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 Breast cancer is one of the most common cancers in women worldwide and the leading cause 
of death in women. Medical experts use histopathological images to diagnose breast cancer, but 
such analysis for the effective diagnosis or detection of breast cancer is challenging. Therefore, 
we propose a vector deep fuzzy neural network (VDFNN) to classify breast cancer effectively 
and automatically from histopathological images. The VDFNN model uses four sets of vector 
product and pooling layers to extract features and retain important feature information. Then, a 
feature fusion layer uses global average pooling to reduce the dimension of the extracted feature 
information. Finally, a fuzzy neural network performs breast cancer classification. The VDFNN 
model parameters are selected using the trial-and-error method. However, we also propose the 
Taguchi-VDFNN (T-VDFNN), which employs the Taguchi method to determine the optimal 
combination of model parameters. The experimental breast cancer classification accuracy of the 
proposed VDFNN was 92.18%. After the application of the Taguchi method to identify the 
optimal parameter combination, the experimental accuracy of the proposed T-VDFNN model 
was 94.37%, 2.19 percentage points higher than that of the basic VDFNN model.

1. Introduction

 According to 2020 cancer statistics, the incidence of breast cancer is 24.5%, and the mortality 
rate is 15.5%, which are the highest for cancers in women.(1) Early diagnosis can reduce mortality 
due to breast cancer, and early breast cancer treatment can cure up to 90% of cases.(2) Effective 
imaging research extracts useful information from abundant raw data to aid in the detection of 
pathological lesions, clinical treatment of patients, and differential diagnoses. The most 
commonly used medical imaging modalities are mammography, ultrasonography, magnetic 
resonance imaging, computed tomography, and histopathological imaging.(3) Rubin and 
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Strayer(4) used histopathological imaging to obtain and examine microscopic images of tissue; 
such imaging is the gold standard for cancer diagnosis. However, histopathological analysis is 
time consuming and depends on the skill and experience of the pathologist. Diagnosis is 
sometimes subjective and can be influenced by multiple human factors, such as fatigue and 
inattention.(5) Therefore, accurate histopathological analysis methods are urgently needed.
 Within the rapidly growing field of artificial intelligence, machine learning uses real data for 
training and learning to construct predictive models. In medical diagnosis, machine learning can 
be used to process raw medical data quickly and provide useful information that can help 
pathologists analyze large quantities of medical data efficiently. Thus, machine learning has 
greatly improved the early diagnosis and prediction of cancer.(6) Machine learning techniques, 
including simple Bayesian classifiers,(7) K-nearest neighbor algorithms,(7) decision trees,(8) 
support vector machines,(9) and artificial neural networks,(10) have been widely applied to breast 
cancer classification problems. However, machine learning requires feature extraction to be 
performed in advance. Moreover, such feature extraction is based on the experience of experts, 
the process is complex, and the number of extracted features affects the prediction results.
 In recent years, deep learning techniques have been widely used to overcome the difficulty of 
manually defining features in various domains. Ortac and Ozcan(11) used 1D, 2D, and 3D 
convolutional models to achieve effective classification. Their 3D convolutional neural network 
(CNN) achieved higher classification accuracy than other state-of-the-art models. In another 
study,(12) a CNN architecture was used to classify materials in multispectral remote sensing 
images for simplified model building. Houssein et al.(3) proposed new applications of CNNs 
related to breast cancer detection and classification. When a data set is large, CNNs outperform 
traditional machine learning in breast cancer diagnosis.(13) Traditional clinical diagnosis is often 
uncertain and ambiguous, and fuzzy neural networks (FNNs) are often used to reduce this 
uncertainty.(14) FNNs are based on a hybrid approach that combines the semantic transparency 
of rule-based fuzzy systems with the learning capabilities of neural networks.(15) Because CNNs 
have too many parameters and require high-performance hardware, scholars have employed 
convolution operations with FNNs to reduce the number of network parameters. For example, 
Abiyev and Helwan(16) used FNNs to obtain good performance in breast cancer classification.
 Because CNNs require numerous parameters, the trial-and-error method is widely used for 
parameter selection. To reduce the time and cost of experiments, the Taguchi method(17) can be 
used to statistically optimize parameter selection by using an orthogonal array of influencing 
factors and their levels.
 In this paper, a vector deep FNN (VDFNN) that automatically and effectively classifies 
breast cancer from histopathological images is proposed. The VDFNN model architecture uses 
four sets of vector product and pooling layers to extract features and retain important feature 
information. A global average pooling (GAP) method is applied in a feature fusion layer to 
reduce the dimension of the feature information. Finally, to classify breast cancer, an FNN is 
used instead of the fully connected network used by traditional CNNs. To reduce the time and 
cost of parameter selection, the Taguchi-VDFNN (T-VDFNN) method, based on the Taguchi 
experimental design, is used, resulting in a slightly modified T-VDFNN model. The major 
contributions of this study are as follows:
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1.  The VDFNN is proposed for breast cancer classification problems. A GAP method is used in  
a feature fusion layer, and an FNN is used instead of a fully connected network to reduce the 
number of parameters.

2.  The T-VDFNN method, based on the Taguchi experimental design, is proposed for optimal 
parameter selection.

 The remainder of this paper is organized as follows. Section 2 describes the structure of the 
proposed VDFNN and presents the Taguchi method used to develop the T-VDFNN for optimal 
parameter selection. Section 3 presents the experimental results obtained using the proposed 
VDFNN and T-VDFNN models. Finally, the conclusions of this study and recommendations for 
future work are presented in Sect. 4.

2. Materials and Methods

 In this section, the overall network architecture of the VDFNN is introduced. Because the 
VDFNN relies on the trial-and-error method for parameter selection, a VDFNN based on the 
Taguchi method, called T-VDFNN, is used for optimal parameter selection.

2.1 Architecture of VDFNN

 The VDFNN architecture comprises a vector convolutional layer, a pooling layer, a feature 
fusion layer, and FNN (Fig. 1). The vector convolutional layer is used to extract features from 
input images, and dimension reduction operations are performed on extracted feature maps in 
the max pooling layer. The feature fusion layer replaces the traditional flatten layer; it integrates 
feature information to obtain less but more useful feature information. Finally, the FNN is used 
for classification.

Fig. 1. (Color online) Architecture of VDFNN.
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2.1.1 Vector convolutional layer

 The vector convolutional layer employs vector convolution that divides the traditional 
convolutional layer into two layers.(18) The main purpose is to compress the convolution kernel 
to eliminate redundant network parameters. The principle is to use n × 1 and 1 × n vector kernels 
to obtain an n × n matrix through matrix operation. The result obtained by calculating the 
original 3 × 3 matrix from the matrices of the 3 × 1 and 1 × 3 convolution kernels is shown in 
Fig. 2. The formula is as follows:

 1 1*n n n nA B C× × ×= , (1)

where An × n is an n × n matrix, Bn × 1 and C1 × n are n × 1 and 1 × n matrices, respectively, and * 
denotes matrix multiplication.
 In traditional convolution operations, if a 3 × 3 convolution kernel is used, nine parameters 
are required. If a traditional convolution kernel is divided into two vector convolution kernels 
and then subjected to data compression, the vector convolution kernels require only 3 + 3 = 6 
parameters. Therefore, the number of parameters required by the convolution kernel and thus the 
corresponding number of operations can be reduced, as depicted in Fig. 3.

Fig. 2. (Color online) Vector convolution.

Fig. 3. (Color online) Vector convolution kernel operation.
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2.1.2 Pooling layer

 The pooling layer reduces the size of the image features while retaining relevant feature 
information. Commonly used operations in pooling layers are the max pooling method 
[illustrated in Fig. 4(a)] and average pooling method [illustrated in Fig. 4(b)]. The pooling 
operation works similarly to the convolution operation. A matrix of a specific size is used to 
slide the input image features, and the maximum or average value in the overlapping area is 
taken as the feature map output after the operation.

2.1.3 Feature fusion layer

 The feature maps obtained in the pooling layer are integrated through various fusion methods 
to reduce the feature dimension and obtain more useful feature information. In this study, four 
fusion methods were considered. Global pooling is used to perform operations on each feature 
map and fuse maps separately and can be either global max pooling [GMP; Fig. 5(a)] or GAP 
[Fig. 5(b)], and channel global pooling is used to fuse all channels of each feature map and can 
be either channel GMP [CGMP; Fig. 5(c)] or channel GAP [CGAP; Fig. 5(d)] operations.

(a) (b)

Fig. 4. (Color online) (a) Max pooling method and (b) average pooling method.

(a) (b)

(d)(c)

Fig. 5. (Color online) (a) GMP, (b) GAP, (c) CGMP, and (d) CGAP.
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2.1.4 FNN

 An FNN operates using fuzzy logic to imitate human thinking and possesses neural-network-
like learning ability. Therefore, it is capable of effectively managing data ambiguity and 
preventing the influence of noise. The architecture of the FNN used in the VDFNN is illustrated 
in Fig. 6. The network comprises a fuzzification layer, a fuzzy rule layer, and a defuzzification 
layer. After the feature fusion layer, the input feature map is fuzzified using a Gaussian 
membership function in the fuzzification layer, and the fuzzified map is processed in the 
if~then~ fuzzy rule layer for inference. The established fuzzy rules are as follows:

 1 1 2 2Rule : If  is  and  is   and  is , then  is j j J n nj j jx A x A x A y w… , (2)

where xi is the input, Aij is the membership function, wj is the output, and j is the jth fuzzy rule.
 The corresponding membership degree is obtained in the fuzzy rule layer as follows:
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where xi is the input, mij is the mean value, and σij is the standard deviation.
 The membership values corresponding to each input are combined to obtain the firing 
strength of each fuzzy rule. In this study, a product operation is used to obtain the rule firing 
strength as follows:
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Fig. 6. (Color online) Structure of FNN.
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 Finally, the fuzzy output is defuzzified to a crisp output as follows:
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=∑ , (5)

where yk is the kth output, Rj is the excitation intensity of the jth fuzzy rule, and wjk is the output 
of the jth fuzzy rule and kth output.

2.2 Proposed T-VDFNN model

 The parameters of the general VDFNN model are selected using the trial-and-error method. 
Therefore, the T-VDFNN was devised to determine the optimal parameter selection. The 
Taguchi method,(19) proposed in 1950, is an experimental design method that combines complex 
mathematical and statistical techniques and is used in academic and industrial research. 
Experimental design using an orthogonal table can effectively reduce the number of necessary 
experiments while achieving high quality. It is a low-cost, high-efficiency quality engineering 
method, and it is widely used to find the optimal parameter selection during system 
optimization.(20–22) A flowchart of the proposed T-VDFNN method is illustrated in Fig. 7. In 
brief, breast cancer images are preliminarily classified into training and test sets. The training 
images are input into the VDFNN model to train it. Then, the impact factors and their levels are 
selected, and the Taguchi method is used to determine the optimal parameter selection. When 
the experimental results do not meet the user’s requirements, the impact factor or level is 

Fig. 7. (Color online) Flowchart of proposed T-VDFNN.
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reselected. If the results meet the user’s requirements, the trained T-VDFNN model is tested for 
its ability to classify breast tumors as benign or malignant.

2.2.1 Orthogonal table

 Orthogonal tables are used in statistics for experimental design. By using the data obtained in 
experiments, a mathematical formula can be derived to predict the output of factor combination. 
The obtained parameter selection is used to conduct a confirmation experiment. To reduce the 
number of experiments required to obtain the optimal parameter selection, a Taguchi experiment 
with a standard orthogonal table (as presented as Table 1) is used for the T-VDNN. During 
selection, the numbers of factors and levels must be determined before the configuration of the 
experimental combinations.

2.2.2 Signal-to-noise ratio

 The quality loss of a product can be calculated and quantified mathematically. The concept of 
quality loss has evolved to mean the signal-to-noise (S/N) ratio. The S/N is a logarithmic function 
of the output used to measure quality characteristics, and it is useful for performing data analysis 
and predicting optimal results.(23) Three quality characteristics are described as follows:
 Nominal-the-best:

 ( )20/ 10log
n

ii y mS N
n

=
 −= −  
  
∑ . (6)

Table 1
Standard orthogonal table for Taguchi experiment.

Number of experiments Maximum number of 
factors

Maximum level
2 3 4 5

L4 3 3 — — —
L8 7 7 — — —
L9 4 — 4 — —
L12 11 11 — — —
L16 15 15 — — —
L’16 5 — — 5 —
L18 8 1 7 — —
L25 6 — — — 6
L27 13 — 13 — —
L32 31 31 — — —
L’32 10 1 — 9 —
L36 23 11 12 — —
L’36 16 3 13 — —
L50 12 1 — — 11
L54 26 1 25 — —
L64 63 63 — — —
L’64 21 — — 21 —
L81 40 — 40 — —
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 Smaller-the-better: 

 ( )20/ 10log
n

ii yS N
n

=
 

= −  
  
∑ . (7)

 Larger-the-better:
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2.3 Evaluation metrics

 A confusion matrix integrates model predictions in matrix form for simple evaluation. In this 
study, we focused on the binary classification of breast cancer as benign or malignant. An 
example 2 × 2 confusion matrix for breast cancer classification is presented in Table 2. A 
confusion matrix clearly visualizes each performance metric of the predictive classification 
model. Therefore, a confusion matrix is often used to evaluate the performance of machine 
learning and deep learning models employed for classification.(24,25)

 From the true positive (TP), true negative (TN), false positive (FP), and false negative (FN) 
statistics, the accuracy, sensitivity, and specificity of the model can be calculated as follows:

 Accuracy: TP TN
TP FP FN TN

+
+ + +

. (9)

 Sensitivity: TP
TP FN+

. (10)

 Specificity: TN
TN FP+

. (11)

3. Experimental Results

 We designed experiments to test the effectiveness of the proposed VDFNN and T-VDFNN 
models. Section 3.1 describes the data source. Section 3.2 describes the initial architecture of the 

Table 2
Confusion matrix for binary breast cancer classification.

Actual
Malignant (Positive) Benign (Negative)

Prediction Malignant (Positive) True Positive (TP) False Positive (FP)
Benign (Negative) False Negative (FN) True Negative (TN)
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VDFNN model and the experimental results obtained using different fusion methods. The 
experimental results of the Taguchi method for optimizing the parameter combination for the 
T-VDFNN model are presented in Sect. 3.3.

3.1 Data set

 In this study, we used the BreakHis data set,(26) which consists of 7909 images of 82 patients 
at four magnifications (40×, 100×, 200×, and 400×), as illustrated in Fig. 8 and summarized in 
Table 3. This data set was compiled by the Brazilian Laboratory of Pathological Anatomy and 
Cytopathology through pathologist staining of breast biopsy slides with hematoxylin and eosin. 
The size of the PNG images in the database is 700 × 460 pixels, and the images use the primary 
three-channel red–green–blue color mode with eight bits of depth per channel.

3.2	 Classification	results	obtained	using	VDFNN

 In this study, TensorFlow and Keras were used as the deep learning environment and 
development tool, respectively. The parameter settings of the proposed VDFNN model are 
summarized in Table 4. The input image size was set to 224 × 224 × 3, and four vector 
convolutional and pooling layers were used for feature extraction. In each vector convolutional 
layer, 3 × 1 and 1 × 3 convolution kernels were used for feature extraction. The feature dimension 
is then reduced through a 2 × 2 max pooling layer to reduce the number of computations. In the 
vector convolution layer, 32, 64, 128, and 64 are used as the number of four-layer vector 
convolution kernels to extract various feature combinations. The feature fusion layer is used to 
reduce the dimensionality of the features of the previous layer. Finally, the fuzzy rule layer is 
used for classification output.

Table 3
Distribution of malignant and benign images in BreakHis data set at each magnification.
Image magnification Benign Malignant Total
40× 625 1370 1995
100× 644 1437 2081
200× 623 1390 2013
400× 588 1232 1820
Total number of images 2480 5429 7909

Fig. 8. (Color online) Breast cancer images at (a) 40 ×, (b) 100 ×, (c) 200 ×, and (d) 400 × magnification.

(a) (b) (c) (d)
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 For the VDFNN, four fusion methods were considered: GMP, GAP, CGMP, and CGAP. We 
conducted experiments using these four fusion methods and obtained classification results. As 
summarized in Table 5, the highest classification accuracy, 92.98%, was obtained using the GAP 
method.

3.3	 Classification	results	obtained	using	T-VDFNN

 Because the basic VDFNN architecture relies on the trial-and-error method for parameter 
setting, the proposed T-VDFNN uses the Taguchi method to obtain the optimal parameter 
selection for the VDFNN architecture. In T-VDFNN, five factors (i.e., number of filters and 
number of fuzzy rules) are selected as three levels, and eight factors (i.e., kernel size and 
padding) are selected as two levels. Therefore, 13 factors are selected, as summarized in Table 6.
 Considering the factors and levels presented in Table 6, the influential factors were 
determined using an orthogonal table. Thirty-six experiments were conducted, and the S/N 
ratios were calculated, as summarized in Table 7.
 Given that accuracy is a crucial classification metric for classifiers, the results of the 36 
experiments in the orthogonal table suggest that the higher the S/N ratio, the higher the quality of 
classification. The S/N ratio of the 30th parameter combination was −0.48126 and the 
corresponding accuracy was 94.61%, better than the other 35 parameter combinations. 

Table 4
Parameters settings of the proposed VDFNN model.
Layer Number of filters Kernel size Stride Padding
Convolution_1-1 32 3 × 1 2, 1 0
Convolution_1-2 32 1 × 3 1, 2 0
Max_pooling_1 — 2 × 2 — —
Convolution_2-1 64 3 ×1 1, 1 0
Convolution_2-2 64 1 × 3 1, 1 0
Max_pooling_2 — 2 × 2 — —
Convolution_3-1 128 3 × 1 1, 1 0
Convolution_3-2 128 1 × 3 1, 1 0
Max_pooling_3 — 2 × 2 — —
Convolution_4-1 64 3 × 1 1, 1 0
Convolution_4-2 64 1 × 3 1, 1 0
Max_pooling_4 — 2 × 2 — —
Feature fusion 64 — — —
FuzzyRuleLayer 64 — — —
DeFuzzify Layer 2 — — —

Table 5
Experimental results obtained using four fusion methods.

VDFNN

Fusion method Accuracy (%)
GAP 92.98
GMP 92.10
CGAP 91.58
CMP 91.78
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Table 6
Thirteen factors and their levels in T-VDFNN.

Factor Level 1 Level 2 Level 3
A Conv1_Filter(C1_F) 8 16 32
B Conv1_Kernel size(C1_K) 3 5
C Conv1_Padding(C1_P) 0 1
D Conv2_Filter(C2_F) 16 32 64
E Conv2_Kernel size(C2_K) 3 5
F Conv2_Padding(C2_P) 0 1
G Conv3_Filter(C3_F) 32 64 128
H Conv3_Kernel size(C3_K) 3 5
I Conv3_Padding(C3_P) 0 1
J Conv4_Filter(C4_F) 16 32 64
K Conv4_Kernel size(C4_K) 3 5
L Conv4_Padding(C4_P) 0 1
M Number of fuzzy rules 32 64 128

Table 7
Accuracy and S/N ratio of each factor and level combination.
No A B C D E F G H I J K L M Accuracy S/N ratio

1 8 3 0 16 3 0 32 3 0 16 3 0 32 0.9052 −0.8651
2 16 3 0 32 3 0 64 3 0 32 3 0 64 0.9279 −0.6499
3 32 3 0 64 3 0 128 3 0 64 3 0 128 0.9425 −0.5143
4 8 3 0 16 3 1 32 3 1 16 3 1 64 0.909 −0.8287
5 16 3 0 32 3 1 64 3 1 32 3 1 128 0.9191 −0.7327
6 32 3 0 64 3 1 128 3 1 64 3 1 32 0.9235 −0.6912
7 8 3 1 16 3 0 64 5 0 64 5 0 32 0.902 −0.8958
8 16 3 1 32 3 0 128 5 0 16 5 0 64 0.9406 −0.5319
9 32 3 1 64 3 0 32 5 0 32 5 0 128 0.9425 −0.5143

10 8 3 1 16 5 0 128 3 1 32 5 1 32 0.8837 −1.0739
11 16 3 1 32 5 0 32 3 1 64 5 1 64 0.9229 −0.6969
12 32 3 1 64 5 0 64 3 1 16 5 1 128 0.945 −0.4913
13 8 3 1 32 5 1 128 5 0 16 3 1 128 0.6865 −3.2671
14 16 3 1 64 5 1 32 5 0 32 3 1 32 0.9374 −0.5615
15 32 3 1 16 5 1 64 5 0 64 3 1 64 0.9178 −0.7450
16 8 3 0 32 5 1 128 5 1 32 5 1 32 0.9349 −0.5847
17 16 3 0 64 5 1 32 5 1 64 5 0 64 0.9343 −0.5902
18 32 3 0 16 5 1 64 5 1 16 5 0 128 0.9115 −0.8048
19 8 5 0 32 3 0 32 5 1 64 5 1 128 0.9204 −0.7204
20 16 5 0 64 3 0 64 5 1 16 5 1 32 0.9273 −0.6555
21 32 5 0 16 3 0 128 5 1 32 5 1 64 0.9317 −0.6144
22 8 5 1 32 3 1 64 5 1 64 3 0 128 0.9279 −0.6499
23 16 5 1 64 3 1 128 5 1 16 3 0 32 0.9444 −0.4968
24 32 5 1 16 3 1 32 5 1 32 3 0 64 0.9179 −0.7440
25 8 5 1 64 3 1 64 3 0 16 5 1 64 0.9128 −0.7924
26 16 5 1 16 3 1 128 3 0 32 5 1 128 0.9317 −0.6144
27 32 5 1 32 3 1 32 3 0 64 5 1 32 0.8963 −0.9509
28 8 5 0 64 5 0 64 5 0 32 3 1 64 0.9223 −0.7025
29 16 5 0 16 5 0 128 5 0 64 3 1 128 0.9267 −0.6612
30 32 5 0 32 5 0 32 5 0 16 3 1 32 0.9461 −0.4812
31 8 5 0 64 5 1 128 3 0 64 5 0 64 0.9125 −0.7953
32 16 5 0 16 5 1 32 3 0 16 5 0 128 0.6865 −3.2671
33 32 5 0 32 5 1 64 3 0 32 5 0 32 0.9381 −0.5550
34 8 5 1 64 5 0 32 3 1 32 3 0 128 0.9128 −0.7924
35 16 5 1 16 5 0 64 3 1 64 3 0 32 0.9134 −0.7867
36 32 5 1 32 5 0 128 3 1 16 3 0 64 0.9008 −0.9074



Sensors and Materials, Vol. 35, No. 3 (2023) 807

According to the experimental results in Table 8, the greater the factor difference, the stronger 
the influence of the S/N ratio. Therefore, C4_F had the strongest influence on accuracy, whereas 
C4_P had the weakest influence on accuracy.
 Figure 9 depicts the optimal level of each of the factors: C1_F = 32, C1_K = 3, C1_P = 0, 
C2_F = 64, C2_K = 3, C2_P= 0, C3_F = 64, C3_K = 5, C3_P = 1, C4_F = 32, C4_K = 3, 
C4_P = 0, and number of fuzzy rules = 32 or 64.

Table 8
Optimal parameter selections from T-VDFNN method.

Factor
C1_F C1_K C1_P C2_F C2_K C2_P C3_F

Level

1 −0.9974 −0.8356 −0.8175 −0.9918 −0.6924 −0.6976 −0.9178
2 −0.8538 −0.8438 −0.8619 −0.894 −0.9869 −0.9818 −0.7052
3 −0.6679 −0.6332 −0.8961

Difference 0.3295 0.0083 0.0444 0.3586 0.2945 0.2843 0.2126
Ranking 4 12 10 3 5 6 8
Best level 3 1 1 3 1 1 2
Optimal 

parameter 
combination

32 3 0 64 3 0 64

Factor

C3_K C3_P C4_F C4_K C4_P Number of 
fuzzy rules C3_K

Level

1 −0.8893 −0.9648 −1.1158 −0.8377 −0.8304 −0.7166 −0.8893
2 −0.7901 −0.7164 −0.6784 −0.8417 −0.849 −0.7166 −0.7901
3 −0.7249 −1.0859

Difference 0.0991 0.2502 0.4375 0.004 0.0186 0.3693 0.0991
Ranking 9 7 1 13 11 2 9
Best level 2 2 2 1 1 1, 2 2
Optimal 

parameter 
combination

5 1 32 3 0 32/64 5

Fig. 9. (Color online) S/N ratio of each factor and level.
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Table 9
Analysis of variance results.
Factor Degrees of freedom Seq SS F Contribution (%)
Con1_Filter 2 0.6551 0.83 10
Con1_Kernel size 1 0.0006 0.00 0
Conv1_Padding 1 0.0177 0.04 0
Conv2_Filter 2 0.8248 1.04 13
Conv2_Kernel size 1 0.7807 1.98 12
Conv2_Padding 1 0.7272 1.84 11
Con3_Filter 2 0.3284 0.42 5
Con3_Kernel size 1 0.0884 0.22 1
Con3_Padding 1 0.5632 1.43 9
Con4_Filter 2 1.3856 1.76 22
Con4_Kernel size 1 0.0001 0.00 0
Con4_Padding 1 0.0031 0.01 0
Number of fuzzy rules 2 1.0911 1.38 17

Table 10
Average accuracy, sensitivity, and specificity of proposed VDFNN model.
Number of experiments Accuracy (%) Sensitivity (%) Specificity (%)
1 93.17 94.11 91.13
2 92.41 94.84 87.10
3 90.96 92.73 87.10
Average 92.18 93.89 88.44

Table 11
Average accuracy, sensitivity, and specificity of proposed T-VDFNN model.
Number of experiments Accuracy (%) Sensitivity (%) Specificity (%)
1 95.13 96.59 91.94
2 93.87 97.05 86.90
3 94.12 95.95 90.12
Average 94.37 96.53 89.65

 Table 9 presents the results of an analysis of variance and indicates the degree of influence of 
each factor. The number of degrees of freedom equals the number of levels minus 1, SS is the 
sum of squared errors, and F denotes the significance of a factor in the overall experiment. 
According to Table 9, the contribution of the Con4_Filter (C4_F) factor was the highest at 22%.
 The confusion matrix was used to analyze the classification results of the VDFNN and 
T-VDFNN models. The accuracy, sensitivity, and specificity of the two models were calculated. 
Three experiments were conducted for each model, and the average was used to assess the model 
performance. The average accuracy, sensitivity, and specificity of the proposed VDFNN model 
were 92.18, 93.89, and 88.44%, respectively (Table 10). The average accuracy, sensitivity, and 
specificity of the proposed T-VDFNN model were 94.37, 96.53, and 89.65%, respectively (Table 
11). According to the experimental results, the average accuracy, sensitivity, and specificity of 
the proposed T-VDFNN model were 2.19, 2.64, and 1.21% higher than those of the VDFNN 
model, respectively.



Sensors and Materials, Vol. 35, No. 3 (2023) 809

 To verify the effectiveness of the T-VDFNN model, we compared it with other neural network 
models, such as the textural feature descriptor,(27) LeNet-5,(28) ResHist,(29) and single-layer 
CNN.(30) The experimental results indicated the superiority of the T-VDFNN model to the other 
models, as summarized in Table 12.

4. Conclusions

 We proposed a VDFNN model to classify breast cancer effectively and automatically from 
histopathological images. The architecture of the proposed VDFNN model comprises four sets 
of vector product and pooling layers, a feature fusion layer, and an FNN. In the feature fusion 
layer, GAP is used to reduce the dimension of the feature information. To simplify and optimize 
parameter selection for the VDFNN model, we also proposed the T-VDFNN model based on the 
Taguchi method. The T-VDFNN model achieved breast cancer classification accuracy, 
sensitivity, and specificity of 94.37, 96.53, and 89.65%, respectively, 2.19, 2.64, and 1.21 
percentage points higher than those of the VDFNN model.
 Because we used a small volume of medical data in this study, we intend to use a generative 
adversarial network or Google’s AutoAugment method in the future to increase the number of 
training samples and improve the classification accuracy and stability of our model. To compare 
the classification and identification performance of deep learning networks, most scholars have 
used indicators such as accuracy, sensitivity, and specificity. However, these differ with each run 
of network training, and using a single value or the average value to judge the image classification 
ability of a network may not be suitable. Therefore, in the future, we will use statistical methods 
to define a performance index to overcome this problem.
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