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 We used an unmanned aerial vehicle (UAV) and IoT as a new platform for soil moisture 
monitoring based on the air-to-ground (A2G) communication model. We investigated an energy-
efficient UAV trajectory by considering the power outage probability and transmission rate for 
UAV-assisted wireless IoT sensor connectivity. We considered the closed-form power outage 
probability for IoT sensors located within the coverage zone of a UAV drone small cell. We 
conducted experiments in the Napier and Ruzi grass farms with IoT sensors for detecting soil 
moisture along a drip line irrigation system located in the fields. The power outage probability is 
given for different UAV heights and transmission rates, which contributes to reliable 
communication with IoT sensors.

1. Introduction

 Smart farming or precision agriculture is an innovative and integrated farming approach that 
enables the use of information and communication technologies (ICT) and innovative 
technologies such as unmanned aerial vehicles (UAVs) or drones,(1) IoT or wireless sensor 
networking,(2) robotics,(3) cloud computing or web applications,(4) artificial intelligence (AI)(5) 
and big data analytics(6) for effective decision-making.
 Soil moisture monitoring is an essential application for smart farming to control plant growth 
and yield. Soil moisture is a key component of water irrigation and must be estimated.(7,8) Soil 
moisture monitoring using the IoT is a low-cost approach that rapidly collects data and can be 
applied to switch the water supply on and off via a mobile application.(9) Although IoT sensors 
were widely used in agricultural environments, the power signal constraint has limitations. 
Several pioneering studies have targeted UAV-assisted IoT sensor connectivity.(10–15)

 Liu et al.(10) presented a method of resource allocation for UAV-assisted wireless IoT. The 
resources allocated by UAVs and the IoT are formulated using the dynamic game method to 
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Fig. 1. (Color online) Soil moisture monitoring application using UAV and IoT sensors in a large-scale smart farm.

control energy transfer and resource information between UAVs and the IoT. The schematics of 
the dynamic game method set the UAV as the leader and the IoT as the follower. The results of 
simulations showed that the dynamic game can apply multiple IoTs to almost 3500 devices 
within a processing time of 1 to 10 s. In Ref. 11, the authors proposed a measurement-aided 
dynamic planning algorithm (MAD-P) to optimize the position of a flying UAV to provide 
access to the backbone network for IoT devices. Then, the results of simulations using MAD-P 
of a drone small cell operating with multiple IoT sensors were introduced. The MAD-P is an 
asymptotic optimal method that can automatically solve the distributed fashion problem during 
drone flights. Huang et al.(12) then presented UAV-assisted simultaneous wireless information 
and power transfer (SWIPT). They discussed that some problems of infrastructure-starved IoT 
services involved the minimum energy harvested among the multiple ground sensors 
simultaneously transmitting data to the UAV. To solve this problem, they proposed an efficient 
iterative algorithm to jointly optimize the UAV transmit power allocation and trajectory. 
Likewise, joint UAV trajectory and resource allocation were presented in Ref. 13 for UAV-
assisted powered IoT, for which results of simulations were obtained on the basis of asymptotic 
optimization. Thus, the UAV trajectory is essential for optimizing the power allocation to 
multiple IoT sensors. Na et al.(14) discussed that the optimized UAV trajectory can maximize the 
downlink achievable rate (bps/Hz) of all users for IoT deployment in emergency situations. 
Additionally, a schematic of artificial noise cancellation of an eavesdropper for UAV-assisted IoT 
was presented by Wang et al.(15) They discussed the effect of the probability of an eavesdropper 
based on a learning model.
 In Refs. 10–15, the main contribution of UAV-assisted IoT connectivity was power allocation 
for an achievable rate of summation of IoT and UAV trajectories for power control or energy 
harvesting of multiple IoT connectivities. We applied a UAV as the drone small cell and IoT 
sensors to the agricultural model for the monitoring of soil moisture, as shown in Fig. 1. The 
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Fig. 2. (Color online) UAV-assisted wireless IoT sensing connectivity in the coverage area.

objective of this study was to investigate the identification of optimal trajectories for the UAV 
and evaluate the power outage probability versus the transmission rate between the UAV and IoT 
sensors. On the basis of a realistic propagation environment, we considered a new close-form 
derivation for UAV-assisted powered IoT sensing connectivity in such an application.

2. UAV-assisted Wireless IoT Connectivity

2.1 Air-to-ground (A2G) communication model

 We considered a schematic of UAV-assisted wireless IoT sensing connectivity as illustrated in 
Fig. 2, where a UAV collects soil moisture data from IoT sensors within a coverage area of radius 
R. The UAV hovered over the center of the circular area at a height hUAV. We assumed that k IoT 
sensors are randomly located within the UAV coverage area, and that the UAV and all IoT 
sensors were equipped with a single antenna. 
 The A2G communication systems were divided into two communication channels: the 
wireless power transfer or downlink hk from the UAV to all IoT sensors, and the information 
transmission sink or uplink gk, which involve data transmitted from the IoT sensors to the UAV 
or to the drone small cell, respectively. Additionally, we assumed that the IoT sensors do not have 
any prior power supply or charge in their built-in batteries for information transmission, while 
the UAV is equipped with two batteries. One UAV battery is used for flight, while the other is 
used for the wireless module.
 The energy harvesting or the received signal strength at the IoT sensor depends on the 
Log-distance path loss, time of arrival τk, time of data collecting T, and UAV power transmitted 
P0. The received signal strength indicator (RSSI) of the downlink channel is given by
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 The Log-distance path loss between the k sensors and UAV can be expressed as
 

 2k n
k

m
d
κ

= , (2)

where d denotes the distance between the UAV and IoT sensor, n is the path loss exponent, and κ 
is the constant coefficient of the path loss. Herein, we assume that the distance between k IoT 
sensors and the UAV can be determined from the squared Euclidean distance as
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where dk represents the range between k IoT sensors and the center of the UAV coverage zone.
 For the uplink channel, the energy consumption of information transmission from all IoT 
sensors to the UAV can be calculated as
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where η is the efficiency of energy harvesting for the IoT sensors.
 In Eq. (4), a sufficient transmission rate of IoT sensors depends on the power consumption 
from the UAV P0. Thus, the UAV trajectory and IoT location must be investigated. The signal-to-
noise ratio (SNR) λk can be estimated by calculating the relationship between the uplink channel 
power |gk|2 and noise power N0 in the additive white Gaussian noise (AWGN) channel as
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 Thus, the achievable transmission rate (bps) for uplinking k IoT sensors can be written as 

 ( ) ( )21 log 1i kC τ γ= − + . (6)

2.2 Outage probability

 From the A2G communication model, we consider the probability of a closed-form power 
outage versus the transmission rate for the uplink of IoT transmitted data to the UAV and cloud 
network. Then, the close-form outage probability can be written as
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Fig. 3. (Color online) (a) Soil moisture sensor kit and (b) UAV transmitter.
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rewritten as
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3. Experimental Setup

 The structure of a soil moisture kit is shown in Fig. 3(a). The components consist of a 
capacitive soil moisture sensor, an ESP8266 WiFi microcontroller, a voltage regulator, and a 
solar cell. The UAV base station is shown in Fig. 3(b); it is equipped with a wireless transmitter 
module under the body frame of the UAV body. The sensor frequency is based on a 2.4 GHz 
WiFi IEEE802.11g standard, the transmitter power is 100 mW or 20 dBm, and the flight time is 
25 min. 

(a) (b)
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Fig. 4. (Color online) (a) NP11 to NP34 positions and (b) dimension of the Napier grass farm in a satellite map.

Fig. 5. (Color online) (a) RZ11 to RZ35 positions and (b) dimension of the Ruzi grass farm in a satellite map.

Fig. 6. (Color online) Experimental test at (a) the Napier grass farm and (b) the Ruzi grass farm.

 Figure 4(a) shows the layout of the soil moisture sensors along with the drip line irrigation in 
the Napier grass farm. The sensors are installed at a total of 12 positions, and NP11-NP34 
represents the sensor positions. The dimensions of the Napier grass farm are a width of 25 m and 
a length of 45 m, as shown in Fig. 4(b). Figure 5(a) illustrates the layout of soil moisture sensors 
in the Ruzi grass farm, where the sensors are installed at 15 positions labeled RZ11 to RZ35. The 
dimensions of the Ruzi grass farm are a width of 30 m and a length of 50 m, as shown in 
Fig. 5(b). 
 Figure 6 shows the experimental test in the Napier and Ruzi grass farms. We consider the 
UAV trajectory at the center of the field, where the height of the vehicle started at 2 m and was 

(a) (b)

(a) (b)

(a) (b)
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Fig. 7. (Color online) Network architecture.

Table 1
Experiment setup parameters.
Parameters Value
UAV flight time 25 min.
Transmit power 20 dBm
Receiver sensitivity −137 dBm
Modulation FSK
Maximum bit rate 2 kbps
Payload length 4 bytes
Number of IoT sensors in Napeir grass farm 12 sensors
Number of IoT sensors in Ruzi grass farm 15 sensors

raised in 1 m increments until a height of 20 m was reached. The time of data collection per 
point was 1 min on average. 

3.1 Network architecture

 Figure 7 shows the capacitive soil moisture sensor that connects to the ESP8266 WiFi module 
with three lines from the analog interface, such as A0 signaling, GND, and 3.3V. The ESP8266 
communicates with the wireless module on the UAV where the user interface (UI) device of 
each sensor is subscribed in the network server and authenticated in the message queuing 
telemetry transport (MQTT) broker/server. In the next step, the MQTT broker confirms the 
publication information to the application server when the user has already completed 
registration. We note that the network server is based on a cloud network or Google firebase 
platform, and the application server is a Grafana application server for the real-time monitoring 
of mobile applications by which the data are updated every 1 min. Table 1 shows the setup 
parameters. The mobile application shows the level of moisture percentage in the soil: a range of 
1–45% is dry, 46–79% is humid, and 80–100% is wet.
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Fig. 8. (Color online) Power outage probability versus UAV height in the Napier grass farm test.

Fig. 9. (Color online) Power outage probability versus UAV height in the Ruzi grass farm test.

4. Results and Discussion

 The results of the evaluation of power outage probability versus the UAV heights in the 
Napier and Ruzi grass farms are shown in Figs. 8 and 9, respectively. The power outage 
probability ranges from 0–1, which means that the power channel of the transmitter module at 
the UAV communicated with the IoT sensor on the ground. From the close-form formula in 
Eq. (8), the power outage probability depends on the UAV height and the distance to the IoT 
sensor 22

UAV kh d+ . As a result, NP22 and NP23 are the positions with the highest power outage 
probability at 2 m until the UAV height reaches 20 m. The maximum power outage probability 
depends on the coverage area R of the UAV transmitter. While the minimum test points are 
NP34 and NP24, the effect of shadowing by trees attenuates the signaling to these sensors. The 
relative power outage probability results confirm that the communication link between the UAV 
and IoT sensor has a sufficient power channel k kh g⋅  at a height of 20 m.
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Fig. 10. (Color online) Transmission rate versus the power outage probability between UAV and IoT sensors at the 
(a) Napier grass farm and (b) Ruzi grass farm.

 After comparing the power outage probability with the UAV height, we evaluated the 
transmission rates versus the power outage probability, as shown in Fig. 10. The energy-
efficiency of all IoT sensors depends on the power outage probability when the UAV moves 
along the height-defined trajectory. The transmission rates for all IoT sensors were monitored at 
the network server. The NP22 and RZ23 locations were the positions with the highest achievable 
transmission rate considering a power outage probability of 1 when the transmission rate 
guarantees almost the maximum rate. 

5. Conclusions

 We presented an analysis of the performance of UAV-assisted wireless IoT sensors for smart 
farming applications in the case of soil moisture monitoring. The objective of this study was to 
investigate the power channel and transmission rate in different scenarios such as those provided 
by the Napier and Ruzi grass farms. The determination of the closed-form power outage 
probability and transmission rates has been proposed as a means of investigating a reliable 
communication link between the UAV transmitter and all IoT sensors. The proposed method 
enabled us to investigate the energy efficiency of UAV-assisted wireless IoT sensors located in a 
realistic environment. In future work, path loss analysis and propagation delay will be 
considered.
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