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	 Even for the same brand of beer, beer quality may differ in different production batches. It is 
important to propose a fast and effective beer quality inspection technology to control the 
production quality of beer. In this paper, a smooth discriminant analysis (SDA) method combined 
with an electronic nose (e-nose) system is proposed to identify beer gas information in different 
production batches. A multi-pattern recognition method is combined to classify the gas 
information. Firstly, using the PEN3 e-nose system, different batches of beer gas information are 
obtained. Secondly, an SDA method is proposed, which strengthens the linearization between 
gas features and improves the processing effect of gas features. Thirdly, multi-pattern 
recognition methods are applied and combined with multiple feature dimensionality reduction 
methods to demonstrate the effectiveness of SDA. The results show that SDA achieves effective 
dimensionality reduction of different batches of beer gas features and obtains the best 
classification performance with the random forest (RF), with an accuracy of 97.70%, precision 
of 98.47%, and recall of 98.23%, thus achieving beer gas identification from different production 
batches.

1.	 Introduction

	 Beer is rich in various nutrients and water and contains essential amino acids for the human 
body. Beer also contains ten different vitamins and nutrients.(1,2) Beer has a low alcohol 
concentration and contains carbon dioxide gas. In the process of beer production, manufacturers 
strictly control the brewing process and various parameters to ensure the production of high-
quality beer. However, consumers can sometimes detect differences in beer quality in different 
production batches, even for the same brand of beer. Therefore, a fast and effective detection 
method is required to effectively detect the production quality of beer, strictly control the beer 
production process, and provide an effective supervision method for producing high-quality 
beer.
	 Traditional beer quality testing methods are mainly based on physical and chemical index 
analysis and artificial sensory evaluation.(3,4) Physical and chemical indicators mainly include 
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dissolved oxygen, turbidity, diethyl phthalide, and carbon dioxide content, which require precise 
detection conditions, are time-consuming, and cannot effectively represent the overall quality of 
beer.(5) Artificial sensory evaluation has the disadvantages of a long evaluation period, strong 
subjectivity, and poor repeatability.(5) Because the gas in beer directly affects people’s sensory 
experience when drinking beer, it can reflect the overall quality of beer. The gas information of 
different beer brands is clearly different, and the gas information of different production batches 
is also different. In this paper, we apply this principle to realize the intelligent detection of the 
overall quality of beer based on the advanced sensing detection technology of the electronic nose 
(e-nose).
	 In the detection experiment of the e-nose system, the detection method of the dynamic 
headspace is the most common method, which has the advantages of high stability and high 
detection signal validity.(6,7) The data processing process consists of feature extraction, feature 
processing, and pattern recognition.(8) Feature extraction mainly includes time domain features, 
frequency domain features, and spatial domain features.(9) Feature processing mainly includes 
dimensionality reduction and selection.(10) Pattern recognition includes supervised, 
unsupervised, and semi-supervised learning methods.(11) The e-nose system sensor array has 
cross-sensitive response characteristics; thus, the extracted gas features are clearly correlated. If 
the original gas features are directly used for pattern recognition, it will directly affect the gas 
decision-making accuracy. 
	 Feature processing methods are crucial to remove redundant gas features. Barriault et al. 
used principal component analysis (PCA) and linear discriminant analysis (LDA) to reduce the 
dimensionality of the leakage gas information.(12) Cho and Kurup proposed the decision tree 
method for the dimensionality reduction and showed the importance of variables.(13) Nozaki and 
Nakamoto implemented a computational method to predict the gas composition, and their 
predictive model utilized nonlinear dimensionality reduction of mass spectrometry data.(14) Wu 
et al. proposed a method for reducing the number of features by separately processing two 
different types of features, spatial and temporal.(15) Shin et al. utilized the relief feature selection 
technique to select suitable sensors from the sensor array.(16) Wijaya and Afianti proposed a 
feature selection method to eliminate redundant and irrelevant features, which can reduce the 
dimensionality as well as the complexity of the original problem.(17) Mishra et al. proposed a 
hybrid adaptive neuro-fuzzy jamming system model to optimize the sensor array.(18) Wijaya et 
al. proposed an integrated feature selection method based on information theory to reduce the 
dimension and complexity of  gas features.(19) These feature processing methods realize the 
dimensionality reduction of gas information to a certain extent, and it can be seen that there is a 
clustering trend through visual analysis technology. However, in the case of high-dimensional 
and complex gas features, the dimensionality reduction effect cannot be optimized owing to the 
clear nonlinear relationship.
	 In the process of gas information classification, it is impossible to select effective gas features 
for gas classification only from the response value, which may easily lead to overfitting of the 
model. Since a sensor array has clear cross-sensitive response characteristics with different gas 
features correlated, we propose a feature dimension reduction method to reduce the dimension 
of the original gas features effectively. The optimal gas feature set can improve the classification 
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performance of the pattern recognition algorithm. The main contributions of this paper are as 
follows:
(1)	�The beer gas information of different production batches is obtained using the e-nose 

detection system, and a smooth discriminant analysis (SDA) method is proposed to reduce 
the dimensionality of gas features.

(2)	�By combining SDA with multi-pattern recognition technology, beer gas information of 
different production batches can be effectively identified, providing a fast and accurate 
analytical method for beer quality supervision.

	 In practical engineering applications, the main purpose of a beer producer is to ensure that 
the beer quality of each production batch should be the same or there should be no obvious 
difference. After obtaining different batches of beer gas information based on the e-nose system, 
SDA realizes the dimension reduction analysis of different batches of beer. By observing the 
dimension reduction and classification results, we can see the quality difference for different 
batches of beer, and each parameter in the production process should be strictly adjusted to 
control beer quality.

2.	 Materials and Methods

2.1	 Beer sample and electronic nose system

	 The beer samples were taken from a brewery with production dates of January 19, February 
20, March 19, April 18, and May 20, 2022. The samples were uniformly stored under an ambient 
temperature of 22 ± 0.5 ℃ and an ambient humidity of 40 ± 5 RH, avoiding light.
	 The commercialized PEN3 e-nose system was used to collect the beer gas information. Its 
main component comprises ten built-in metal oxide sensors, and the sensor array can detect 
cross-sensitive information of the gas to be measured. Figure 1 shows the structure of the PEN3 

Fig. 1.	 (Color online) Structure of PEN3 e-nose system.
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e-nose system. Table 1 shows the names, detection substances, and detection limits of the ten 
sensors. The response output value of the sensor is the ratio of the conductance (G) of the gas to 
be measured by the sensor to the conductance (G0) of the clean air filtered by activated carbon, 
i.e., G/G0. When the beer gas is in contact with the sensor array, the sensor’s surface undergoes a 
redox reaction and an electrical signal is generated. Owing to the cross-sensitivity of the sensor, 
comprehensive detection information of the sample to be tested is obtained.

2.2	 Experiment on gas detection

	 During the e-nose system detection experiment carried out in this study, the ambient 
temperature is 22 ± 0.5 ℃ and the ambient humidity is 40 ± 5 RH. The main experimental 
process is as follows:
(1)	�To ensure that the sensor array reaches the normal working temperature range (300–500 ℃) 

and to ensure that its output signal is stable, it is necessary to preheat the e-nose for 1 h.
(2)	�A sample of 10 ml of beer is placed in a 50 ml sample bottle and allowed to stand for 5 min to 

ensure sufficient headspace air.
(3)	�Clean air filtered by activated carbon is used to clear the sensor gas chamber and gas path for 

60 s, where the gas flow rate is 300 ml/min.
(4)	�The dynamic headspace sampling method is used to obtain beer gas information, where the 

sampling time is 80 s, the sampling frequency is 1 Hz, and the gas flow rate is 300 ml/min. 
Figure 2 shows the response curve of the sensor array.

	 To obtain parallel samples, steps (2)–(4) are repeated, the gas information of 30 samples of 
beer from different production batches is collected, and a total of 150 samples are collected from 
five different production batches.

2.3	 SDA method

	 LDA is a supervised dimensionality reduction method that gives the dimensionality-reduced 
data small intra-class differences and large inter-class differences, thereby improving the 

Table 1
Main performance of gas sensors.
No. Sensor Main performance Detectability (ppm)
1 W1C Sensitive to aromatic compounds 10

2 W5S Highly sensitive to nitrogen oxides, very sensitive with 
negative signal 1

3 W3C Sensitive to aromatic compounds and ammonia 10
4 W6S Sensitive to hydrogen 100
5 W5C Sensitive to aromatic components and alkanes 1
6 W1S Sensitive to methane, broad range 100

7 W1W Sensitive to many terpenes, sulfur compounds, and organic 
sulfur compounds 1

8 W2S Sensitive to ethanol, less sensitive to aromatic compounds 100
9 W2W Sensitive to aromatic compounds, organic sulfur compounds 1

10 W3S Detection of alkanes in high concentrations 10



Sensors and Materials, Vol. 35, No. 1 (2023)	 5

classification performance of pattern recognition algorithms. In the mathematical calculation 
process of LDA, the inter-class scattering matrix and the intra-class scattering matrix are 
denoted as Ab and Aw, respectively. First, 1

w bA A−  is calculated, then the optimal feature matrix W 
in the projection direction of dimensionality reduction is obtained. Finally, the original sample is 
multiplied by the feature vector to obtain the feature matrix after dimensionality reduction.
	 Denoting the set of samples as 1 2=[ , , , ], =1, ,cn
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	 The inter-class and intra-class scattering matrices are obtained by directly calculating the 
centroids between the feature vectors. However, this calculation method cannot closely reflect 
the scattering relationship between samples and does not help find the best projection direction 
W in LDA. The radial basis function (RBF) is used to balance the linear relationship and the 
differences between features and has the function of smoothing data. Through the calculation 
using Eqs. (1) and (2), the RBF is introduced into the calculation formula of the scattering matrix 

Fig. 2.	 (Color online) Response curve of the sensor array.
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to achieve the information balance between each sample, which is conducive to finding the best 
projection direction in the process of dimensionality reduction.
	 In SDA, the values of the similarity matrices of the inter-class scattering matrix M and the 
intra-class scattering matrix N can respectively be calculated as
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	 Introducing the similarity matrix, the inter-class scattering matrix can be defined as
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	 The intra-class scattering matrix can be defined as
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The optimization problem can be expressed as
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The following eigenvalue problem can be solved to find the optimal projection direction:
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	 Finally, the optimization problem is transformed into
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	 In the dimensionality reduction process, the cumulative contribution rate of the principal 
components determines the effectiveness of the dimensionality reduction results. In this work, 
we use the principal components whose cumulative feature contribution rate reaches more than 
95% for pattern recognition.

2.4	 Gas classification model

	 After obtaining the gas dimensionality reduction features, combining the multi-pattern 
recognition method is necessary to identify the gas features effectively, and then verify the 
effectiveness and universality of the feature dimensionality reduction method. In this work, we 
have selected four common pattern recognition algorithms in the process of gas classification.
	 Cortes and Vapnik first proposed the support vector machine (SVM) in 1995, which has 
many advantages in solving small samples, and nonlinear and high-dimensional pattern 
recognition. The principle of the SVM is to transform the input space into a high-dimensional 
feature space using a kernel function and find the optimal hyperplane in the new space. In this 
paper, the RBF is selected as the classification kernel function.(20) The genetic algorithm (GA) is 
applied to calculate the parameters affecting the classification performance of the SVM (the 
penalty factor c and the kernel function parameter g). In this study, the maximum number of 
generations in GA is 100, the population is 20, the search range of c is from 0 to 100, and that of 
g is from 0 to 1000. The fitness function is the highest accuracy rate of the training set under 
fivefold cross-validation.
	 The extreme learning machine (ELM) is a classification algorithm proposed by Hang of 
Nanyang Technological University.(21) It randomly generates the connection weights of the input 
layer and hidden layer and the threshold of the hidden-layer neurons. These parameters need not 
be adjusted during the training process.(21) Only the number of hidden-layer neurons must be set, 
and the optimal solution can be obtained. The ELM has the advantages of a high learning speed 
and good generalization performance. In this work, the number of hidden-layer neurons was 
500.
	 The random forest (RF) is used in ensemble learning and is a method of integrating many 
decision trees into a forest, which is used to predict the final result.(22) The RF randomly selects 
k attributes from a sample set sampled by bagging to form a new dataset and then trains the 
decision tree. Compared with bagging, the RF introduces the perturbation of attributes. In this 
way, the difference between each trained subtree is as large as possible, the model after 
integration is difficult to overfit, and the generalization ability is enhanced. In practical 
classification tasks, the RF has excellent performance. In this work, k was 2.
	 Learning vector quantization (LVQ) is a neural network that combines competitive learning 
and mentored learning methods. LVQ includes input, competition, and output layers. In the 
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connection mode, the input and competition layers are fully connected, and the competition and 
output layers are partially connected.(23) An advantage of the LVQ neural network is its simple 
network structure, and it can complete very complex classification tasks by interacting with 
internal units. In this work, the number of hidden-layer neurons was 500, the learning rate was 
0.01, and the LVQ network was trained for 1000 epochs.
	 The average of 20 calculation results was used as the final classification performance to 
eliminate the impact of randomness in the classification process. At the same time, to fully 
express the classification performance of the pattern recognition method, we used the 
classification accuracy, precision, and recall to represent the classification results.

3.	 Results and Discussion

3.1	 Visualization of gas information

	 To compare the differences in the gas information of different production batches of beer, 
Fig. 3 shows a radar chart of the beer gas response information under different production 
batches at 60 s. It can be seen that the overall trend of the beer gas response information of 
different batches of the same brand is similar, and W2S, W1W, W1S, and W5S have greater gas 
responses than the other sensors. However, although the response values of the other sensors are 

Fig. 3.	 (Color online) Radar chart of gas information. (a) First batch, (b) second batch, (c) third batch, (d) fourth 
batch, and (e) fifth batch.
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small, the importance of a sensor cannot be determined by the magnitude of its response, which 
will easily lead to overfitting of the decision-making model. Therefore, it is important to 
comprehensively consider the gas features of each sensor response curve and combine them 
using effective feature processing methods to obtain the optimal feature set for realizing the 
effective decision-making of gas features.

3.2	 Gas feature extraction

	 It can be seen from Fig. 2 that the detection signal of the beer gas detection feature is stable 
and that the detection curve increased rapidly then changed stably. In the early stage of gas 
detection, the dynamic headspace air quickly enters the sensor gas and undergoes a redox 
reaction with the sensor so that the detection signal rapidly increases in magnitude. With 
increasing detection time, the volatile gas consisting of the beer gas and the carrier gas reaches a 
dynamic balance, and the detection curve of the sensor tends to become stable. On the basis of 
the data characteristics of the beer gas information, we extract the maximum value, steady-state 
mean value, and integral value to represent the overall properties of the original detection signal. 
The maximum value represents the peak concentration of the gas entering the sensor gas 
chamber [Eq. (16)], the steady-state average value represents the state response of the volatile 
beer gas and the sensor gas reaching dynamic equilibrium [Eq. (17)], and the integral value 
represents the dynamic global response of the overall gas detection process [Eq. (18)]:

	 T f t
1
=max ( ) ,	 (16)

	 T f t
t

2

51

60
1

10
�

�
� ( ),	 (17)

	 T f t dt
3

1

80

� � ( ) ,	 (18)

where f(t) denotes the response value of the sensor at time t.

3.3	 Dimensionality reduction visualization of gas features

	 To demonstrate the effectiveness of SDA in dimensionality reduction, we compare it with 
classical, unsupervised, and supervised dimensionality reduction methods. The comparison 
methods are PCA, kernel principal component analysis (KPCA), kernel entropy component 
analysis (KECA), and LDA. Figure 4 shows the results of dimensionality reduction for the 
different methods. It can be clearly seen that when PCA, KPCA, and KECA are used as 
unsupervised dimensionality reduction methods, although the beer gas features of different 
batches can be clustered to some extent, there is the disadvantageous feature of small differences 
between classes and large gaps within classes. Moreover, there is overlapping of the gas features 
of different batches of beer, which may not be conducive to gas identification. In the 2D 



Sensors and Materials, Vol. 35, No. 1 (2023)	 11

dimensionality reduction results, the cumulative contribution rates of the first two principal 
components are 80.70% for the PCA dimensionality reduction method, 82.17% for KPCA, and 
82.58% for KECA. Figures 4(d) and 4(e) respectively show the dimensionality reduction results 
of LDA and SDA. It can be seen that the supervised dimensionality reduction method makes the 
inter-class spacing significantly larger and the intra-class spacing smaller. Moreover, in the 
dimensionality reduction results of LDA, the beer gas information samples of the fourth and 
fifth batches overlap. The dimensionality reduction effect of SDA enables the beer gas 
information of different batches to be clearly clustered, and there is no overlap between samples 
in different categories, which is helpful for the intelligent identification of pattern recognition 
algorithms. In the 2D dimensionality reduction results, the cumulative variance contribution 
rates of the first two principal components are 84.78% for LDA and 92.09% for SDA. To obtain 
the optimal feature set for different dimensionality reduction methods, we employ the principal 
components with a cumulative variance contribution rate of more than 95% for pattern 
recognition. Finally, the optimal numbers of feature dimensions obtained by PCA, KPCA, 
KECA, LDA, and SDA are 12, 8, 7, 9, and 6, respectively.

3.4	 Classification results

	 Figure 5 shows a histogram of the classification accuracy results of SVM, ELM, RF, and 
LVQ for different feature sets. It can be clearly seen that for the different classification 
algorithms, the feature sets obtained by the SDA dimensionality reduction method have the 

Fig. 4.	 (Color online) Dimensionality reduction results of gas features. (a) PCA, (b) KPCA, (c) KECA, (d) LDA, 
and (e) SDA.

(a) (b) (c)

(d) (e)
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Table 2
Classification accuracy of different feature dimensionality reduction methods combined with multi-pattern 
recognition algorithms (%).
Feature set Dimension SVM ELM RF LVQ
Original 30 91.10 ± 3.28 89.60 ± 3.53 92.30 ± 2.62 85.80 ± 3.66
PCA 12 93.50 ± 2.24 91.20 ± 3.27 93.00 ± 2.38 88.00 ± 3.73
KPCA 8 94.60 ± 2.35 91.90 ± 2.86 94.30 ± 2.85 87.70 ± 4.01
KECA 7 93.10 ± 2.58 91.60 ± 3.28 93.30 ± 2.83 88.70 ± 6.88
LDA 9 95.40 ± 1.60 93.50 ± 2.74 96.00 ± 2.83 89.30 ± 4.01
SDA (ours) 6 97.20 ± 2.19 95.00 ± 2.71 97.70 ± 2.18 91.20 ± 4.18

Table 3
Precision of different feature dimensionality reduction methods combined with multi-pattern recognition algorithms (%).
Feature set Dimension SVM ELM RF LVQ
Original 30 92.64 ± 2.66 91.05 ± 2.85 93.38 ± 2.28 88.27 ± 2.63
PCA 12 94.13 ± 2.22 92.63 ± 2.53 94.00 ± 2.28 89.90 ± 2.65
KPCA 8 95.35 ± 2.21 93.19 ± 2.52 94.74 ± 2.22 90.07 ± 2.86
KECA 7 94.07 ± 3.37 92.25 ± 2.73 93.74 ± 2.02 90.03 ± 5.36
LDA 9 96.25 ± 1.32 94.30 ± 2.20 96.63 ± 2.15 90.93 ± 3.05
SDA (ours) 6 97.73 ± 1.69 95.70 ± 2.14 98.47 ± 1.10 92.38 ± 3.40

Table 4
Recall of different feature dimensionality reduction methods combined with multi-pattern recognition algorithms (%).
Feature set Dimension SVM ELM RF LVQ
Original 30 90.68 ± 3.26 89.10 ± 3.69 92.20 ± 2.88 84.66 ± 3.57
PCA 12 93.33 ± 2.21 90.78 ± 3.50 92.57 ± 2.37 86.84 ± 4.24
KPCA 8 94.37 ± 2.47 91.53 ± 3.16 93.45 ± 3.12 86.43 ± 4.32
KECA 7 93.00 ± 3.58 91.35 ± 3.38 93.45 ± 3.34 88.86 ± 5.95
LDA 9 95.44 ± 1.53 93.38 ± 2.90 96.10 ± 1.61 88.31 ± 4.31
SDA (ours) 7 97.24 ± 2.11 94.98 ± 2.88 98.23 ± 1.04 91.11 ± 4.27

Fig. 5.	 (Color online) Histogram of classification accuracy of multi-pattern recognition algorithm under different 
feature sets.
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highest classification accuracy and classification stability. At the same time, the classification 
effect of the feature set obtained by the supervised dimensionality reduction method is clear, and 
the effect of supervised dimensionality reduction is greater than that of unsupervised 
dimensionality reduction.
	 To comprehensively express the classification performance of the multi-pattern recognition 
algorithm, Tables 2–4 show the classification accuracy, precision, and recall of the multi-pattern 
recognition algorithm for different feature sets, respectively. It can be seen that for the multi-
pattern recognition algorithm, the RF achieves the highest classification accuracy of 97.70%, the 
highest precision of 98.47%, and the highest recall of 98.23% for the SDA feature. Overall, the 
classification performance decreases in the order RF > SVM > ELM > LVQ. At the same time, 
as the recognition algorithms of neural networks, ELM and LVQ have poor classification 
stability. The SDA feature set obtained the best classification performance according to our 
comparison of the classification effects of different feature sets. Taking the RF classification 
algorithm as an example, the classification accuracy for the SDA feature set is 1.10% higher than 
that for the LDA feature set, 4.40% higher than that for the KECA feature set, 3.40% higher than 
that for the KPCA feature set, and 4.70% higher than that for the PCA feature set. The 
performance of other pattern recognition algorithms was also improved.

4.	 Conclusion

	 To achieve the effective dimensionality reduction of gas features, we proposed an SDA 
method combined with multi-pattern recognition technology to effectively identify beer gas 
information in different batches. The main conclusions of this paper are as follows:
(1)	�The data smoothing method using the RBF effectively avoids the disadvantage of 

dimensionality reduction caused by the nonlinear relationship between the features. 
Compared with other feature dimensionality reduction methods, it significantly increases the 
inter-class spacing and reduces the intra-class difference, improving the dimensionality 
reduction effect.

(2)	�In the classification results of the multi-pattern recognition algorithm, the RF achieved the 
highest classification accuracy of 97.70%, the highest precision of 98.47%, and the highest 
recall of 98.23% for the SDA feature set, enabling it to effectively identify beer gas 
information in different production batches.

	 The dimension reduction effect based on SDA can show the difference of unknown beer gas 
information. The classification results of pattern recognition are used to judge whether the gas 
information of different batches of beer is the same. Furthermore, the production process 
parameters of beer are adjusted. In this work, it provides a fast and effective detection method 
for beer quality control. 
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