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 When using the extended Kalman filter (EKF) to estimate the state of charge (SOC) of 
lithium-ion batteries (LIBs), the noise covariance matrices of system and observation noises for 
energy harvesters are mostly given randomly, which makes it impossible to optimize the noise 
problem. This results in the low accuracy and stability of SOC estimation. To address these 
problems, a method of estimating the SOC of power LIBs based on long short-term memory–
adaptive unscented Kalman filter (LSTM–AUKF) fusion is proposed to improve the accuracy 
and stability of estimating the SOC of LIBs. First, the offline parameters of the Thevenin model 
are identified from the hybrid pulse power characterization (HPPC) experimental data. Then, 
the LSTM structure of the SOC estimation window is constructed for power LIBs, and the 
power battery SOC training network is predicted in real time from the power battery current, 
voltage, temperature, and historical data. Finally, the AUKF algorithm for estimating the SOC of 
power LIBs is designed, then a fusion strategy is proposed. The experimental validation shows 
that the root mean squared error (RMSE), maximum (MAX), and mean absolute error (MAE), 
used to estimate the SOC of the LSTM–AUKF hybrid power lithium battery in the research 
window, are 1.13, 1.74, and 0.39%, respectively. Compared with the window LSTM network, the 
fusion algorithm improves the accuracy and stability of SOC estimation for power LIBs.

1. Introduction

 With the gradual acceleration of national strategic processes, for example, energy substitution 
and the promotion of large-scale new energy consumption, lithium-ion batteries (LIBs) have 
been used in many scenarios because of their high efficiency as energy storage devices.(1,2) 
According to the statistical analysis results of the Starting Point Research Institute, the total 
shipment of LIB worldwide increased by 34% year-on-year in 2020, reaching 259.5 GW·h. 
Global shipments of LIBs are expected to reach 1.1 TW·h by 2025.(3) With the growing global 
market for LIBs, related supporting technologies such as state of charge (SOC) estimation must 
be improved to ensure the popularization and application of LIBs in multiple scenarios. The 
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modeling of power batteries is the basis of SOC estimation, and its importance is self-evident. 
Equivalent circuit models, such as the Partnership for a New Generation of Vehicles (PNGV), 
Rint, and Thevenin models, simulate the external characteristics of a circuit network composed 
of a series of resistors, capacitors, and constant voltage sources. 
 SOC estimation, as one of the main functions of a battery management system (BMS), plays 
an important role in different applications. For example, in the application of electric vehicles, 
accurate SOC estimation is crucial in preventing them from overcharging or depleting power 
and prolonging the battery life. Furthermore, it can promote the industrialization of the process 
of developing electric vehicles.(4,5) For consumer electronic products, the accurate estimation of 
the SOC of LIBs will help users flexibly manage the remaining available time of the battery of 
electronic products and improve user comfort and convenience.(6,7) In energy storage power 
plants, SOC, an important reference indicator for the safety protection of LIB energy storage 
systems, plays a significant role in maintaining the stable operation of the system and ensuring 
the safety of personnel.(8) If the SOC of a LIB energy storage system is not accurately estimated, 
it may lead to overheating, burning, and other accidents of the energy storage battery, and 
ultimately endanger the safe and stable operation of the energy storage plant and even the power 
system. Therefore, methods of estimating the SOC for LIBs have become an important topic in 
battery research.
 In practical applications, the SOC of LIBs is affected by many factors such as the charging 
and discharging currents, the ambient temperature, and self-discharging. It is impossible to 
obtain precise values of the SOC directly. Therefore, for the high-precision estimation of the 
SOC, it is necessary to conduct a comprehensive analysis of various factors that affect the SOC. 
SOC estimation methods for LIBs can be summarized into four types: experiment-based,(9) 
model-based,(10) data-driven,(11) and fusion-based.(12) The first type mainly accurately estimates 
the SOC by measuring battery characterization parameters through experiments. The second 
type estimates the battery SOC by designing an equivalent circuit model of the battery. The third 
type estimates the SOC of the battery by fitting many data and using empirical methods and 
mathematical models. The last type of method, learning from the existing types and integrating 
them to improve the accuracy and efficiency of SOC estimation, is currently a research hotspot.
 The main contributions of this paper are as follows: (1) We study the SOC estimation of an 
N18650CK power lithium battery and propose a fusion algorithm that couples improved particle 
swarm optimization, i.e., LSTM, with the AUKF algorithm. The changes in voltage upon battery 
pulse charging and discharging are obtained under hybrid pulse power characterization (HPPC) 
operating modes, and the impedance parameters of the battery are identified using Ohm’s law. 
(2) The impedance parameters of the battery are identified by using Ohm’s law in combination 
with the changes in voltage upon the pulse charging and discharging of the battery under HPPC 
operating conditions, and then an LSTM power battery estimation model is constructed. (3) The 
experimental validation shows that the root mean squared error (RMSE), maximum (MAX), 
and mean absolute error (MAE), used to estimate the SOC of the LSTM–AUKF hybrid power 
lithium battery in the research window, are 1.13, 1.74, and 0.39%, respectively. Compared with 
the window LSTM and LSTM–EKF networks, the fusion algorithm considering extreme 
temperatures improves the accuracy and stability of SOC estimation for power LIBs.
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2. Establishment of Battery Model

2.1 Analysis of battery equivalent model

 An effective battery model is a basis for the accurate estimation of the SOC. Wu et al. found 
that the second-order RC equivalent circuit model can effectively reflect the physical and 
chemical changes in the battery at a low calculation cost,(13) which meets the requirements of a 
BMS. Therefore, the Thevenin second-order equivalent circuit model illustrated in Fig. 1 is used.
 The double parallel RC links are used to simulate the hysteresis effect caused by the 
electrochemical and concentration polarizations of the lithium battery. The internal resistance of 
the power lithium battery is R0 and the electrochemical and concentration polarization internal 
resistances are R1 and R2, respectively. The open-circuit voltage (OCV) electromotive force is Et, 
the observation terminal voltage is Ud, and the battery electrochemical pole and concentration 
polarization voltages are U1 and U2, respectively. The electrochemical and concentration 
polarization capacitances are C1 and C2, respectively, the available capacity of the battery is Qn, 
the working current of the battery is Id, the charge–discharge efficiency is η, the operation time 
is t, and the current SOC is SOC(t). According to Thevenin’s theorem, a system of state transfer 
equations for power batteries can be obtained as follows.
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Fig. 1. Thevenin second-order RC equivalent circuit model.
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Fig.	2.	 SOC–OCV	fitting	curve.
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 ( ) ( ) ( ) ( )1 2 0i OCVU t U U t U t R i t= − − − ⋅  (3)

	 For	further	discretization	of	Eqs.	(1)–(3),	we	set	the	sampling	interval	as	ΔT to obtain
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2.2	 Identification	of	battery	model	parameters

 In the equivalent circuit model, the SOC–OCV characteristic curve of the battery model can 
only be determined only after R0, R1, R2, C1, and C2 are determined. The system uses an 
N18650CK power lithium battery with a rated capacity of 30 Ah. In this study, a constant-
current pulse discharge is used to identify battery parameters.(14)

 The experiment is carried out under the condition that the ambient temperature is kept at 
25	℃.	In	the	experiment,	discharge	occurs	at	a	rate	of	1	C	per	15	min,	then	the	equipment	is	left	
to stand for 40 min. The SOC and OCV values obtained by the experiment are fitted by the 
CFTOOL tool in MATLAB, and the best fit is obtained using a fifth-order polynomial. Figure 2 
shows the SOC–OCV characteristic curve.
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Fig. 3. One complete pulse discharge process.

 The fifth-order polynomial of the SOC–OCV characteristic curve is defined as

 5 4 3 223.15 18.69 6.275 152 1.28 2.24.OCVU SOC SOC SOC SOC SOC= ⋅ + ⋅ − ⋅ − ⋅ + ⋅ +  (7)

 The parameters R0 and RC in the internal resistance of the model should be identified in 
combination with the response process of the pulse discharge under different SOCs. Figure 3 is 
the voltage response diagram of a pulse discharge, where A →	B is the static state, B	→	D is the 
discharge process, and E	→	F is the zero-state response of the voltage at the end of the discharge. 
For the charge process shown in Fig. 3, we have the following equations.
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3. SOC Estimation Method Based on LSTM–AUKF Fusion

 The two main implementation steps of the LSTM–AUKF fusion algorithm are as follows. 
(1) Build a window LSTM-based SOC estimation network for power LIBs and optimize the 
structure and parameters. (2) Build equivalent circuit models, design the AUKF algorithm and 
window LSTM network, and design the fusion strategy. 

3.1	 SOC	prediction	network	based	on	window	LSTM

 Since the measured data (terminal voltage Ud, working current Id, and surface temperature 
Td) and output SOC of the power lithium battery are related to the historical data and current 
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state, a deep learning network with a circular structure is suitable for SOC estimation.(15) The 
LSTM network has the characteristics of transmitting the current and memory states.(16) 
Compared with the static neural network, a cyclic structure containing LSTM nodes is more 
helpful in extracting the characteristics of the battery time series. Figure 4 shows the architecture 
of the SOC estimation algorithm for power LIBs in the LSTM window network. A power battery 
SOC estimation algorithm framework for the window LSTM network is constructed on the basis 
of the characteristics of the battery input and output data and the LSTM nodes. We use the 
window LSTM loop neural network, which mainly consists of four parts, the input, circular, 
fully connected, and output layers, to estimate the SOC of a power lithium battery. The terminal 
voltage Ud, working current Id, and surface temperature Td are used as inputs, and the output is 
the SOC of the power lithium battery.
 The recursive length is set as LR, the number of hidden nodes in the network is Nh, and the 
estimated value at iteration k is LSTM

kSOC . The terminal voltage Ud(k), current Id(k), and 
temperature Td(k) of the power battery are measured at the k-time moment. The input vector x(k) 
of the power battery at the k-time moment is [Ud(k), Id(k), Td(k)]T. The standardized input vector 
is x'(k). The window LSTM network input matrix χ(k) and the network output value γ(k) are 
defined as

 ( ) ( ) ( ) ( )1 , 2 , .k x k x k x kχ λ λ′ ′ ′ = − + − +   (9)

Fig. 4. Architecture diagram of SOC estimation algorithm for power LIBs in window LSTM network.
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Here, each node in the fully connected layer is connected to the output of the cyclic node in the 
circular layer, and the time series feature information in the cyclic network layer is extracted. 
The number of nodes is LR × Nh. The output layer is a single node that outputs LSTM

kSOC , which 
is predicted from the SOC at time k. The input layer is a fully connected node, and the number of 
nodes in the input layer is LR × Nh. Fully connected nodes receive input vector information at 
each time. The loop layer consists of multiple loop nodes. We set the number of hidden nodes in 
the network to Nh and the recursive length of the loop to LR. At the same time, to improve the 
accuracy of the network, the generalization ability and convergence speed of the algorithm 
should be improved via data standardization and grouping, loss function optimization, and 
hyperparameter optimization.(17)

3.2 AUKF-driven estimation algorithm

 The state and observation vectors at time k in the system state equation are set to Xk and Yk, 
respectively; the input variable at time k is uk. Moreover, the system, control, observation, and 
feedforward matrices are H, I, K, and M, and the process and measurement noises are α(k) and 
β(k), respectively. Therefore, the discretized expressions for the state transfer and observation 
equations of the system are respectively defined as

 ( )1 1 ,k k kX H X I u kα− −= ⋅ + ⋅ +  (10)

 ( )1 1 .k k kY K Y M u kβ− −= ⋅ + ⋅ +  (11)

 We set the expectation of state quantity Xk at time k as k kX  for the AUKF algorithm and the 
dimension of the state quantity as nσ. We let the distribution of 2nσ + 1 points form matrix k kX σ , 
then the observation quantity kYσ  of k kX σ  can be calculated using Eqs. (10) and (11). The error 
covariance matrix at time k is k kP , then k kX σ  is expressed as

 ( ) ( ), , .k k k k k k k k k k k kX X X n P X n Pσ
σ σλ λ = + + − +    (12)

 The noise of the system model is unknown and changes over time. Therefore, the Sage–Husa 
adaptive algorithm is introduced into the AUKF algorithm, which updates the noise parameters 
qk, Qk, rk, and Rk in the UKF algorithm in real time to improve the accuracy of SOC estimation. 
The distribution formed by the 2nσ + 1 points achieves forward recursion, and the forward 
recursive state variable 1k kX σ

+ and observation 1k kYσ
+ are obtained as

 
1

1

.
kk k k k

k kk k

X H X I u

Y K X M u

σ σ

σ σ

+

+

 = ⋅ + ⋅


= ⋅ + ⋅

 (13)



1708 Sensors and Materials, Vol. 35, No. 5 (2023)

3.3 LSTM forecast and AUKF strategy fusion

 This section presents a fusion strategy to optimize the accuracy and stability of SOC 
estimation for power LIBs by analyzing the characteristics of the LSTM depth network and  
AUKF algorithm. 

3.3.1	 LSTM	network	prediction	and	AUKF	algorithm	characteristics

 The window LSTM deep learning network is used to estimate the SOC of LIBs. It can extract 
multi-time slice information features, but it uses open-loop forward transmission without 
feedback correction. When the battery is aging or the internal resistance increases, the SOC 
estimations are prone to large errors. In practice, the estimated values fluctuate frequently. In 
contrast to the EKF algorithm, the AUKF algorithm is based on one-step prediction, it is a one-
step correction method, and it uses the mean value of the σ-sampling point set of 2nσ + 1 state 
variables in the unscented transform in the equivalent circuit model mapping to replace the prior 
recursive state of the EKF. This is helpful for reflecting the probability density distribution of 
state variables after nonlinear mapping. However, if the AUKF algorithm is used to estimate the 
SOC of a powerful lithium battery, the following problems may also exist. (1) In the case of 
complex working conditions, i.e., large and frequent changes in input information, the AUKF 
algorithm is prone to generating large estimation errors of the SOC so that the algorithm does 
not converge. (2) When the error of the initial value of the SOC is large, the algorithm easily 
becomes nonconvergent or the covariance matrix cannot be decomposed.

3.3.2	 LSTM	network	training	and	filtering	algorithm	fusion

 To improve the fusion effect of the window LSTM network and AUKF algorithm, two 
optimization strategies are proposed. Figure 5 shows the integration strategy of the window 
LSTM network and AUKF algorithm, which includes two steps: (1) the window LSTM network 
is used to estimate LSTM

kSOC . (2) Cholesky decomposition and adjustment, i.e., Cholesky 
decomposition adjustment, are used to improve the fusion effect.

4.	 Operation	Mode	Test	and	Experimental	Analysis

4.1	 Test	platform	and	experimental	objects

 In this study, an N18650CK power lithium battery is used as the research object. The main 
performance parameters of a single battery are shown in Table 1. A test platform is set up to test 
the battery under various operating modes. The platform consists of a thermostat, a battery test 
device, and a computer, as shown in Fig. 6. The thermostat can provide a range of test 
temperatures	of	−20–80	℃.	The	battery	testing	equipment	has	a	variety	of	working	modes,	such	
as cross-current charging and discharging, shelving, cycling, and simulation steps. The charging 
and discharging currents of the battery are controlled by BTS7.6.0 software to simulate the mode 
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Table 1 
Performance parameters of battery.
Description Value
Size (mm2) 18 × 65
Nominal capacity (mAh) 1500
Nominal voltage (V) 3.2
Charge	cutoff	voltage	(V) 3.65
End-of-discharge voltage (V) 2.5
Ohmic	internal	resistance	(Ω) 28
Discharge maximum continuous current (A) 2
Working	temperature	(℃) 25

Fig.	5.	 Overall	flow	chart	of	SOC	estimation	method	 for	power	 lithium	battery	based	on	LSTM–AUKF	fusion	
algorithm.

of the battery at different temperatures and under different driving conditions, and to record the 
current and voltage data of the battery at the same time.
 Charging and discharging devices are mainly used to control the charging and discharging 
powers and currents of the battery. The current, voltage, power, and other parameters of the 
monitored battery are transferred to the upper computer system through a local area network. A 
temperature and humidity control box is used to set the ambient temperature in the experiment, 
which enables the battery to be tested under the required ambient temperature and humidity 
conditions to ensure the validity of the test. The upper computer system is used to detect and 
record the changes in various parameters of the battery and the sampling time. For the SOC–
OCV test and multi-condition random charge and discharge simulation of different battery 
levels, the test equipment of the corresponding level should be configured to measure the test 
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data of battery working condition feedback. For power lithium battery levels, the corresponding 
equipment should be configured.

4.2	 Calibration	of	SOC–OCV–T	functional	relationships

 In batteries, one OCV value corresponds to one SOC value; thus, obtaining the relationship 
between them plays an important role in the estimation of the SOC for batteries. The selected 
batteries are tested under SOC–OCV operating modes, and the SOC–OCV relationship is 
obtained from the OCV. The average OCV in the charge and discharge directions under the 
same SOC value is obtained, and then the SOC–OCV relationship curve is fitted with a sixth-
degree polynomial. When the batteries are fully charged, pulse discharge tests are performed at 
a	discharge	rate	of	0.5	C	and	temperatures	of	0,	25,	and	45	℃.	The	SOC–OCV–T	relationship	
shown in Fig. 7 is plotted using the data collected from the experimental equipment. The SOC–
OCV relationship varies with the temperature. This indicates that battery characteristics are 
affected by temperature, which in turn affects the SOC estimation.

4.3	 Experiments	and	data	analysis

4.3.1 SOC estimation error

 To verify its estimation accuracy, the LSTM–AUKF algorithm is compared with the UKF 
algorithm under different operation modes. The initial SOC value used in the algorithm is 80% 
and the actual SOC is 90%. Figure 8 shows a comparison of different algorithms for estimating 

Fig. 6. (Color online) Experimental test platform.
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Fig. 7. (Color online) SOC–OCV–T relationship.

Fig. 8. Comparison of SOC under DST operating conditions. (a) SOC estimation results. (b) SOC estimation error.
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the SOC under dynamic stress test (DST) operating conditions. It can be seen that the estimation 
accuracy of the two algorithms decreases with increasing depth of the discharge. Overall, the 
LSTM–AUKF algorithm has superior accuracy, stability, and convergence of estimation to the 
UKF algorithm; thus, it more closely reflects the true SOC value. The RMSE values of the UKF 
and LSTM–AUKF algorithms are 1.58 and 2.01%, respectively. Figure 9 shows a comparison of 
the two algorithms for estimating the SOC under Federal Urban Driving Schedule (FUDS) 
operating conditions. It can be seen that the estimation errors of the two algorithms are relatively 
small under complex modes. However, the difference between the estimated SOC value obtained 
by the LSTM–AUKF algorithm and the real SOC value is smaller than that for the UKF 
algorithm. When the initial SOC deviates from the real SOC, the estimated SOC more rapidly 
converges to the actual value for the LSTM–AUKF algorithm. The estimation results show that 
the LSTM–AUKF algorithm has a significantly higher performance than the UKF algorithm. 
The RMSE values of the UKF and LSTM–AUKF algorithms are 1.82 and 1.02%, respectively. 
From Figs. 8 and 9, the LSTM–AUKF algorithm has a higher performance than the UKF 
algorithm in terms of estimation accuracy, convergence, and stability when the initial SOC is 
biased and the system noise is unknown. In addition, the LSTM–AUKF algorithm controls the 
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Table 2 
Comparison	of	convergence	times	for	different	algorithms	with	different	SOC	initial	errors.
Initial error (value) 
of SOC (%)

Optimization window 
LSTM (s)

Optimization window 
LSTM–EKF (s)

Optimization window 
LSTM–AUKF (s)

5 (95) 108 96 32
10 (90) 124 115 39
15 (85) 169 132 46
20 (80) 175 181 47

Fig. 9. Comparison of SOC under FUDS operating conditions. (a) SOC estimation results. (b) SOC estimation 
error.

RMSE value to less than 1.1%. These results clearly verify the advantageousness of the LSTM–
AUKF algorithm in SOC estimation.

4.3.2 Convergence time for SOC estimation

 The convergence time Tr values of different fusion algorithms are next tested for different 
errors of the initial SOC value (the true SOC is 100% and the initial value is set to 95, 90, 85, or 
80%). When the initial SOC errors are 5, 10, 15, and 20%, the Tr values of the optimization 
window LSTM–AUKF algorithm are 32, 39, 46, and 47 s, respectively. These values are 76, 85, 
123, and 128 s smaller than those of the optimization window LSTM–EKF algorithm and 64, 76, 
86, and 134 s smaller than those of the optimization window LSTM–EKF algorithm. Therefore, 
Tr is smallest for the optimization window LSTM–AUKF algorithm, and this algorithm 
performs higher than the other two algorithms for different initial SOC errors (Table 2).

5. Conclusions

 This paper presents a method of estimating the SOC of power batteries that is based on the 
LSTM–AUKF fusion algorithm. The main contribution of this study is the construction of a 
method of estimating the SOC of LIBs using the optimization window LSTM–AUKF fusion 
algorithm. By analyzing the characteristics of the window LSTM depth network and AUKF 
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algorithm, the optimization window LSTM–AUKF fusion algorithm is proposed. It is divided 
into two key steps: an optimization window LSTM–AUKF fusion algorithm for LSTM network 
estimation and Cholesky decomposition adjustment for windows, which can improve the 
estimation accuracy of the SOC. We built a platform to test the SOC estimation of a power 
battery under charging and discharging conditions, and we compared the SOC estimation error 
and convergence time between different algorithms. Experimental results show that the RMSE, 
MAX, and MAE of the proposed optimization window LSTM–AUKF algorithm are 1.13, 1.74, 
and 0.39%, respectively. Compared with the LSTM and LSTM–EKF estimation algorithms, the 
LSTM–AUKF estimation algorithm clearly has superior performance in terms of MAX and 
MAE as well as a short convergence time.
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