multicollinearity was 
analyzed. By stepwise regression analysis, seven factors (minutes, day, wind speed, wind 
direction, humidity, ignition source, and number of building floors) with high multicollinearity 
were excluded, and the remaining seven factors (month, hour, temperature, fire location, facility 
classification, ignition condition, and structural material) were selected to assess their 
importance using machine learning techniques.
 In the second phase, SVM, RF, and GBRT were used, through which the validation and test 
data were used to calculate their MAE and RMSE. The results of this phase revealed that RF 
obtained the ideal results followed by GBRT and SVM. In the case of RF, at a tree number of 
450, the difference between the MAE and RMSE values of the validation and the test data was 
the smallest; therefore, the overfitting problem was also the lowest. 
 In the third phase, as a result of analyzing the importance of the seven spatial and non-spatial 
fire factors using RF, the ignition condition was selected as the main factor in fire occurrence, 
followed in order by facility classification, fire location, hour, month, structural material, and 
temperature. The ignition condition factor includes carelessness and electrical and mechanical 
reasons. The analysis of fire data among these reasons demonstrates that fire accidents occurred 
frequently owing to carelessness, followed by electrical and mechanical reasons. On the basis of 
the above, as a result of applying the machine learning technique to the fire data in Seoul, it was 
possible to evaluate the important causes of fires, and the results are expected to be used as an 
important guideline for establishing urban fire management and reduction measures.
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