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 Because of the noteworthy characteristics of ultra-wideband (UWB) radar, it has been applied 
in the noncontact measurement of vital signs. The fluctuating movement of the chest caused by 
respiration and heartbeat of the human body is comprehensively reflected in the radar echo. A 
key problem is how to separate respiration and heartrate signals in the echo then evaluate the 
vital sign parameters. In this study, the position of a monitored object is judged from the output 
data frame of the radar, then the data sequence of chest movement in the time domain is 
extracted. The signal is filtered by the wavelet threshold method using the sym6 wavelet basis 
function, then the spectrum of the denoised signal is analyzed. This method can effectively 
extract the respiration rate and heartrate and achieve real-time monitoring. Its feasibility and 
effectiveness were verified by several sets of experiments, which indicate that the method can be 
applied in practice. This method is expected to help popularize the use of UWB radar in medical 
monitoring.

1. Introduction

 In the monitoring of human vital signs, respiration rate and heartrate are two important 
indicators. Through the monitoring of these two parameters, changes in vital signs can be 
rapidly detected, saving time and lives. In addition, in rescue work after major accidents, the 
respiration rate and heartrate can also help indicate the existence of survivors, providing a 
powerful way of detecting bodies. The traditional measurement of human respiration rate and 
heartrate generally relies on a contact detection method, and the adopted instruments and 
equipment include sphygmomanometers, electrocardiogram (ECG) recorders, smart wristbands, 
and breathing bandages. Such equipment is not suitable for some special groups, such as elderly 
people, infants, and severely burned patients. Because of the decreased weight of elderly people, 
the installation and use of contact equipment become difficult, for example, the equipment may 
easily become detached, which is detrimental to the monitoring of vital signs and results in a 
poor experience for the tested person. For infants and patients with severe burns, instruments in 
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direct contact with their bodies not only restricts their body activities but also causes secondary 
injuries. Thus, noncontact measurement is very important for such groups.
 For the noncontact checking of vital signs, IR rays, ultrasonic waves, biological radar, and 
other methods are usually adopted. Because biological radar, especially ultra-wideband (UWB) 
radar, emits electromagnetic waves, its penetration ability is very strong; weather, temperature, 
humidity, dress material, and other external factors have little influence on this method, making 
it ideal for checking vital signs. In bio-radar, separating the respiration rate and heartrate 
components from the radar echo signal and extracting the corresponding parameters are key 
technologies. Traditional methods include bandpass filtering, the short-time Fourier transform 
(STFT), the power spectrum method, and adaptive filtering.(1–3) Because the frequency bands of 
respiration and heartbeat are relatively close, and the filter in the frequency domain has a narrow 
transition band and a passband ripple, such a filter cannot effectively separate the signals. The 
STFT transforms the signal by moving a window function along the time axis. The shorter the 
time window, the better the time resolution will be. However, a shorter time window leads to 
poor frequency resolution and even failure to obtain the signal frequency. The STFT cannot 
change the window adaptively, which limits its application in the time-frequency analysis of 
radar signal processing or monitoring different targets. The power spectrum of the signal is 
actually the Fourier transform of the signal autocorrelation function. The autocorrelation 
operation can effectively retain the periodic signals and suppress noise interference; thus, the 
periodic signals of respiration and heartbeat in radar echo will be retained and their periods will 
remain unchanged. However, the power spectrum algorithm introduces some error into the 
obtained signal frequency. For the adaptive filtering method, the input signals of the system 
model are the body motion signal (mainly composed of respiration and heartbeat signals) 
detected by biological radar and the respiration signal. The respiration signal is input to the 
adaptive filter as a reference signal. The recursive least squares algorithm (RLS) automatically 
adjusts the weight coefficients of the filter according to the error between the output of the 
adaptive filter and the body motion signal. When the error is minimized, the algorithm stops. At 
this time, the output of the model is just the heartbeat signal. In this approach, the reference 
respiration signal is obtained using a low-pass filter, and it cannot accurately reflect the 
movements of the chest caused by breathing.
 Focusing on the characteristics of UWB radar echo of a large background noise and a 
heartbeat signal that is weak and difficult to extract, in this paper, we propose a processing 
method combining adaptive wavelet filtering and the fast Fourier transform (FFT). The adaptive 
threshold denoising strategy effectively removes the interference noise based on an unbiased risk 
estimate, making the subsequent heartrate extraction and calculation more robust and accurate. 
The amplitude of the signal in the frequency domain is obtained through the FFT, and then the 
respiration rate and heartrate are extracted.

2. Principle of UWB Radar

 Compared with continuous-wave radar, UWB pulse radar has a higher positioning accuracy 
and can detect vital signs such as heartbeat and respiration rate more accurately, and the echo 
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signal of UWB radar can carry more information on vital signs, making it more suitable for the 
medical field.(4–7)

 As illustrated in Fig. 1, the basic principle of UWB radar is that it generates continuously 
pulsed electromagnetic waves, which are amplified by a power amplifier and transmitted 
through a transmission antenna. The electromagnetic waves are reflected when they meet the 
monitored human body, in which the original signal is modulated by the breathing-induced 
movement of the chest, inducing the Doppler effect and producing an echo signal. After the echo 
signal is picked up by a receiving antenna and preprocessed by a low-noise amplifier, an analog-
to-digital converter, and a control unit, the distance from the radar to the monitored human and 
the information on the chest displacement can be obtained. The acquired original data are 
transmitted to the main computer for processing by separation and extraction algorithms, so as 
to obtain the information on vital signs contained in the echo signal.(8,9)

 An electromagnetic wave travels through air at a speed close to the speed of light, and the 
detection range can be determined from the time difference between its emission and reflection 
using the following equation.

 0
1
2 ds ct=  (1)

Here, s0 denotes the distance to the measured object, c denotes the propagation velocity of the 
electromagnetic wave, and td denotes the time difference between the emission and reflection of 
the electromagnetic wave.
 The fluctuating movement of the human chest is related to respiration and heartbeat, among 
which respiration plays the major role. The fluctuation range of the chest is 0 to 3 cm during 
respiration. The heartbeat can also cause slight fluctuation of the chest with an amplitude range 
of 1.5 to 3.5 mm.(9,10) Both signals are periodic and are superimposed. Thus, the distance 
detected by the radar targeted at the object is changing continuously under the influence of chest 
movement, which is modeled by the following equation.

Fig. 1. Principle of UWB radar.
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 ( ) ( )0 1 1 2 2( )s t s ud T vd T= − −  (2)

Here, u denotes the amplitude of chest fluctuation caused by respiration, T1 denotes the 
respiration period, v denotes the amplitude of chest fluctuation caused by the heartbeat, and T2 
denotes the heartbeat period. u and v are the amplitude of chest rise and fall caused by the 
breathing and heartbeat. The chest moves constantly and its displacement can be detected by 
radar. The respiration and heartrate information contained in the displacement can be separated 
and extracted by the method proposed in the following section.

3. Data Acquisition from Radar Echo Signal

3.1 Acquisition of human body motion data

 In this study, an X4M02 UWB biological radar module produced by XETHRU is used to 
collect the signals of human respiration and heartbeat. The sampling rate of the X4M02 module 
is 23.328 GS/s, and a single acquisition contains 1536 data points. Because an electromagnetic 
wave travels at the speed of light, which is 300000 km/s, a distance of about 9.9 m can be 
detected during a single sampling time. The acquisition experiment performed in this study is 
shown in Fig. 2. The module is mounted on a support and connected with a computer through a 
USB data cable. The height of the support is adjusted according to the monitored object. After 
the computer enables the module to collect signals, the module transmits the pulse signal 
continuously. After the pulse signal meets the measured human body, it is reflected and 
generates an echo signal. The module collects the echo signal at this time and saves the data in 
the computer. Finally, a MATLAB program in the computer is used to play back the echo signal, 
process the data, and extract the information on vital signs.
 In the data acquisition experiment, the X4M02 module reduces the intensity of the echo 
signal by a factor of eight and outputs data in the form of a data frame with a frequency of 20 Hz. 
The amplitude of the echo signal in a single frame is shown in Fig. 3. The horizontal axis 
represents 192 sampling points, corresponding to a distance of 9.9 m, and the horizontal 
resolution is 5.2 cm/point. For example, the 35th point corresponds to 2 m. The vertical axis 
represents the amplitude of each position in the echo signal in the normalized form, where the 
stronger the reflected signal, the higher the amplitude.

Fig. 2. Data acquisition experiment.
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3.2 Data frame extraction and reconstruction

 To effectively analyze the echo signal of the monitored person, it is necessary to extract it at 
the sampling interval to obtain time series data of the target point. In other words, each output 
frame of radar is extracted according to the position index of the target point in the frame to 
form a new time-domain data series for signal analysis of the monitored person.
 From the above analysis, it can be seen that the location of the target point is critical and 
directly affects the extraction of data. Because of the influence of the chest fluctuation, the echo 
signal of the target point shows periodic fluctuation among different frame sequences, as shown 
in Fig. 4. On the basis of this characteristic, the position of the monitored target can be 
determined. Therefore, by calculating the range of the amplitude of each sampling point, that is, 
the difference between the maximum and minimum values, and judging its periodicity, the 
distance and position of the monitored person relative to the radar can be determined.
 After each data frame is extracted, the extraction points of different frames are reconstructed 
in chronological order to form a new time-domain sequence, which represents the change in 
human chest displacement with time. The sampling frequency of this new data sequence is the 
frame frequency of UWB radar, which contains displacement information such as human 
respiration and heartbeat. The whole process is shown in Fig. 5.

4. Wavelet Denoising for Radar Echo Signal

 The processing of time-domain series data for a radar echo signal mainly includes signal 
denoising, spectrum analysis, and frequency extraction of the respiration rate and heartrate. 
Because the frequency bands of the respiration rate and heartrate are adjacent and contain noise, 
it is difficult to separate them by frequency domain filtering. In this study, a wavelet filtering 
method is adopted, which can effectively retain the spikes and singularities of a valid signal. 
Then, the denoised time-domain series data are transformed to the frequency domain to extract 
the feature points of the spectrum and calculate the respiration rate and heartrate. A flow chart 
of the algorithm is shown in Fig. 6.

Fig. 3. (Color online) One frame of radar echo data.
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Fig. 4. (Color online) Data frame in time and space.

Fig. 5. Data extraction and reconstruction in frames.
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 In this study, the wavelet threshold denoising method is adopted. Because the amplitude of 
the wavelet coefficients of useful signals is significantly larger than that of the noise after 
wavelet decomposition, the noise contained in the signal can be suppressed effectively. The 
specific data processing is as follows. Firstly, the noisy signal is decomposed by an orthogonal 
wavelet at each scale, and the large-scale (low-resolution) decomposition coefficients are 
retained. Secondly, a threshold is set for other decomposition coefficients with a small scale 
(high resolution). The coefficients below this threshold are set to zero, and those higher than this 
threshold are either left intact or processed as “shrinkage”. Finally, the signal is reconstructed on 
the basis of these processed wavelet coefficients by using the inverse wavelet transform. This 
transform removes high-frequency components in the signal and retains the information 
included in the low-frequency band containing the respiration rate and heart rate, so as to restore 
the effective signal.

4.1 Wavelet decomposition and reconstruction of signal 

 According to wavelet analysis theory, a signal can be decomposed and reconstructed in a 
series of scale spaces Vj and detail spaces Wj. When j jf V∈ , it can be decomposed into

 1 1 1 1 1 1, ,j j j j j j jf f w f V w W+ + + + + += + ∈ ∈ , (3)

where
 1 1 1 1 1 1( ) ( ), ( ) ( )j j j j j j

n Z n Z
f A n n w D n nϕ ψ+ + + + + +

∈ ∈

= =∑ ∑ .

Here, A denotes the smoothing coefficients, D denotes the detail coefficients, φ denotes scaling 
functions, and ψ denotes wavelet functions.

Fig. 6. Flow chart of the algorithm for respiration rate and heartrate extraction.
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 Furthermore, through the fast multiresolution extraction of a signal, signals in different 
frequency ranges can be obtained, which are subjected to multiscale analysis.(11,12) In the 
frequency domain analysis, the wavelet function can be considered as a bandpass filter, which is 
equivalent to a high-pass filter h and a low-pass filter g in series. For cascaded filters of different 
passbands, the Mallat algorithm can be used to decompose and reconstruct the signal at different 
scales, and the decomposition process is shown in Fig. 7.
 The discrete wavelet decomposition process can be described as

 1( ) ( ) ( 2 )j j
m

A n A m h m n
∞

+
=−∞

= −∑ , (4)

 1( ) ( ) ( 2 )j j
m

D n A m g m n
∞

+
=−∞

= −∑ , (5)

where h denotes the low-pass filter, g denotes the high-pass filter, and A0 denotes the original 
signal. These equations describe the relationship between the smoothing coefficients and detail 
coefficients at different scales.
 Its inverse transformation process, namely, the wavelet reconstruction process, is shown in 
Fig. 8. The discrete wavelet reconstruction process can be described as

 1 1( ) ( 2 ) ( ) ( 2 )( )j j j
m

A m h n m D m gA nn m
∞

+ +
=−∞

= − + −∑ . (6)

Fig. 7. Mallat pyramidal algorithm for signal decomposition.

Fig. 8. Mallat pyramidal algorithm for signal reconstruction.
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In the same way, the signal can be reconstructed using Eq. (3). For the filtering application, the 
detail coefficients corresponding to the removed components should to be set to 0.
 The sym6 wavelet base function is adopted in this study. The coefficients of the low-pass and 
high-pass filters used for decomposition and reconstruction are shown in Table 1. The optimal 
number of wavelet decomposition layers is determined to be four, then the noisy signal is 
processed at each scale. The sym6 wavelet is orthogonal with quasi-symmetry, making it an 
improvement of the Daubechies wavelet, and it also has minimal phase distortion and very good 
symmetry. The wavelet decomposition processing of the simulated signal is shown in Fig. 9.

Table 1
Coefficients of low-pass and high-pass filters used for decomposition and reconstruction.

Items k
1 2 3 4 5 6 7 8 9 10 11 12

Low-pass filter 
for decomposition 0.0154 0.0035 0.1180 −0.0483 0.4911 0.7876 0.3379 −0.0726 −0.0211 0.0447 0.0018 −0.0078

High-pass filter 
for decomposition 0.0078 0.0018 −0.0447 −0.0211 0.0726 0.3379 −0.7876 0.4911 0.0483 −0.1180 −0.0035 0.0154

Low-pass filter 
for reconstruction −0.0078 0.0018 0.0447 −0.0211 −0.0726 0.3379 0.7876 0.4911 −0.0483 −0.1180 0.0035 0.0154

High-pass filter 
for reconstruction 0.0154 −0.0035 −0.1180 0.0483 0.4911 −0.7876 0.3379 0.0726 −0.0211 −0.0447 0.0018 0.0078

(a)

(b) (c)

Fig. 9. (Color online) Wavelet decomposition process. (a) Original signal s, (b) detailed coefficients of wavelet 
decomposition d1–d4, and (c) approximation coefficients of wavelet decomposition a1–a4.
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4.2 Wavelet threshold denoising

 A soft threshold method is used to process the decomposed wavelet coefficients of each layer, 
that is, coefficients greater than the threshold are retained by subtracting them from the 
threshold, whereas coefficients less than the threshold are set to zero.(13,14)

 Unbiased risk estimation is used to determine the threshold, that is, each element of the 
wavelet decomposition coefficient d(n) is changed to an absolute value, then these absolute 
values are sorted from small to large. Finally, these absolute values are squared to obtain a new 
signal sequence ( ) ( )( )2

f k sort d= . If the square root of the kth element is taken as the threshold, 
the threshold should be ( )k f kλ = , where k = 0, 1, 2, ..., n − 1.
 Accordingly, the risk generated by this threshold is

 
1

( ) ( ) ( )
.

2
( )

k

j
f jn k
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n
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 
+ −


+ 


− ∑  (7)

 A risk curve for Risk(k) can be formed using Eq. (7), the minimum value index of which is 
taken as kmin, and the unbiased risk estimation threshold is exactly ( )minf kλ = .
 In this way, soft threshold processing can be performed. The relationship between the 
absolute value of the wavelet coefficient d  and the threshold λ is

 
( ) ( )sgn ,

0,
d

d d d

dλ

λ λ

λ





  − ≥ 
<

=  (8)

where sgn(d) is the sign function, that is, sgn(d) is 1 when d is positive, −1 when d is negative, 
and 0 when d is 0. For example, for a certain frame data, the decomposition thresholds of the 
first and second layers, d1λ and d2λ, are calculated to be 1.4959 × 10−4 and 5.1463 × 10−4, 
respectively.
 Finally, the inverse wavelet transform is used to reconstruct the signal from the retained 
coefficients to obtain the denoised signal. The denoising effect is shown in Fig. 10. It can be seen 
that the high-frequency noise in the original signal is effectively eliminated.

5. Amplitude Spectrum Analysis

 The denoised signal is converted to the frequency domain for amplitude frequency analysis 
through the discrete Fourier transform (DFT):

 
1

0
( ) ( )

N
j n

n
F f n e ωω

−
−

=

=∑ , (9)

where f(n) is the denoised signal, F(ω) is its DFT, and the amplitude frequency characteristic of 
F(ω) is obtained by taking its modulus. To improve the computing efficiency, the FFT is adopted.
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 Firstly, the FFT is performed on the reconstructed signal, and the modulus of the signal is 
taken in the frequency domain to obtain the amplitude frequency characteristics.(15,16) The 
obtained amplitude spectrum curve is shown in Fig. 11. There is a clear local peak at 0.24 Hz, 
and the signal amplitude at this point is relatively strong, clearly indicating that the reconstructed 
signal contains this frequency component. By comparison with the range of the human 
respiration rate, it can be judged that the frequency at this point represents the respiration 
frequency of the monitored person. In addition, there is another local peak at a frequency of 1.04 
Hz, which can be judged to be the heartbeat frequency.
 Therefore, local maximum peaks of the respiration rate and heartrate signals are found within 
their respective frequency ranges in the amplitude spectrum, namely, the respiration rate and 
heartrate signals. Since the horizontal coordinate of the amplitude spectrum represents the 
frequency, the two signals should be converted into beats per minute (BPM), and the following 
final results are obtained.

 Respiration rate: 0.24 60 14.4 RPM
Heartrate: 1.04 60 62.4 BPM

× =
× =

 

 This method is compared with the traditional bandpass filter and STFT methods for different 
test objects, as shown in Fig. 12. In some cases, the extraction of the respiratory rate and heart 
rate by the bandpass filter is insufficiently accurate. The STFT has poor heartrate extraction 
performance, whereas the proposed method has high robustness. It also performs well when the 
subject is talking.

Fig. 10. (Color online) Comparison of original and reconstructed signals.
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Fig. 11. (Color online) Amplitude spectrum of the reconstructed signal.

(a)

(b)

Fig. 12. (Color online) Comparison of different methods. (a) The actual respiratory rate of the subject is 12 times per 
minute and the heartrate is 63 times per minute. (b) The actual respiratory rate of the subject is 12 times per minute 
and the heartrate is 78 times per minute. (c) The actual respiratory rate of the subject is 18 times per minute and the 
heartrate is 72 times per minute. (d) The actual respiratory rate of the subject while talking is 24 times per minute 
and the heartrate is 80 times per minute.
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Fig. 12. (Color online) (Continued) Comparison of different methods. (a) The actual respiratory rate of the subject is 
12 times per minute and the heartrate is 63 times per minute. (b) The actual respiratory rate of the subject is 12 times 
per minute and the heartrate is 78 times per minute. (c) The actual respiratory rate of the subject is 18 times per 
minute and the heartrate is 72 times per minute. (d) The actual respiratory rate of the subject while talking is 24 
times per minute and the heartrate is 80 times per minute.

(c)

(d)

6. Experiment

6.1 Experimental procedure

 To evaluate the reliability and consistency of the algorithm, a controlled variable approach 
was applied in the experiment. Data were collected from multiple subjects under different 
conditions, such as in the sitting and quietly lying states after exercise. The sampling frequency 
per frame of radar was 20 Hz.
 The algorithm programmed by MATLAB script was used to extract the respiration rate and 
heartrate from the original data. The interface and functions of the software are shown in 
Fig. 13, which includes three subplots of the curve. The subplot at the top shows the original 



116 Sensors and Materials, Vol. 35, No. 1 (2023)

data, the subplot on the middle left shows the sampled original data to be processed, and the 
subplot on the middle right shows the extraction results of the respiration rate and heartrate. As 
shown at the bottom of Fig. 13, there are buttons for importing the data and for parameter setting, 
including the selection of the wavelet function and the wavelet decomposition layers and the 
selection of the sampling points. After the original data are imported and the parameters are set, 
the sampling range of the data is selected by dragging the scroll bar below the original data 
subplot. Two vertical line marks above the scroll bar correspond to the selected range. The size 
of the scroll bar automatically scales with the number of sampling points, and the sampling data 
subplot and the extraction result subplot change with the parameters and the scroll bar in real 
time.
 During the measurement, a wrist blood pressure and pulse meter was used to measure the 
heartrate of the monitored person, which was used as the reference value of the heartrate. The 
participant counted his breaths in one minute by himself to obtain the reference value of the 
respiration rate. The measurement results obtained by the proposed method were compared with 
the reference values to verify the accuracy of the algorithm.
 In the experiment, the measurement results of the same object in different periods and 
different sampling points were compared to evaluate the consistency of the algorithm, and the 

Fig. 13. (Color online) Software interface used for radar signal processing and information extraction.
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influence of different sampling points on the measurement results was also analyzed. The 
effectiveness and universality of the algorithm were evaluated by comparing the measurement 
results of different participants.

6.2 Analysis of experimental results

 A total of nine groups of data were collected from three people in the sitting and lying states. 
Table 2 shows the measurement results of person A in the sitting state after exercise obtained 
using different sampling points. The reference heartrate was 75 times/min and the reference 
respiration rate was 14 times/min. Table 3 shows the measurement results of person A in the 
quietly lying state after exercise using different sampling points. The reference heartrate was 63 
times/min and the reference respiration rate was 12 times/min.
 The accuracy was used to evaluate the consistency between the measurement results and the 
reference values, and the root mean square error (RMSE) was used to evaluate the stability of 
the measurement results for different sampling points. The formulas for the accuracy and RMSE 
are

 abs( )11
Est Ref

accuracy
n Ref

−
= − ∑ , (10)

 ( )2

n
Est

R
Re

MSE
f−

= ∑ , (11)

Table 2
Sampling points and measurement results for person A in sitting state.

Items
Testing results

200 sampling 
points

250 sampling 
points

300 sampling 
points

350 sampling 
points

400 sampling 
points

Heartrate
(Times/min)

72 77 76 75 75
72 77 76 75 75
72 72 72 75 75
78 72 76 75 75
72 77 76 75 75
78 77 76 75 75
72 77 76 75 75
78 77 76 75 75

Respiration rate 
(Times/min)

12 14 12 14 12
12 14 12 14 15
12 14 16 14 15
12 14 16 14 15
12 14 16 14 15
12 14 16 14 15
12 14 16 14 15
12 14 16 14 15
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Table 3 
Sampling points and measurement results for person A in lying state.

Items
Testing results

200 sampling 
points

250 sampling 
points

300 sampling 
points

350 sampling 
points

400 sampling 
points

Heartrate 
(Times/min)

60 62 64 62 63
66 62 64 62 63
60 62 64 62 63
60 58 64 62 63
60 62 64 62 63
66 62 64 62 63
60 62 64 65 63
60 62 64 62 63

Respiration rate 
(Times/min)

12 14 12 14 12
12 14 12 14 12
18 14 12 14 12
12 14 12 14 12
12 14 12 14 12
12 14 16 14 12
12 14 12 14 12
12 14 12 14 12

Table 4 
Measurement results for person A in sitting state for different numbers of sampling points.

Items
Testing results

200 sampling 
points

250 sampling 
points

300 sampling 
points

350 sampling 
points

400 sampling 
points

Heartrate 
accuracy (%) 96.3 96.3 97.3 98.6 98.6

Respiration rate 
accuracy (%) 85.7 100.0 85.7 100.0 92.0

Heartrate RMSE 
(BPM) 2.92 2.78 2.00 1.00 1.00

Respiration rate 
RMSE (RPM) 2.00 0.00 2.00 0.00 1.17

Table 5
Measurement results for person A in lying state for different numbers of sampling points. 

Items
Testing results

200 sampling 
points

250 sampling 
points

300 sampling 
points

350 sampling 
points

400 sampling 
points

Heartrate 
accuracy (%) 95.2 97.6 98.4 98.2 100.0

Respiration rate 
accuracy (%) 93.8 83.3 95.8 83.3 100.0

Heartrate RMSE 
(BPM) 3.00 2.00 1.00 1.17 0.00

Respiration rate 
RMSE (RPM) 2.12 2.00 1.41 2.00 0.00
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where n is the number of measurements, Est denotes the measurement result, and Ref denotes the 
reference value.
 Tables 4 and 5 show the accuracy and RMSE of the measurement results in Tables 2 and 3, 
respectively. It can clearly be seen that the measurement results of heartrate and respiration rate 
are affected by the number of sampling points, and the more sampling points, the greater the 
stability. The accuracy of the heartrate showed a slightly positive correlation with the number of 
sampling points, whereas the accuracy of the respiration rate was not significantly affected by 
the number of sampling points.
 The remaining seven groups of data were processed by the above method, and the heartrate 
accuracy, respiration rate accuracy, average heartrate RMSE, and average respiration rate RMSE 
for the nine sets of data were calculated, as shown in Table 6. It can be seen that the accuracy of 
both the heartrate and respiration rate generally increases whereas the RMSE decreases with 
increasing number of sampling points. This indicates that the greater the number of sampling 
points, the more stable the measurement results tend to be, but the real-time performance of data 
processing decreases. We found that 400 sampling points is an appropriate number of sampling 
points for which good measurement results can be obtained by collecting valid data for about 20 
s with 20 Hz frame frequency.

7. Conclusions

 We studied an algorithm for extracting the respiration rate and heartrate from a UWB radar 
echo signal. Using wavelet denoising and the FFT method, we effectively obtained the vital sign 
parameters of the respiration rate and heartrate of the monitored person. In the algorithm, the 
sym6 wavelet function, four decomposition layers, four reconstruction layers, and 400 sampling 

Table 6
Relationship between the mean value of measurement results and sampling points.

Items
Testing results

200 sampling 
points

250 sampling 
points

300 sampling 
points

350 sampling 
points

400 sampling 
points

Average heartrate 
accuracy of 
multiple groups 
(%)

95.2 97.1 97.7 97.7 98.9

Average 
respiration rate 
accuracy of 
multiple groups 
(%)

90.5 90.1 92.8 90.5 94.2

Average heartrate 
RMSE of multiple 
groups (BPM)

4.89 2.93 2.61 2.14 1.13

Average 
respiration rate 
RMSE of multiple 
groups (RPM)

1.87 1.37 1.28 1.35 0.97
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points were selected. The accuracy, consistency, and effectiveness of the algorithm were verified 
by performing multiple groups of experiments with different monitored people.
 Using UWB radar to obtain the information of human vital signs has the advantage of non-
contact measurement. We have provided a practical signal extraction algorithm that effectively 
solves the problem of separating and extracting the respiration rate and heartrate in a radar echo 
signal. This algorithm can be extended to the application of UWB radar in medical treatment 
and daily monitoring, giving it broad application prospects.

Acknowledgments

 The theoretical analysis, data acquisition, programming, and experiment in this work were 
supported by all members of the research group. The paper was supported by Harbin Science 
and Technology Plan self-funded project (2022ZCZJCG004).

References

 1 T. Q. Chen, Y. Q. Zhang, B. C. Zong, and Z. Q Tian: Chin. J. Med. Instrum. 45 (2021) 188. https://doi.
org/10.3969/j.issn.1671-7104.2021.02.014

 2 L. Y. Ren, Y. S. Koo, H. F. Wang, Y. Z. Wang, Q. H. Liu, and A. E. Fathy: IEEE Microwave Wireless Compon. 
Lett. 25 (2016) 690. https://doi.org/10.1109/LMWC.2015.2463214

 3 X. C. Dang, J. L. Zhang, Z. J. Hao, and  Y. An: Comput. Eng. 47 (2021) 175. https://doi.org/10.19678/j.issn.1000-
3428.0060078

 4 F. Soldovieri, I. Catapano, L. Crocco, L. N. Anishchenko, and S. I. Ivashov: Int. J. Antennas Propag. 12 (2014) 
1072. https://doi.org/10.1155/2012/420178

 5 L. Y. Ren, H. F. Wang, K. Naishadham, O. Kilic, and A. E. Fathy: IEEE Trans. Microwave Theory Tech. 64 
(2016) 1. https://doi.org/10.1109/TMTT.2016.2597824

 6 N. Andersen, K. Granhaug, J. A. Michaelsen, S. Bagga, H. A. Hjortland, M. R. Knutsen, T. S. Lande, and D. T. 
Wisland: IEEE J. Solid-State Circuits 52 (2017) 3421. https://doi.org/10.1109/JSSC.2017.2764051 

 7 X. K. Hu  and T. Jin: J. Radars. 5 (2016) 462. https://doi.org/10.12000/JR16103
 8 J. Bai, D. S. Huang, X. Zhang, and P. F. Zhang: Chin. Med. Equip. J. 35 (2014) 10. https://doi.org/10.7687/J.

ISSN.1003-8868.2014.03.010
 9 F. Yang, H. Zhang, S. Li, H. J. Xue, and G. H. Lu: Chin. Med. Equip. J.  35 (2014) 28. https://doi.org/10.7687/J.

ISSN.1003-8868.2014.07.028
 10 C. Z. Gu and C. Z. Li: Sensors 15 (2015) 6383. https://doi.org/10.3390/S150306383
 11 L. Yi, Y. G. He, G. F. Fang, and X. T. Fan: Appli. Res. Comput. 30 (2013) 172. https://doi.org/10.3969/j.

issn.1001-3695.2013.01.044
 12 H. H. Maria, A. M. Jossy, G. Malarvizhi, and A. Jenitta: Optik 241 (2021) 1. https://doi.org/10.1016/j.

ijleo.2021.166883
 13 Z. K. Xu, Z. Y. Wang, S. Y. Bai, Y. Zhang, and H. J. Xue: Chin. Med. Equip. J. 42 (2021) 1.  https://doi.org/10.1

9745/j.1003-8868.2021201
 14 B. Fang, J. Y. Chen, and Y. Shi: Opt. Tech.  47 (2021) 359.  https://doi.org/10.13741/j.cnki.11-1879/o4.2021.03.018
 15 X. M. Li,  X. P. Wang, R. G. Qi, and G. A. Bi: Digital Signal Process. 117 (2021) 1. https://doi.org/10.1016/j.

dsp.2021.103136
 16 J. C. Yang  and L. A. Liu: Electron. Lett. 54 (2018) 901. https://doi.org/10.1049/el.2018.0739

https://doi.org/10.3969/j.issn.1671-7104.2021.02.014
https://doi.org/10.3969/j.issn.1671-7104.2021.02.014
https://doi.org/10.1109/LMWC.2015.2463214
https://doi.org/10.19678/j.issn.1000-3428.0060078
https://doi.org/10.19678/j.issn.1000-3428.0060078
https://doi.org/10.1155/2012/420178
https://doi.org/10.1109/TMTT.2016.2597824
https://doi.org/10.1109/JSSC.2017.2764051
https://doi.org/10.12000/JR16103
https://doi.org/10.7687/J.ISSN.1003-8868.2014.03.010
https://doi.org/10.7687/J.ISSN.1003-8868.2014.03.010
https://doi.org/10.7687/J.ISSN.1003-8868.2014.07.028
https://doi.org/10.7687/J.ISSN.1003-8868.2014.07.028
https://doi.org/10.3390/S150306383
https://doi.org/10.3969/j.issn.1001-3695.2013.01.044
https://doi.org/10.3969/j.issn.1001-3695.2013.01.044
https://doi.org/10.1016/j.ijleo.2021.166883
https://doi.org/10.1016/j.ijleo.2021.166883
https://doi.org/10.19745/j.1003-8868.2021201
https://doi.org/10.19745/j.1003-8868.2021201
https://doi.org/10.13741/j.cnki.11-1879/o4.2021.03.018
https://doi.org/10.1016/j.dsp.2021.103136
https://doi.org/10.1016/j.dsp.2021.103136
https://doi.org/10.1049/el.2018.0739

