
87Sensors and Materials, Vol. 35, No. 1 (2023) 87–102
MYU Tokyo

S & M 3156

*Corresponding author: e-mail: huanghaochen66@126.com
https://doi.org/10.18494/SAM4190

ISSN 0914-4935 © MYU K.K.
https://myukk.org/

Construction of Multi-resolution Spatial Data Organization
for Ultralarge-scale 3D Laser Point Cloud

Haochen Huang*

School of Computer and Communication Engineering, University of Science and Technology
Beijing, Beijing 100083, China

(Received October 24, 2022; accepted January 6, 2023)

Keywords:	 3D laser point cloud, high-precision vehicle-mounted 3D laser sensor, multi-resolution,
double-shell Poisson disk sampling, octree, spatial data organization

	 The high-precision laser point cloud data obtained by 3D laser scanning technology is an
important source of 3D spatial data for smart city construction. The efficient data organization
of TB/PB ultralarge-scale point cloud data for urban applications is the key to point cloud data
processing and visualization. Toward solving the problems of data redundancy and low storage
efficiency in existing spatial data organization, we propose a spatial data organization model of
a multi-resolution ultralarge-scale point cloud based on an octree and its multi-resolution point
cloud construction method based on the divide-and-conquer algorithm. Firstly, a multi-resolution
spatial data organization model based on an octree without redundancy is designed, which
makes it easy to quickly judge the visibility of the point cloud. To obtain a high-quality rendering
effect, a double-shell Poisson disk sampling method is used as a point cloud filling method to
ensure constant spacing between sampling points and improve the visualization quality of point
clouds. Finally, the original point cloud is partitioned by a quadtree and a process is started for
each quadtree node. We propose a parallel construction algorithm for a multi-resolution point
cloud to improve the construction efficiency of the algorithm when dealing with massive point
clouds. In this paper, a large number of urban street point cloud data are obtained and tested
using a high-precision vehicle-mounted 3D laser sensor. Experiments show that the multi-
resolution spatial data organization model based on an ultralarge-scale 3D laser point cloud is
reasonable and that its algorithm is efficient.

1.	 Introduction

	 Light detection and ranging (LiDAR) scanning technology, as a new 3D data acquisition
technology, has become an important source of 3D spatial data for the current information
construction of smart cities because of its advantages of rapidly obtaining massive point cloud
data by using airborne, vehicle-mounted, and ground-based LiDAR scanners as data sources.
The storage and processing of such a huge amount of point cloud data at the city level is a major

mailto:huanghaochen66@126.com
https://doi.org/10.18494/SAM4190
https://myukk.org/

88	 Sensors and Materials, Vol. 35, No. 1 (2023)

challenge, and the reasonable organization of the data is the key to the application of point cloud
engineering.
	 A large amount of research has been performed on the spatial data organization of massive
point clouds. The B-tree, R-tree, R-variant tree, binary space partitioning (BSP) tree, grid index,
quadtree, K-D tree, KDB tree, octree, and so forth have been used to establish a spatial data
index, and some research achievements have been reported. Among them, the commonly used
spatial data index structures include the K-D tree, quadtree, and octree. Different index
structures have different advantages and disadvantages.
	 The spatial organization of point clouds using K-D trees can effectively improve the retrieval
efficiency of point clouds. Goswami and coworkers proposed a multi-resolution point cloud
organization structure based on multi-channel K-D trees, which simplifies memory management
and can effectively control the depth of trees.(1–2) At the same time, they also proposed a
rendering method based on point ceilings, which makes the library maintain stable and high
performance in the rendering of the point cloud. This method has the function of asynchronous
data and can provide continuous high-quality rendering through Levels of Detail (LOD)
geographic deformation and delay mixing. Because the traditional K-D tree becomes seriously
unbalanced when inserting or deleting points from the point cloud, Brown proposed a method of
constructing a balanced K-D tree.(3)

	 Quadtrees and octrees are slightly inferior to K-D trees in terms of query efficiency, but
because it is very easy to implement multi-resolution structures using quadtrees and octrees,
they have wider applications in visualization. Zhi et al. organized and managed LiDAR point
cloud data by using an improved quadtree to achieve the fast indexing of massive point clouds.(4)
Wang improved the traditional quadtree structure to solve problems such as the easy redundancy
of nodes and the overflow in the recursive process of tree construction. By combining a Hilbert-
improved quadtree with a pyramid-PC model, massive point clouds can be organized more
efficiently.(5) Wand et al. described an editing system for large-scale point clouds, which builds
an octree and stores quantized grids at the internal nodes of the octree, with each grid cell
storing an arbitrary point to represent all points at a lower level in the hierarchy.(6) The editing
system is similar to that of internal octrees, where each octree node stores an octree of its own.
The point data inserted into an octree node is stored at the lowest level of the internal octree. By
assigning a weight to each point in the grid cell of the internal node, the point cloud can be
updated when the point cloud is edited. This type of organization works well in the system of
Wand et al., but the disadvantage is that it is necessary to reserve at least three times the size of
the original point cloud data on a disk. Yang et al. proposed combining a quadtree and a K-D tree
to construct hybrid indexes for point clouds.(7) This method uses a quadtree pyramid model to
achieve fast retrieval globally and builds a K-D tree locally to improve the query efficiency of a
point cloud. This method improves the scheduling efficiency of the point cloud without reducing
the precision of point cloud data. Xu studied the organization and spatial indexing of massive
point cloud data and proposed an improved encoding method of the octree that adopts K-D trees
for the leaf nodes of the octree to construct a hybrid index, improving the retrieval efficiency of
massive point cloud data. However, the efficiency of the method decreases for point cloud data
with distinctive characteristics.(8) Scheiblauer and Wimmer proposed a system based on out-of-

Sensors and Materials, Vol. 35, No. 1 (2023)	 89

core selection and editing of massive point clouds, which uses a “selection octree” to spatially
organize point cloud data, enabling the fast insertion and deletion of point clouds, laying the
foundation for their subsequent research on the processing and visualization of massive point
clouds.(9)

	 The following deficiencies can be seen in the organization of massive point cloud data: (1)
Although the existing spatial data organization has a multi-resolution-based data storage
structure, there are redundant point clouds at different levels of nodes. In addition, the spatial
data organization model does not consider the problem of sampling point clouds to enable high-
quality rendering. (2) The algorithms used in constructing multi-resolution data organization
models are inefficient and incur high time costs when constructing the models for massive
amounts of point cloud data. To this end, we propose an octree-based redundancy-free multi-
resolution data organization model and a parallel construction method for multi-resolution point
clouds based on a partitioning algorithm.

2.	 Multi-resolution Data Organization Structure and Its Parallel Construction
Method

	 A massive amount of dense point cloud data, reaching hundreds of GB or even TB, is much
larger than ordinary computer system memory, and it is impossible to visualize a whole point
cloud by loading it into the memory. Therefore, it is necessary to limit the visualization of the
point cloud to the visible range by using a multi-resolution structure, and only load the point
cloud data judged to be visible by some rules. Visible point cloud data should contain at least the
following contents:
(1)	When each frame is rendered, it is located within the cone of view. In computer graphics

applicaton programming interface (API) rendering, all the data transferred to the vertex
buffer will be rendered. However, in 3D space, only the objects located in the cone of view
can be observed, and the data outside the cone of view cannot be directly seen even if
rendered. Therefore, the point cloud data outside the viewing cone should not be transferred
to the vertex buffer.

(2)	Each frame of the view cone is within a certain range from the camera observation point. If
the far plane of the viewing cone is set at a sufficient distance, even if it is located within the
viewing cone, the distant point cloud data will be drawn on the computer screen and cannot
be observed because the pixels are too small or overlap. Therefore, it is unnecessary to draw
the data far from the cone of view.

2.1	 Multi-resolution data organization model without redundancy based on octree

	 On the basis of the above two requirements, it is necessary to design a data structure that is
convenient for quickly judging the visibility of point clouds. The spatial data organization
adopted in this paper is based on the spatial division structure of an octree, and the point cloud
data are sampled from top to bottom in the construction process to produce a multi-resolution
form. The multi-resolution organization of the point cloud is shown in Fig. 1, and each node

90	 Sensors and Materials, Vol. 35, No. 1 (2023)

package contains two parts: point cloud data and node information. The point cloud data are the
geometric data of this node, and the node information mainly includes the total number of point
clouds, node bounding box, node name, node size, number of child nodes, and so forth, which
provide the necessary traversal parameters for later point cloud visualization and scheduling.
	 The octree is built from the root node, and all nodes store point cloud data, but the points
included in different levels and nodes are not repeated. That is, in the whole octree, any point
only appears in one node. Therefore, in the multi-resolution structure of the point cloud, the
point cloud data of the next level refine the point cloud data of all previous levels, and the nodes
of all levels are merged to obtain the original point cloud data, as shown in Fig. 2(a). However, in
the traditional multi-resolution structure of point clouds, the point clouds in each hierarchical
node except the leaf nodes thin the original point clouds to varying degrees. The leaf nodes are
spatial blocks of the original point clouds, and the union of leaf nodes can accurately express the
original point clouds. The union of all nodes in the whole octree will greatly exceed the original
point cloud data, resulting in a large amount of data redundancy [Fig. 2(b)].

2.2	 Double-shell Poisson disk sampling

	 The quality of point cloud visualization depends on the uniformity of the point distribution.
The distribution of the point cloud often shows density deviation, which reduces the quality of
visualization. Therefore, Shu et al. adopted Poisson disk sampling to ensure the uniformity of
point cloud sampling.(10) In addition, the spectrum sampled by the Poisson disk has the
characteristics of blue-noise, so better results can be obtained when dealing with image
aliasing.(11) The blue noise characteristic of the sampling results makes the point set keep a
certain minimum distance between adjacent points without a large gap.(12,13) Point sets with
blue-noise characteristics are considered to have high visual quality, and have achieved very
good results in rendering, texture synthesis, and other applications. In this paper, a double-shell
Poisson disk sampling method is used as a point cloud filling method for nodes. Double-shell
Poisson disk sampling is used as a method to improve the traditional Poisson disk sampling,

Fig. 1.	 (Color online) Multi-resolution organization of point clouds.

Sensors and Materials, Vol. 35, No. 1 (2023)	 91

which can keep the point spacing constant and improve the visualization quality of point
clouds.(14) As shown in Fig. 3, the double-shell Poisson disk adopts two concentric spheres,
where the radius of the inner sphere is r and the radius of the outer sphere is R, and each point is
given a selection weight priority. The point with greater weight is preferentially selected as the
next center point. In each sampling process, the point located in the inner sphere is ignored, and
the weighted priority of the point located between the inner sphere and the outer sphere is
automatically increased. Compared with the traditional Poisson disk sampling method, the
double-shell Poisson disk sampling method is advantageous and has been successfully applied to
large-scale point cloud visualization.
	 Figure 4 shows the overall sampling process of the double-shell Poisson disk. First, the input
points are sorted from inside to outside according to their distance from the center point. Then,
the distance between each input point and the center point is measured, and the points between
the inner and outer spheres are taken as the candidate point set for the next center point selection.
Finally, the sampling result is obtained. The algorithm steps are as follows:
(1)	Give the weight of each point in the point cloud an initial value of 0, that is, priority = 0.
(2)	Define the radius r of the inner sphere and the radius R of the outer sphere (r < R), and

randomly select a point as the first center point of the concentric sphere.
(3)	Place the center point in the result container v_accept, ignoring the points in the inner sphere,

add 1 to the weight of the points between the inner sphere and the outer sphere, and place
these points in the container v_accept to be selected.

(4)	Sort the points in the container v_candidate to be selected in descending order of weight, and
select the point with the highest weight as the center point for the next time. If there are
multiple points with the same highest weight, one of these points is randomly selected.

(5)	Continue to execute step (3) until the next center point cannot be determined, and end the
algorithm.

Fig. 2.	 (Color online) Multi-resolution structure of point clouds. (a) Point cloud multi-resolution structure in this
article. (b) Traditional point cloud multi-resolution structure.

(a) (b)

92	 Sensors and Materials, Vol. 35, No. 1 (2023)

	 In the sampling process, each point has the smallest distance from all other points. Whenever
a new point of cloud data is filled into a tree node, it is necessary to calculate the distance
between this point and the other points that have already been filled to judge whether this
distance satisfies the minimum distance of double-shell Poisson sampling. This method can be
used to process a small amount of data, but when processing large-scale point cloud data, the
frequent distance calculations will greatly reduce the overall efficiency of the algorithm. To
improve this shortcoming, a spatial grid is introduced in the sampling process.
	 As shown in Fig. 5, each node is divided into grids, and for each cell, the points falling into
the cell and its neighboring cells can be conveniently recorded. When judging the distance of a
newly filled point, only the distances between the point and the points in its cell and adjacent
cells are calculated (that is, the distances between points in up to 27 cells are calculated). To
strictly implement double-shell Poisson disk sampling between adjacent nodes, the neighborhood
cell record of each cell contains cells inside and outside the node. When a cloud is filled into a
tree node, it is necessary to judge not only the minimum distance between the neighboring cells
in the node but also that between the cells in the neighboring nodes. Creating a spatial grid based
on nodes can not only improve the efficiency of the algorithm, but also effectively avoid the
problem of dense sampling results at the boundary of adjacent nodes.

(a) (b) (c) (d)

Fig. 4.	 (Color online) Sampling process of double-shell Poisson disk. (a) Input data. (b) Sort. (c) Distance
measurement. (d) Sampling result.

Fig. 3.	 (Color online) Schematic diagram of double-shell Poisson disk sampling.

Sensors and Materials, Vol. 35, No. 1 (2023)	 93

	 The cell size is between the spacing of the current level and the node size. If the cell size is
too small, more memory will be required and performance will be reduced. If it is too large, the
cost of judging the distance between points cannot be effectively solved.(15) The grid spacing
diagram in Fig. 6 shows the effect of the grid size. Whenever a point is added, the distances
between the point and all the points in its cell and adjacent cells are calculated, and the points
that exceed the minimum distance are added to the green cell. When the current cell receives the
first point, it creates a cell instance and determines whether a neighboring cell already exists. If
a neighboring cell exists, it is added to the list of neighboring cells. In Fig. 6(a), because the grid
size is small and the number of points in each cell is small, a small number of distance judgments
need be performed. However, because of the large number of grids, more memory will be taken
up. In contrast, in Fig. 6(b), the cell size is larger; thus, more distance judgments are required
every time a new point is inserted. However, during our experiment, a smaller grid size setting is
required at the beginning, and the grid size is gradually increased during the experiment.

2.3	 Multi-resolution point cloud construction of divide-and-conquer algorithm

	 Figure 7 shows the algorithm flow of multi-resolution point cloud construction. The specific
steps of the algorithm are as follows:
(1)	Firstly, read the point cloud data to calculate the space bounding box. If the current node is

the root node, it is necessary to determine the distances between the points in the root node.
(2)	Judge whether the number of read points (R_Count in Fig. 7 represents the total number of

point clouds currently cumulatively read) reaches the set node processing threshold (δn). If δn
has been reached, obtain all the currently read point cloud data; otherwise, continue to read
the point cloud.

(3)	Add points to the current node one by one and carry out Poisson distribution sampling.
Considering C_d as the minimum distance from the point to its cell and points in neighboring
cells, if (C_d) is not less than the resolution of the node (δd), store the point in the current
node and execute step (5); otherwise, execute step (4).

(4)	Judge whether a child node exists. If it exists, execute step (2); otherwise, create a child node,
reduce the distance between points in the node to half that in the parent node, and continue to
execute step (1).

Fig. 5.	 (Color online) Creation of a spatial grid, (a) Current grid, (b) 6-neighborhood, (c) 18-neighborhood, and
(d) 26-neighborhood.

(a) (b) (c) (d)

94	 Sensors and Materials, Vol. 35, No. 1 (2023)

(5)	Judge whether the data in the current node reach the storage threshold set by the node. If it
has been reached, save the node and execute step (6); otherwise, execute step (1).

(6)	Judge whether all data have been processed. If yes, end the algorithm; otherwise, execute
step (1).

	 The above algorithm is described as a single construction process for a multi-resolution point
cloud. It can process about 300 million points per hour, and the processing efficiency drops

(a) (b)

Fig. 6.	 (Color online) Grids of different sizes. (a) Small grid. (b) Large grid.

Fig. 7.	 (Color online) Algorithm flow of multi-resolution point cloud construction.

Sensors and Materials, Vol. 35, No. 1 (2023)	 95

sharply with increasing data volume. When processing large-scale vehicle-mounted laser point
cloud data or a massive city-level airborne scanning point cloud, the time cost will be extremely
high. Therefore, in this paper, we propose a more efficient multi-resolution point cloud
construction method based on the above-mentioned single construction algorithm.
	 In this paper, a multi-resolution point cloud construction method based on the divide-and-
conquer algorithm is proposed. The octree is divided into several completely independent tasks,
and a process is started for each task. These tasks can run in parallel on the same host. Each task
generates a sub-octree, and the complete multi-resolution octree of the original point cloud can
be obtained by correctly merging the multiple sub-octrees. The efficient construction of a multi-
resolution point cloud based on the divide-and-conquer algorithm mainly includes three steps:
Step 1:	 Partition the point cloud: divide the complete point cloud into multiple small blocks in

space (“blocking”).
Step 2:	 Build an octree: build a multi-resolution point cloud for each block and create an octree

for each block.
Step 3:	 Merge sub-octrees: Merge the sub-octrees generated by each block to obtain a complete

multi-resolution point cloud structure.

2.3.1	 Blocking

	 The point cloud is divided into several small blocks in space. The number of point clouds in
each block is the same or similar, allowing parallel processing to be carried out quickly.
However, note that the partition of each block should not be too small; too many small blocks
will take up a large amount of memory, preventing the efficiency from being effectively
improved. Blocking the point cloud results in the formation of a quadtree, which is more efficient
than an octree in terms of construction efficiency. The expected number of point clouds in each
block is set to N (N in this experiment is 10 million), and the quadtree is constructed recursively
according to the value of N. As shown in Fig. 8, the point cloud is constructed as a quadtree, and
after its construction, multiple spatial blocks of the point cloud are obtained.

2.3.2	 Constructing sub-octrees

	 Firstly, the bounding box of the original point cloud is calculated, and the distances between
points in the root node are determined according to the bounding box of the original point cloud.
Then, each block is regarded as a subtask, and a multi-resolution point cloud is constructed in
this process. The distances between the points in the subtask root node should be consistent with
the distances between the original points in the cloud root node, and finally, multiple sub-octrees
are obtained.

2.3.3	 Merging octrees

	 As shown in Fig. 9, each block is taken as a subtask to generate a sub-octree. Because the
spatial range and position of each block do not change, a same point spacing determination

96	 Sensors and Materials, Vol. 35, No. 1 (2023)

strategy is adopted in the construction of each sub-octree. Thus, the sub-octrees can be merged.
The nodes with the same resolution in different sub-octrees must belong to the same level after
merging, thus obtaining a complete multi-resolution point cloud structure. The merging of
octrees does not involve complicated calculations; thus, the point clouds only need to be merged
in units of nodes. This method can improve the efficiency of the multi-resolution building of
massive point clouds compared with a single-resolution building.

3.	 Experiment and Analysis

3.1	 Experimental data

	 In this paper, in the multi-resolution construction of a point cloud, the main data collection
area consists of some sections of the Beijing–Kaifeng city road in the Daxing district of Beijing.

Fig. 8.	 (Color online) Point cloud block.

Fig. 9.	 (Color online) Construction of multi-resolution point clouds based on divide-and-conquer algorithm.

Sensors and Materials, Vol. 35, No. 1 (2023)	 97

The data are obtained using a high-precision vehicle 3D laser sensor along a total road length of
about 12.8 km, as shown in Fig. 10(a). The scanned point cloud data obtained by the vehicle-
mounted laser and the GPS tracking data are used as experimental data after calibration and
coordinate conversion, and the data volume is about 35 GB, or nearly 3 billion points, as shown
in Fig. 10(b).

3.2	 Building multi-resolution point cloud

	 Because the laser point cloud for the road is locally dense and globally sparse, direct multi-
resolution construction will cause problems such as excessive depth of the octree and an
extremely unbalanced distribution of nodes, resulting in too slow construction of the multi-
resolution point cloud index. To solve this problem, we segment the point cloud obtained with the
vehicle-mounted laser before multi-resolution construction. As shown in Fig. 11(a), the space is
first divided along the trajectory, and the length of each segment is determined according to the
selected interval number N of trajectory points. The green and purple dots in the figure represent
the starting point and the end point of each segment, respectively, and certain overlapping areas
are maintained between adjacent segments. The space width of the road section is set manually.
Along the direction perpendicular to the trajectory line, the width of the city road is extended by
D meters on both sides. The result of segmentation is shown in Fig. 11(b). On the basis of the
segmentation result, the multi-resolution point cloud obtained from the vehicle-mounted laser is
constructed.
	 To evaluate the multi-resolution point cloud construction algorithm proposed in this paper,
the PotreeConverter and CesiumLab algorithms are selected for comparison, and the efficiency
of each algorithm in the multi-resolution construction of the city road point cloud is evaluated.
At the same time, to evaluate the performance of the three algorithms for different data volumes,

(a) (b)

Fig. 10.	 (Color online) Point cloud experimental data of urban road. (a) Road section used to collect point cloud. (b)
Point cloud data.

98	 Sensors and Materials, Vol. 35, No. 1 (2023)

the point cloud is divided into 1 million to 100 million road segments. The statistical results are
shown in Table 1.
	 From Table 1, it can be seen that PotreeConverter has the highest efficiency for road section
1, requiring only 3.514 s, compared with 15.504 s for CesiumLab and 5.533 s for the proposed
algorithm. With increasing amount of data, the construction efficiency of PotreeConverter and
CesiumLab drops sharply. To process road section 5, PotreeConverter requires 704.661 s and
CesiumLab requires 1501.507 s, while the proposed algorithm requires only 224.648 s. Thus, its
construction efficiency is three times that of PotreeConverter and six times that of CesiumLab.
The final result of construction using the proposed algorithm is shown in Fig. 12.
	 Figure 13 shows the processing efficiency of each algorithm for different data. After analysis,
PotreeConverter uses a single-process processing mode, which can maintain high efficiency
when processing point clouds with a small amount of data. With increasing amount of data in
point clouds, its efficiency drops significantly. CesiumLab, as an excellent slice-processing
algorithm, has good support for vector data and oblique photography models, but its efficiency is
relatively low when processing large-scale point clouds. In this paper, the concept of a distributed
construction is used to process the point cloud. When processing the point cloud with a small
amount of data, the efficiency is not improved compared with that of PotreeConverter because of
the time required to establish the multi-processing and process communication, and sometimes
the construction efficiency is slightly reduced. However, with increasing data volume, multi-
process processing starts to show clear advantages, greatly improving the efficiency of
constructing the multi-resolution point cloud. All the algorithms in this paper show high
efficiency. In conclusion, this algorithm has high practical significance in the multi-resolution
construction of large-scale point clouds.

(a) (b)

Fig. 11.	 (Color online) MLS point cloud segmentation. (a) Segmented schematic diagram. (b) Segmentation result.

Sensors and Materials, Vol. 35, No. 1 (2023)	 99

Table 1
Time required for multi-resolution construction of highway point clouds.

Data Number of point
clouds (ten thousand)

PotreeConverter
elapsed time (s)

CesiumLab elapsed
time (s)

Our method elapsed
time (s)

Segment 1 113 3.514 15.504 5.533
Segment 2 1401 25.073 149.643 18.152
Segment 3 6567 163.863 739.193 77.221
Segment 4 25505 730.737 1689.478 241.482
Segment 5 22708 704.661 1501.507 224.648

Fig. 12.	 (Color online) Result of point cloud multi-resolution construction.

Fig. 13.	 (Color online) Processing efficiency of various algorithms.

100	 Sensors and Materials, Vol. 35, No. 1 (2023)

3.3	 Visualization performance of multi-resolution point cloud

	 Figure 14 shows the visualization of a point cloud of nearly 3 billion points. From the overall
overview to the local details, the detailed features such as lane lines, street lamps, and guardrails
of the road are clearly and smoothly displayed.
	 The visualization performance is usually evaluated on the basis of the number of frames
rendered per second, that is, the frame rate (FPS). The higher the FPS, the smoother the picture
and the better the rendering performance of the system. Figure 15 shows FPS in interactive
operations such as rotation, translation, zooming, and roaming when multi-resolution point
cloud visualization of the road is performed.
	 As can be seen from the figure, the minimum frame rate for visualization of the road point
cloud is about 24 FPS, and the frame rate will be increased for the zoom-out operation, that is,
the viewpoint moves away from the point cloud. The maximum frame rate is about 60 FPS.

(a) (b)

(c) (d)

Fig. 14.	 (Color online) Point cloud visualization of road (about 3 billion points). (a) Global view. (b) Partial view 1.
(c) Partial view 2. (d) Partial view 3.

Sensors and Materials, Vol. 35, No. 1 (2023)	 101

When the frame rate drops sharply, it usually means that the data of visible nodes are being
requested from the server for drawing, and when the drawing is finished, the frame rate starts to
rise. The average frame rate is above 30 FPS, which fully meets the requirements of smooth
rendering.

4.	 Conclusion

	 Focusing on very large scale 3D laser point cloud data, which are important 3D spatial data,
we proposed solutions to increase the rationality of the existing spatial data organization model
and the efficiency of its construction method. Starting from the rapid scheduling of massive data
visualization, a multi-resolution spatial data organization model based on an octree without
redundancy is proposed, which effectively enables the rapid visualization of different levels of
details based on the viewpoint. To meet the demand for high-quality visualization, double-shell
Poisson disk sampling based on the constant distance of point clouds is adopted to ensure the
rendering quality of multi-resolution point cloud visualization. Finally, a parallel algorithm for
the multi-resolution point cloud data organization model based on quadtree partition is proposed,
which significantly improves the construction speed. Experiments clearly show that the proposed
data organization model and algorithm are advantageous and have superior performance to
traditional methods.

References

	 1	 P. Goswami, R. Mukhi, and E. Gobbetti: Visual Comput. 29 (2013) 69. https://doi.org/10.1007/s00371-012-
0675-2

	 2	 P. Goswami, Y. Zhang, R. Pajarola, and E. Gobbetti: 2010 18th Pacific Conf. Computer Graphics and
Applications. 93-100

	 3	 W. Bi, J. Ma, X. Zhu, W. Wang, and A. Zhang: Appl. Soft Comput. 131 (2022) 1568. https://doi.org/10.1016/j.
asoc.2022.109780

	 4	 X. Zhi, Z. Lin, G. Su, and L. Zhong: Comput. Eng. and Appl. 46 (2010) 71. https://doi.org/10.3778/j.issn.1002-
8331.2010.09.021

Fig. 15.	 (Color online) FPS statistics of point cloud visualization.

https://doi.org/10.1007/s00371-012-0675-2
https://doi.org/10.1007/s00371-012-0675-2
https://doi.org/10.1016/j.asoc.2022.109780
https://doi.org/10.1016/j.asoc.2022.109780
https://doi.org/10.3778/j.issn.1002-8331.2010.09.021
https://doi.org/10.3778/j.issn.1002-8331.2010.09.021

102	 Sensors and Materials, Vol. 35, No. 1 (2023)

	 5	 L. Wang: Master's Thesis, Beijing University of Technology. 2016. https://kns.cnki.net/KCMS/detail/detail.
aspx?dbname=CMFD201701&filename=1016785801.nh

	 6	 M. Wand, A. Berner, M. Bokeloh, P. Jenke, A. Fleck, M. Hoffmann, B. Maier, D. Staneker, A. Schilling, and H.
Seidel: Comput. Graphics 32 (2008) 204. https://doi.org/10.1016/j.cag.2008.01.010

	 7	 J. Yang, H. Liu, and P. Lin: Bull. Survey Map. 7 (2014) 18. https://doi.org/10.13474/j.cnki.11-2246.2014.0216.
	 8	 P. Xu: Master's Thesis, Nanjing Normal University. 2013. https://kns.cnki.net/KCMS/detail/detail.

aspx?dbname=CMFD201401&filename=1013338533.nh
	 9	 C. Scheiblauer and M. Wimmer: Comput. Graphics 35 (2011) 342. https://doi.org/10.1016/j.cag.2011.01.004
	10	 S. Yanai, R. Umegaki, K. Hasegawa, L. Li, H. Yamagushi, and S. Tanaka: 2017 Int. Conf. Culture and

Computing (Culture and Computing) 13–19. https://doi.org/10.1109/Culture.and.Computing.2017.19
	11	 F. Zhang: Master's Thesis, Dalian University of Technology. 2017. https://kns.cnki.net/KCMS/detail/detail.

aspx?dbname=CMFD201801&filename=1017821926.nh
	12	 D. Yan, J. Guo, B. Wang, X. Zhang, and P. Wonka: J. Comput. Sci. Technol. 30 (2015) 439. https://doi.

org/10.1007/s11390-015-1535-0
	13	 A. Parada-Mayorga, D. L. Lau, J. H. Giraldo, and G. R. Arce: IEEE Trans. Signal and Information Progressing

over Networks 5 (2019) 554. https://doi.org/10.1109/TSIPN.2019.2922852
	14	 S. Yuto, N. Yukihiro, L. Liang, H. Kyoko, N. Satoshi, and T. Satoshi: Commun. Comput. Inf. Sci. 1094 (2019)

161. https://doi.org/10.1007/978-981-15-1078-6_14.
	15	 P. van Oosterom , S. van Oosterom, H. Liu, R. Thompson, M. Meijers, and E. Verbree : ISPRS J. Photogramm.

Remote Sens. 194 (2022) 119. https://doi.org/10.1016/J.ISPRSJPRS.2022.10.004

About the Authors

	 Haochen Huang is studying for a bachelor’s degree in computer science at
University of Science and Technology Beijing. His research interests are in
3D laser point clouds and high-performance data structure design.
(huanghaochen66@126.com)

https://kns.cnki.net/KCMS/detail/detail.aspx?dbname=CMFD201701&filename=1016785801.nh
https://kns.cnki.net/KCMS/detail/detail.aspx?dbname=CMFD201701&filename=1016785801.nh
https://doi.org/10.1016/j.cag.2008.01.010
https://doi.org/10.13474/j.cnki.11-2246.2014.0216
https://kns.cnki.net/KCMS/detail/detail.aspx?dbname=CMFD201401&filename=1013338533.nh
https://kns.cnki.net/KCMS/detail/detail.aspx?dbname=CMFD201401&filename=1013338533.nh
https://doi.org/10.1016/j.cag.2011.01.004
https://doi.org/10.1109/Culture.and.Computing.2017.19
https://kns.cnki.net/KCMS/detail/detail.aspx?dbname=CMFD201801&filename=1017821926.nh
https://kns.cnki.net/KCMS/detail/detail.aspx?dbname=CMFD201801&filename=1017821926.nh
https://doi.org/10.1007/s11390-015-1535-0
https://doi.org/10.1007/s11390-015-1535-0
https://doi.org/10.1109/TSIPN.2019.2922852
https://doi.org/10.1007/978-981-15-1078-6_14
https://doi.org/10.1016/J.ISPRSJPRS.2022.10.004
mailto:huanghaochen66@126.com

