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 Smartphone sensors are widely used in the development of fitness, running, workout, or 
health applications (apps). However, smartphone sensors may increase the risk of privacy 
leakage when they bring convenience to users. Traditional access control mechanisms, such as 
Android Permission, cannot prevent authorized malicious apps from abusing sensor resources. 
In this paper, a novel behavior-based sensor access control scheme is presented. This scheme can 
further regulate the behavior of an app after it is authorized, so that it can only access sensor 
resources with secure behavior patterns (SBPs), and sensor-based privacy leakage may thereby 
be blocked. On the basis of user interface (UI) operation tracking and tagging, this scheme 
implements the dynamic perception of app sensor access behaviors. With a temporal logic 
known as temporal logic of causal knowledge (TLCK), we developed a method to construct the 
secure sensor access behavior pattern. Every sensor may be given a SBP. By comparing the 
dynamic sensor access behavior of an app with SBP, we can determine if the sensor access is 
secure. Moreover, by supervising the call stack of the app’s sensor access application 
programming interface (API), we may timely block a sensor access when it is not secure. In this 
report, we also describe the implementation of a prototype defense system to analyze the 
effectiveness and efficiency of the scheme. The experimental results show that this scheme can 
effectively block the abnormal sensor access of an app with a performance overhead of about 
10%.

1. Introduction

 Health and exercise apps on smartphones are very popular. Almost all iPhones come with an 
iOS health app(1) pre-installed. There are hundreds of fitness, running, workout, health and other 
apps on Android and iOS app markets for users to download. These apps use the sensors carried 
by smartphones to deeply perceive user status information, conduct comprehensive interaction 
with users, and provide support for users’ exercise. 
 However, the wide application of smartphone sensors also brings the risk of user privacy 
disclosure. If a sensor is abused, it may leak the user’s private information while providing 
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support for the user’s health and exercise. Therefore, the smartphone operating system provides 
permission management mechanisms, such as the Android permission mechanism, to enforce 
access control on sensors.(2) However, smartphones also carry sensors that are not controlled by 
access control mechanisms. These sensors may also be a channel for privacy disclosure. Ba et al. 
proposed a telephone eavesdropping attack based on an uncontrolled acceleration sensor.(3) 
Reddy et al. proposed an attack based on an acceleration sensor to monitor information on the 
state of movement of smartphone users.(4) Li et al. found an attempted theft based on location 
information from global positioning system (GPS) sensors.(5) Attackers may even break through 
the access control mechanisms of operating systems(6) to achieve sensor privacy theft.  Elahi et 
al. revealed that attackers can use pre-installed system apps to steal private data, thus bypassing 
permission control.(7)

 Therefore, designing and implementing more efficient and effective sensor privacy protection 
schemes is necessary.  Bai et al. proposed a security control scheme for sensor access based on 
hooking a system’s application programming interface (API) to mitigate the threat of privacy on 
disclosure.(8) Sliwa comprehensively analyzed the privacy and security issues of smartphone 
sensors.(9) Enck et al. introduced a TaintDroid that monitors the Android data flow using the 
stain tag tracking method to discover private data theft by malicious codes.(10)

 In this paper, we introduce a behavior-based privacy protection scheme that may enforce a 
real-time and fine-grained access control on sensor resources to prevent theft of privacy 
information. Taking Microphone (MIC) as an example, in this paper, we describe the technical 
principle and implementation of this method. First, we define a secure behavior pattern (SBP) for 
MIC sensor access, which describes the behaviors that an app should follow in a MIC access 
with temporal logic of causal knowledge (TLCK).(11) Then, the dynamic behavior of an 
application is monitored, the results of which are compared with SBPs. Only matching access is 
allowed.
 Compared with existing methods, this scheme possesses three advantages:
i. �with respect to the diversity of malicious behavior, SBPs are more determined and may be 

expressed more easily, which decreases the complexity of the implementation of the defense 
scheme;

ii.  it can stop the attacks before damage is caused, through real-time accessing control of the 
MIC;

iii.  the scheme may work well in conjunction with existing protection mechanisms, such as 
Android Permission mechanism and TaintDroid.

2. Scheme Architecture

 As shown in Fig. 1, the defense scheme contains three functional parts: App behavior 
monitoring, SBP definition, and access control implementation in sensor access interfaces. As 
with permission mechanisms, every sensor resource is assigned an SBP. Owing to limited space, 
in this paper, only the SBP for MIC is provided. An SBP is a temporal logic of API calls and 
system event handling process. The SBP is defined according to access features of the specific 
sensor. When the system is started, all SBPs are loaded into the system memory space.
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Fig. 1. Architecture of the defense scheme.

 App behavior monitoring is in charge of acquiring the dynamic app behavior information. As 
described, the behavior of an app includes API calls and system event handling.  We realize app 
dynamic behavior acquisition through MIC-related API call monitoring. As for MIC abuse 
detection, the system event handling is primarily user interface (UI) event handling. All the app 
codes are interpreted and executed by the Android runtime (ART) virtual machine (VM).(12)  

Through ART extension, the complete dynamic behavior information of an app may be obtained. 
ART instance is a thread inside a specific app process. Consequently, monitoring operations 
may be limited only to the specific process, such as the process associated with MIC access 
permission. Thus, the comprehensive performance of the system may not be seriously impacted. 
When the behavior of an app is observed, all the SBPs are scanned one by one. If a SBP is 
matched, permission to access the corresponding sensor is granted to this app. To avoid replay 
attacks, the sensor access must be completed within a predetermined time. Otherwise, the 
capability expires.
 When an app initiates sensor access, besides the permission check, the access capability of its 
process is also checked. Even if the app has been assigned a corresponding permission, the 
sensor access is prohibited in the case in which the capability has not been granted to the app 
process. Different from permission mechanisms, in this scheme, the access capability is assigned 
dynamically based on access behavior checking. Therefore, the scheme can enforce real-time 
and fine-grained access control.

3. Prototype System Implementation

 In this section, we describe the key mechanisms of implementation of the prototype system 
for this scheme.

3.1 SBP construction of MIC operations

 A common feature in all sensor-based voice privacy theft attacks is that the attacks are all 
carried out through initiating voice capturing automatically in the attack code without the 
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awareness of the user. If we provide access control to the MIC sensor and deny all automatically 
initiated voice capturing operations, these attacks can be held back successfully. The SBPs of 
MIC operations are defined according to this finding. In this section, we describe how to specify 
SBPs in terms of system events interposed by temporal and logical operators. The specification 
of SBPs is the first step in our behavior-based defense system.

3.1.1 Overview of TLCK

 TLCK is a temporal logic that allows the description of propositions whose evaluation 
depends on time, making it suitable for describing sequences of events and properties of 
correlated behaviors. We formally define a behavior signature as a finite set of propositional 
variables interposed with TLCK, where each variable (when true) confirms either the calling of 
a single or an aggregation of Java API, or the attribute of the methods being called or the threads 
calling the methods.
 The logical operators ‘or (∨)’ and ‘and (∧)’ are defined as usual. The temporal operators 
defined using past-time logic are as follows:
	 ●  ☉t : true at time t.
	 ●  △t : true at some instant before t.
	 ●	 □t

t k− ：true at some instant in the interval [t −	k, t].
 Assuming that we have variables X, Y, and Z, then we can define a temporal logic with TLCK 
as follows:

 ☉t (X) ∨ [△t (Y) ∧ □t
t k−  (Z) ]. (1)

 The meaning of Eq. (1) is that the event X happens at time t, or the event Y occurs before t, 
and the event Z is true in the time interval t −	 k and t. Through extracting the behavioral 
characteristics of MIC operations, we can define the behavior variables and temporal logic. We 
can then define the SBPs of MIC operations.

3.1.2 SBP construction for MIC operations

 In this section, we define the SBPs of MIC operations with TLCK. We first identify a set of 
atomic propositional variables.
	 ●		Key Pressed: A key pressing operation is initiated by the user.
	 ●		Screen Touched: A screen touching operation is initiated by the user.
	 ●		UIResponse: An event handle function of an UI operation is triggered, such as 

onTouchEvent(), onKeyDown(), onKeyUp().
	 ●	 VoiceRecord: A Voice capturing API is called, such as MediaRecorde.start(), or 

VoiceRecord.startRecording(). 
	 ●		MethodTainted(M): The method M has an Mtag tag set to 1, which means that the method 

calling is triggered by the UI event handle function. Mtag is a tag that we add to the method 
call stack.
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	 ●		ThreadTainted(T): The thread T has Ttag set to 1, which means that the execution of the 
thread is triggered by the UI event handle function. Ttag is a tag that we add to the thread 
call stack.

 The SBPs of MIC operations are defined as follows:

 ☉t (KeyPressed ∨ ScreenTouched) ∧ □ 5t
t
+

 (UIResponse) 

 ∧ □t k
t
+

 {VoiceRecord ∧ [MethodTainted (VoiceRecordAPI)  (2)

 ∨ ThreadTainted (ThreadCallVoiceRecordAPI)]}.

 Equation (2) defines a secure control flow of a secure MIC access. First, the user presses a 
button or presses the touch screen at time t. Then, a UI input handle function is triggered 5 ms 
after the user’s UI operation. Finally, a voice capturing API is called, and the Mtag tag of the 
API method is set to 1 or the thread calling the API has Ttag tag set to 1.
 Many experiments demonstrated that the time interval between either two UI operations is 
greater than 15 ms, while the time interval between a UI operation and a handle function being 
triggered is less than 5 ms. Therefore, the first two temporal logics in Eq. (2) can be used to 
determine whether the event handle function is triggered by a real UI operation. The third 
temporal logic can be used to determine whether a voice capturing operation is launched and 
whether it is triggered through a UI event handle function. Combining these logics, we can 
determine whether a voice capturing operation is initiated by the user manually or launched by 
the attack code automatically.

3.2 Real-time monitoring and tracking the UI operation of the app

 Real-time monitoring of the behavior of apps is also an important part of the defense system. 
The monitoring results were compared with the SBPs defined in Sect. 3.1. All the behaviors such 
as the UI operations and the voice capturing API calls in the SBPs should be monitored.
 In this section, we introduce a UI input tagging and tracking technology, which is used to 
determine whether an API calling is triggered by the user manually through the UI. We first 
detect whether a real UI operation is occurring by monitoring the Linux input subsystem. We 
then use time information to detect whether an event handle function was triggered by the UI 
operation. Finally, we introduce one tagging and tracking technology to track the API callings 
triggered by the event handle function.
 In Android, the UI operations, such as Keyboard and Touchscreen, are processed based on 
the Linux input subsystem. The UI input event is first written into ‘/dev/input/’ by a Linux kernel 
when a Keyboard or Touchscreen operation occurs. Then the ‘SystemServer’ process in Android 
captures the event by reading ‘/dev/input/’ and broadcasts the event. Finally, the event handle 
functions in an Android app, such as ‘onTouchEvent’, ‘onKeyDown’, ‘onKeyUp’, are triggered 
and the corresponding operations are taken.
 Detection of the UI operations is carried out according to the processing flow of the Linux 
input subsystem, which includes the following two steps:
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Fig. 2. Tagging and tracking the operations triggered in the event handle functions.

i.  Monitoring the writing operations to ‘/dev/input/’ in the Linux kernel. Based on the 
hypothesis that the kernel is secure, this operation cannot be forged by the attackers. 
Therefore, if a writing operation is histed, a real UI operation occurs.

ii.  Detecting the event handle function triggered by the UI operation. The processing flow from 
the input event recorded by the Linux kernel to the handle function triggered involves 
multiple processes, and thoroughly tracking this flow is time-consuming. Through hundreds 
of experiments, we found that the time span between the above two operations is less than 5 
ms, while the time span between either of two UI operations is more than 15 ms. Therefore, it 
is possible and convenient to use the time information in the event to determine whether an 
event handle function is triggered by the specified input action. This is the approach 
employed in our defense system.

 We introduce a three-level tagging and tracking technology to detect whether an API calling 
is triggered in the event handle function. In an Android system, there are three ways to initiate 
an API calling in the event handle function: i. directly calling the API in the handle function; ii. 
creating a new thread to launch API calling; and iii. sending a message to tell an existing thread 
to call the API. As shown in Fig. 2, we introduce three tags to mark the above three scenarios: 
‘Mtag’, ‘Ttag’, and ‘Msgtag’. We add an ‘Mtag’ tag to each method in the interpreted stack to 
indicate whether it is triggered by an event handle function. The ‘Mtag’ of a method is set to 1 if 
the method is an event handle function, or to ‘Mtag’ of the calling method is 1. In the interpreted 
stack, all methods in the position between pushing and popping of one method are called by the 
method. 
 We add a ‘Ttag’ to each thread; threads created in one method have the ‘Ttag’ set to 1 if the 
‘Mtag’ of the method is 1; otherwise, the ‘Ttag’ will be set to 0. We add an ‘Msgtag’ to the 
message, and all messages sent in the method with ‘Mtag’ 1 or in the thread with ‘Ttag’ 1 have 
the ‘Msgtag’ set to 1. Then we check the message’s ‘Msgtag’ when the message handle function 
is called and set the function’s ‘Mtag’ to 1 if the message’s ‘Msgtag’ tag is 1. With this tagging 
approach, we can track all operations triggered by an event handle function, either with ‘Mtag’ 
set to 1, or with ‘Ttag’ set to 1. In contrast, if an action, including the voice capturing action, is 
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Fig. 3. (Color online) API call stack in the ART VM of an Android.

launched stealthily, both the ‘Mtag’ of the method and the ‘Ttag’ of the thread calling the method 
will have a value of 0. With these technologies, we can determine whether an API calling is 
initiated by the user manually or by the attack code automatically, making the assumption that 
the kernel is secure.

3.3 Monitoring MIC sensor access API calls 

 Android apps written with Java codes are first compiled into ART bytecodes and then 
executed in the ART VM. Thus, all Java methods called in an app can be monitored in the ART 
VM. In the defense system, we add monitoring codes to the ART VM to detect if a voice access 
API calling has been launched.
 As shown in Fig. 3, there are two ways to call a Java API in an Android: by calling directly 
from Java codes, and by calling from native codes via JNI. In both ways, the methods are pushed 
into the interpreted stack before BEING executed. Thus, the pushing operation of the interpreted 
stack is a suitable point to monitor the Java API calls in an app. In fact, the pushing operation of 
the interpreted stack is implemented at two points. For the API calls in Java codes, the pushing-
operation codes are included in the hardware-related part of the ART VM. As for the API calls 
from native codes, the pushing operation is complete in the common part of the ART VM. Thus, 
the monitoring codes are added to these two points to completely cover all pushing operations on 
the interpreted stack. Through parsing an item in the interpreted stack, the parameters of an API 
call can be monitored effectively. The position of the item in the interpreted stack reflects the 
sequence of API calls.  

4. Scheme Validation and Evaluation

 In this section, we report the experiments to evaluate the effectiveness and efficiency of the 
defense prototype system.  Since we need to modify the kernel code to implement our defense 
prototype system, we chose the Google smartphone with open-source kernel to deploy our 
defense prototype system. Our experimental platform is the Google Pixel smartphone with the 
Android 12 operating system.
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Table 1
Effectiveness	comparison	with	mainstream	antivirus	software.

Antivirus Software Defense	Effect
Voice capturing Voice data sending

Kaspersky Yes Yes
360 Mobilesafe Yes Yes
AVG Yes Yes
Our defense system No No

Fig. 4. (Color online) Overhead on a normal Android ART VM and an ART VM with a defense system.

4.1	 Effectiveness

 To test the effectiveness of the defense prototype system, we introduced a typical audio 
information attack case named Cyber-Physical Voice Theft (CPVT) presented in Ref. 13. It has 
been reported that CPVT may bypass the popular mobile antivirus software.(13) We deployed 
Kaspersky,(14) 360 Mobilesafe,(15) AVG,(16) and our defense prototype system on the Google 
experimental smartphone and observed the defense effect of different antivirus software against 
the CPVT attacks. The experimental results are shown in Table 1. The behavior-based malicious 
app detect method implemented in our defense prototype system effectively found and stopped 
the abuse of MIC sensors.

4.2	 Efficiency

 The defense system was implemented as an extension of the ART VM. Therefore, we 
evaluated the efficiency by comparing it with a normal Android ART VM. ART VM is also a 
type of Java VM. CaffeineMark 3.0(17) for Android is adopted to generate the scores of Java 
Microbenchmark, which is a classic metric used to evaluate the performance of Java VM. 
CaffeineMark3.0 uses an internal scoring metric only useful for relative comparisons. The 
experimental results are shown in Fig. 4.
 We first evaluated the total performance overhead of the defense system, and then evaluated 
the respective performance overhead incurred by the two major function modules of the defense 
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system as discussed in Sects. 3.2 and 3.1, namely, UI operation tracking and API call monitoring. 
As illustrated in Fig. 4, the experimental results on the overhead of the two functions are shown 
as ‘ART VM with UI Tracking’ and ‘ART VM with API monitoring’, and the results for the 
whole system are shown as ‘ART VM with UI Tracking and API Monitoring’.  The experimental 
results for the performance of the original ART VM for comparison are shown as ‘Normal 
Android ART VM’. The results are consistent with design expectations. The overhead incurred 
is almost zero for the benchmarks dominated by arithmetic and logic operations; the string and 
method benchmark experience more overhead, which is caused by the memory comparisons that 
occur for the method names and the monitoring of API calls. 
 The ‘overall’ benchmark indicates the cumulative score across all individual benchmarks. 
CaffeineMark3.0 documentation indicates that the score of ‘overall’ benchmark roughly 
corresponds to the number of Java instructions executed per second. Here, the normal Android 
system has an average score of 880, while the score of the entire defense system is 790. The 
scores of the ART VM with API call monitoring and UI tracking are 835 and 818, respectively. 
The total overhead for the defense system is almost 10.23%, and the overhead caused by UI 
tracking is more than that caused by API monitoring.

5. Conclusions

 We presented a behavior-based sensor access control mechanism to prevent the privacy 
disclosure caused by a sensor. Taking advantage of the tracking and tag technologies of UI 
operations, we propose a dynamic acquisition method for app sensor access behavior patterns. 
By this method, we may dynamically observe the behavior pattern of sensor access by an app.  
On the basis of the TLCK model, taking MIC sensors as an example, we proposed a model to 
describe the pattern of secure access to smartphone sensors. With this model, we defined the 
SBP for every sensor. In sensor access, we compared the dynamic real-time sensor access 
behavior with SBP to block insecure sensor access. Compared with traditional access control 
mechanisms, the behavior-based mechanisms can regulate sensor access more easily and in a 
fine-grained fashion. Even if the app has the corresponding sensor access permissions, it must 
follow the SBP to access sensor resources. In this report, we also presented a behavior-based 
sensor access control enforcement mechanism through monitoring sensor API calls. This 
method parses the API call stack, monitors the sensor access API, and introduces a behavior-
based access control mechanism to enforce access control. The experimental results on the 
prototype defense system show that the behavior-based access control mechanism proposed can 
effectively prevent the abuse of sensor resources and block user privacy disclosure with 
reasonable overhead.
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