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 In this paper, a navigation control method is proposed for an Ackermann steering robot. In 
the proposed method, light detection and ranging (LiDAR) sensors are used to obtain the 
distance between an Ackermann steering robot and objects in an unknown environment. In 
accordance with the distances obtained by the LiDAR sensors, the navigation control system 
uses a behavior manager to switch between two types of behavior control, namely, toward-goal 
behavior control and wall-following behavior control (WFBC). If a wall or an obstacle is 
detected in the current path toward the target position, the behavior manager adopts WFBC to 
avoid the obstacle. To achieve WFBC, a fuzzy logic controller with three subfuzzy logic 
controllers—namely, a straight-based fuzzy logic controller, a right-based fuzzy logic controller, 
and a left-based fuzzy logic controller—is adopted. Switching between these three subcontrollers 
is achieved in accordance with the distance and angle between the robot and a wall (or an 
obstacle). The input signal of the proposed fuzzy logic controller is the distance between the 
robot and wall (or obstacle), which is determined by a LiDAR sensor at different angles, and the 
output of this controller is the steering angle of the Ackermann steering robot, which can move 
along a wall and avoid collisions with walls (or obstacles) in an environment. Experimental 
results indicated that the proposed fuzzy logic controller successfully implemented navigation 
control in two unknown environments.

1. Introduction

 Because of their flexible and scalable characteristics, mobile robots have been widely used in 
many areas, such as industry,(1,2) hospitals,(3) and logistics.(4,5) Therefore, navigation control for 
mobile robots is a crucial research topic. Navigation control can be divided into two types: 
navigation in a known environment and navigation in an unknown environment. Navigation in a 
known environment is achieved through global path planning based on a map,(6,7) whereas 
navigation in an unknown environment is achieved by avoiding obstacles autonomously and 
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moving toward a target. In both types of navigation control, crucial and dynamic obstacle 
avoidance functions prevent a robot from colliding with obstacles. The local planning method(8) 
and sensors are used to detect obstacles to achieve this dynamic avoidance of obstacles.
 Common obstacle avoidance methods for robots are the artificial potential field method,(9) 
neural-network-based methods,(10) and evolutionary algorithms.(11) The artificial potential field 
method(9) involves considering a space as a virtual artificial potential field. The robot is 
considered to be attracted to and repulsed by the target and obstacles, respectively, and it moves 
along the direction of the resultant force of attraction and repulsion. This method is simple and 
easy to implement; however, it can fall into local solutions relatively easily. Neural networks(10) 
are machine-learning structures that mimic biological neural networks and are composed of 
many neurons. In neural-network-based obstacle avoidance, sensors are used to collect 
information regarding possible obstacles in an environment, and a model is then constructed 
through learning to guide a robot to avoid obstacles. Evolutionary algorithms(11) are search 
algorithms based on the concepts of elimination and evolution in nature. These algorithms have 
been successfully used to solve problems and optimize solutions. In many studies,(12–14) 
evolutionary algorithms have been used to achieve dynamic obstacle avoidance for robots. The 
optimal path can be generated through multiple iterations of inheritance, mutation, natural 
selection, and hybridization. These iterations prevent evolutionary algorithms from falling into 
locally optimal solutions and require a relatively long computation time. These three types of 
method require a relatively long computation time to achieve a high performance. To reduce the 
computation time, some scholars have used fuzzy logic control.
 Fuzzy theory has been widely used in various uncertain, complex, and nonlinear applications 
and in automation control,(15) data classification,(16) and image vision.(17) This theory(18–20) was 
proposed by Zadeh in 1965. Fuzzy logic is a reasoning method similar to that of the human mind 
and is based on the observation that people make decisions on the basis of imprecise and 
nonnumerical information that is designed to replace Boolean logic with degree values. A fuzzy 
set is used for mathematically representing vague and imprecise information. Because fuzzy 
theory utilizes language rules to obtain automated control strategies, the knowledge and 
experience of experts or operators can be leveraged. Fuzzy logic is a universal approximation 
method in which the output changes in accordance with the input sensor data. The most well-
known fuzzy logic is the Mamdani rule,(21) according to which all the input values are first 
fuzzified into fuzzy membership functions, the fuzzy output function is then calculated on the 
basis of all the applicable rules in the rule base, and the fuzzy output function is subsequently 
defuzzified to obtain the output value. 
 The common mobile robot chassis can be divided into three categories: differential drive 
systems,(22) omnidirectional chassis,(23) and Ackermann steering systems.(24) A differential drive 
system has a simple structure and low cost and can move in small spaces, such as indoor areas. 
Most mobile robots have this chassis structure. However, because of the differential structure of 
differential drive systems, each of their wheels must contain a drive motor. Therefore, the 
efficiency of differential drive systems is lower than that of other types of chassis. 
Omnidirectional chassis can be divided into two types: rollers and mecanum or spherical wheels. 
Because the wheels of omnidirectional chassis contain horizontal or oblique rollers, in contrast 
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to a differential drive system, these chassis can move horizontally. Omnidirectional chassis are 
suitable for application in indoor or flat areas. The Ackermann steering architecture is mostly 
used in vehicles. This architecture has low flexibility and is usually used in outdoor 
environments. Mobile robots contain many sensors, such as vision systems, ultrasonic sensors, 
and light detection and ranging (LiDAR) sensors, which provide input signals for vehicle control 
algorithms.
 In this paper, a navigation control method is proposed that enables an Ackermann steering 
robot to avoid obstacles autonomously and reach its target effectively in an unknown 
environment. The proposed navigation control method involves two types of behavior control, 
namely, toward-goal behavior control (TGBC) and wall-following behavior control (WFBC). 
The robot adopts the TGBC mode to navigate toward a target; however, when it detects an 
obstacle or a wall, it adopts the WFBC mode for dynamic obstacle avoidance.  The mobile robot 
moves forward at a constant speed. The proposed fuzzy logic controller contains three subfuzzy 
logic controllers, namely, the straight-based fuzzy logic controller (SFLC), right-based fuzzy 
logic controller (RFLC), and left-based fuzzy logic controller (LFLC). The proposed fuzzy logic 
controller switches between the subfuzzy logic controllers depending on the situation. In 
summary, the contributions of this study are as follows:
1. Navigation control is realized for an Ackermann steering robot in an unknown environment.
2. The proposed navigation control method involves the TGBC and WFBC modes.
3.  The proposed fuzzy logic controller for WFBC contains three subfuzzy logic controllers, 

namely, the SFLC, RFLC, and LFLC, to achieve dynamic obstacle avoidance.
 The rest of this paper is organized as follows. Section 2 provides a detailed introduction of the 
architecture of the Ackermann steering robot and behavior control methods. Section 3 presents 
the experimental results obtained using the developed fuzzy logic controller. Section 4 provides 
the conclusions of this study and recommendations for future research.

2. Methods

 This section describes the architecture of the Ackermann steering robot and the proposed 
navigation control method, which involves TGBC and WFBC.

2.1 Architecture of Ackermann steering robot

 The Ackermann steering structure solves the problem of different steering angles caused by 
the different steering radii of the left and right wheels during steering. According to Ackermann’s 
steering geometry, when a robot turns along a curve, the steering angle of its inner wheel can be 
increased to approximately 2–4° greater than that of its outer wheel by using the equal crank of 
the four-link structure. The center of the four-wheel paths can be approximately intersected with 
the extension line of the rear axle to obtain the steering center so that smooth turning can be 
achieved. Ackermann steering is associated with high-efficiency movement and a high payload. 
However, because of their large size, Ackermann steering structures cannot be used in small 
spaces and are mainly used in vehicles.
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 A self-manufactured Ackermann steering robot (Fig. 1) was used in this study. In the front 
axle of this robot, a four-link structure is employed as the steering axis, whereas in the rear axle, 
a DC motor is used as the driving wheel. The core controller comprises an Nvidia Jetson AGX 
Xavier module (CA, USA) to execute the robot’s operating system. This controller communicates 
with the motor controller through controller area network bus communication technology to 
control the steering angle of the front axle and the wheel speed of the rear axle. The dimensions 
of the designed Ackermann steering robot are presented in Fig. 2. The maximum steering angle 
of the front axle is 25°, the wheels have a diameter of 21 cm, and the front and rear wheelbase is 
86 cm. The aforementioned robot is designed for high-payload usage and therefore has a long 
wheelbase.
 The Ackermann steering robot used in this study was equipped with a Velodyne VLP-16 
LiDAR sensor. This sensor collects data in 16 channels and has a sensing angle of 360°, a 
vertical angle of 30°, and an effective range of 1–150 m. 

Fig. 1. (Color online) Image of the designed Ackermann steering robot.

Fig. 2. (Color online) Dimensions of the designed Ackermann steering robot.
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2.2 Navigation control

 In the proposed method, navigation control is achieved through TGBC and WFBC. First, the 
obstacle sensing area is divided into four parts, namely, R0, R1, R2, and R3 (Fig. 3). If an 
obstacle is judged to be between R0 and R2, the WFBC mode is activated. If an obstacle is 
judged to be at R3 or if no obstacle is detected, the TGBC mode is activated, and the judgment is 
repeated until the robot reaches the target position.
 The switching between TGBC and WFBC is illustrated in Fig. 4. When only considering 
whether an obstacle is in the detection area for switching between the two controller modes, the 
mobile robot bypasses the obstacle through WFBC. When the navigation control system 
switches back to TGBC, the mobile robot moves toward the obstacle again, which leads to the 
problem of the robot falling into a dead zone. Therefore, in the proposed method, the shortest 
distance between the mobile robot and the goal is calculated. The WFBC mode continues to be 
active until the shortest distance between the mobile robot and the goal is achieved. The 
achievement of this distance indicates that the dead zone has been successfully escaped from. At 
this point, the TGBC mode is activated.

Fig. 3. (Color online) Obstacle sensing area.

Fig. 4. Flowchart of the switching between WFBC and TGBC in the proposed method. 
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2.2.1 TGBC

 If an obstacle is judged to be in R3 or if no obstacle is detected, the TGBC mode is activated. 
The judgment is repeated until the mobile robot reaches the target position.

2.2.2 WFBC

 In general, a fuzzy control system can be divided into four parts, namely, a fuzzification 
system, a knowledge base, an inference engine, and a defuzzification system. The fuzzification 
system transforms the crisp values of an input signal into fuzzy sets and assigns the input signal 
to the operation of fuzzy sets with a certain degree of membership. The degree of membership 
function is in the interval [0, 1], where 0 indicates that the function does not belong to the fuzzy 
set and 1 indicates that the function completely belongs to the fuzzy set. Triangular and 
trapezoidal membership functions are the most commonly used membership functions (Fig. 5). 
The membership function of fuzzy set A is denoted μA, and μA(x) represents the membership 
degree of an input variable x mapped to fuzzy set A. The knowledge base (i.e., IF–THEN rules) is 
used to obtain output membership functions from input linguistic variables. The knowledge base 
comprises expert experience and engineering knowledge. The output of a fuzzy control system 
is a crisp value obtained from a fuzzy conclusion. In the present study, the center of area method 
was used to perform defuzzification. This method is expressed as
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where y represents the output of the fuzzy control system, yi is the output of the consequent part 
of the ith fuzzy rule, and μA(yi) is the membership function of fuzzy set A calculated for the 
input variables.
 In this paper, an effective LiDAR-based method is proposed for achieving WFBC (Fig. 6). 
The proposed WFBC system includes three subfuzzy logic controllers, namely, the SFLC, 
RFLC, and LFLC. Each subfuzzy controller controls a certain movement of the Ackermann 
steering robot and uses a switch to change the behavior of the mobile robot. The SFLC is used to 
control the movement of the robot in the target direction and to maintain a fixed distance 
between the robot and the wall (or an obstacle) by enabling the robot to turn by a small angle. 
The LFLC and RFLC control the left and right turning movements of the robot, respectively. 
When the robot turns left or right, the LFLC or RFLC subcontroller, respectively, maintains a 
fixed distance between the mobile robot and the wall (or obstacle). In the proposed WFBC 
system, the SFLC and LFLC subcontrollers have two inputs and one output each, whereas the 
RFLC subcontroller has one input and one output.
 The mobile robot’s movement must be maintained parallel to the wall during behavior control 
with the proposed WFBC system. That is, the input of the proposed SFLC is 50° (i.e., S3) and 
90° (i.e., S4) from the LiDAR sensor (Fig. 2). A decrease in the sensing value for S3 indicates 
that the mobile robot is gradually approaching a wall. At this time, the mobile robot must turn 
away from the wall. Conversely, an increase in the sensing value for S3 indicates that the mobile 
robot is far from the wall and must turn toward the wall. The membership functions of S3 and S4 
are depicted in Fig. 7. Figure 7 indicates that five fuzzy rules are used in the proposed SFLC. 
The control surface obtained in accordance with the output of the designed SFLC is shown in 
Fig. 8.
 The left-turn behavior of the mobile robot using the LFLC depends on the angle between the 
mobile robot and the wall (or obstacle). If the S1 distance of the LiDAR sensor is longer than its 
S3 distance, the turning angle is less than 90°, and movement control with a fixed distance from 

Fig. 6. Proposed WFBC system.
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the wall is adopted. By contrast, if the S3 distance is longer than the S1 distance, the turning 
angle is higher than 90°, and the mobile robot must turn to avoid entering the dead zone. The 
membership functions of S1 and S3 as well as the five fuzzy rules of the LFLC are depicted in 
Fig. 9. The control surface obtained in accordance with the output of the designed LFLC is 
depicted in Fig. 10.
 The right-turn behavior of the mobile robot using the RFLC depends on the S4 signal of the 
LiDAR sensor. If the S4 distance of this sensor is too long, the mobile robot’s movement is not 
maintained at a fixed distance from the wall. At this time, the robot must turn right to avoid 
collision with other walls (or obstacles). By contrast, if the S4 distance of the LiDAR sensor is 

Fig. 7. (Color online) Membership functions of S3 and S4 for the SFLC as well as the five fuzzy rules of the SFLC.

Fig. 8. (Color online) Control surface obtained using the SFLC.
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too short, the mobile robot needs to turn right. At this time, a fixed distance must be maintained 
between the robot and the wall. The proposed RFLC has only two membership functions (i.e., 
Near and Far), as displayed in Fig. 11. The control curve obtained in accordance with the output 
of the designed RFLC is depicted in Fig. 12.
 The control curve and surfaces displayed in Figs. 8, 10, and 12 indicate that the LiDAR 
sensing value is higher when the robot is further away from a wall or an obstacle. In this 
scenario, the mobile robot turns toward the wall or obstacle. A low LiDAR sensing value 
indicates that the mobile robot is too close to a wall or an obstacle. In this case, the mobile robot 
turns away from the wall or obstacle.

3. Experimental Results

 Two sets of experiments were conducted in this study. In the first set of experiments, the 
control of the designed mobile robot when it moved along a wall (or an obstacle) in two unknown 
environments was examined. In the second set of experiments, the navigation control of the 
mobile robot was investigated in two unknown environments. The mobile robot moved at a 
constant speed in all the experiments.

Fig. 9. (Color online) Membership functions of S1 and S3 for LFLC as well as the five fuzzy rules of the LFLC.

Fig. 10. (Color online) Control surface obtained using the LFLC.
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3.1 Results obtained for WFBC

 To verify the feasibility of the proposed WFBC method, two unknown environments were 
established (Figs. 13 and 14). The red, green, and blue lines in Figs. 13 and 14 represent the 
experimental results obtained using the designed LFLC, RFLC, and SFLC, respectively. The 
experimental results indicated that the mobile robot effectively switched between the three 
subfuzzy logic controllers and moved at an appropriate distance from the wall. However, when 
the angle between the obstacle and the robot was 90°, the movement of the robot was limited by 
the minimum turning radius of the Ackermann steering structure; therefore, the mobile robot 
could not come close to the obstacle. In this case, the mobile robot had to turn in advance, and 
the experimental results indicated that the mobile robot still moved around the obstacle without 
colliding with it.

3.2 Results of navigation control

 To validate the proposed navigation control method, two unknown environments were 
established (Figs. 15 and 16). As depicted in Fig. 15, to avoid the problem of the robot falling into 

Fig. 11. (Color online) Membership function of S4 for the RFLC and the two fuzzy rules of the RFLC.

Fig. 12. (Color online) Control curve obtained using the RFLC.
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Fig. 13. (Color online) Results obtained with the proposed WFBC method in environment 1.

Fig. 14. (Color online) Results obtained with the proposed WFBC method in environment 2.

a dead zone, the mobile robot used the WFBC mode until the shortest distance between the robot 
and obstacle was achieved. Subsequently, the robot switched back to the TGBC mode. Figure 16 
indicates that the robot effectively switched between the WFBC and TGBC modes to move 
toward the target. It used the WFBC mode (i.e., the fuzzy logic controller) to avoid obstacles.



792 Sensors and Materials, Vol. 35, No. 3 (2023)

4. Conclusions

 In this paper, a navigation control method is proposed for an Ackermann steering robot. In 
the proposed navigation method, a behavior manager switches between TGBC and WFBC in 
accordance with the distance between an obstacle and the robot, which is obtained by a LiDAR 
sensor. If an object or obstacle is detected in the current path of movement toward the target 
point, the behavior manager switches to WFBC to enable the robot to avoid the obstacle. In the 
proposed method, WFBC is achieved using a fuzzy logic controller that comprises three 
subfuzzy logic controllers: an SFLC, an RFLC, and an LFLC. Switching occurs between these 
three subcontrollers in accordance with the distance and angle between the robot and obstacle in 
the environment. The proposed navigation control method can prevent the problem of the robot 
falling into a dead zone. Experimental results indicated that the designed fuzzy logic controller 
successfully performed navigation control in two unknown environments.
 The proposed fuzzy logic controller spends considerable time adjusting the positions of 
membership functions. Therefore, machine-learning methods will be used in future research to 
enable this controller to adjust the positions of membership functions automatically.
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