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 In tool wear monitoring, the environment for signal collection is always complex, which 
leads to insufficient signal state samples and unbalanced category labels. Moreover, the hidden 
state features extracted by neural networks in conventional methods are mixed together, 
resulting in the low prediction accuracy of tool wear. Therefore, a tool wear prediction method 
based on an attention long short-term memory (LSTM) network with data imbalance is 
proposed. First, a generative adversarial network (GAN) is used to improve the imbalance of 
state category labels and expand data samples. Then, an extended data sample is used as the 
input of the stacked sparse autoencoder network (SSAE) to adaptively extract features, and the 
k-nearest neighbor classifier is used to identify the different stages of tool wear. Finally, on the 
basis of the state identification results, the time series features with different tool expansion data 
samples are extracted and input into the attention LSTM network to map the tool wear values for 
different tool wear processes. The experimental results show that the proposed method can 
improve the imbalance of category labels, increase the selection of more informative components 
in sequence data, and obtain excellent prediction accuracy and generalization.

1. Introduction

 As the key component of computerized numerical control machine tools, cutting tools play a 
crucial role in the processing quality and accuracy of machined parts. According to statistics, 
20% of the total downtime of machine tools is caused by tool failure.(1) Therefore, to improve 
tool utilization and reduce the failure rate during the machining process, a reliable tool wear 
status monitoring method is necessary.
 Currently, there are two popular methods of monitoring tool wear: direct and indirect.(2) The 
direct method evaluates tool wear by directly measuring the change in physical properties such 
as the tool’s volume and mass. It is possible to determine the state of tool wear, but the direct 
monitoring method is susceptible to machining conditions (e.g., light, cutting fluid, and material 
debris) and requires downtime for inspection. Moreover, the optical measurement equipment is 
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always expensive and complex to install. On the other hand, the indirect monitoring method only 
needs one or more sensors to collect the cutting force, vibration, acoustic emission, current, and 
other signals during the cutting process of the tool, which has become the mainstream method of 
tool wear monitoring. In addition, the development of machine learning offers a wider scope for 
the intelligent monitoring of tool wear. Wu et al. used a data-driven random forest network to 
predict tool wear values and evaluated the algorithm’s performance using mean square error, 
variance, and training time on a dataset of 315 milling experiments.(3) Meng et al. collected 
multisensor signals and established a gravitational search algorithm back propagation neural 
network tool wear monitoring model to improve the prediction accuracy of tool wear.(4) Wang et 
al. proposed a tool-remaining-life prediction method with multichannel signal fusion and 
Bayesian updating, which solved the problems of high fluctuation of single sensor prediction 
accuracy and low reliability.(5) Deep learning has become an indispensable “medium” for tool 
monitoring research in recent years because of its end-to-end learning characteristics and the 
ability to adaptively mine deep data features. Huang et al. constructed an adaptive multidomain 
feature fusion tool online monitoring model based on deep convolutional neural network, which 
solved the problems of the low efficiency and accuracy of manual feature fusion monitoring.(6) 
Ou et al. combined online sequential extreme learning machine and stacked denoising 
autoencoder networks to develop a tool wear state identification model and proved the 
effectiveness of the developed model using spindle current.(7) Wang and Zhou used a stacked 
autoencoder to extract features and used long short-term memory network to solve time series 
problems under different working conditions, realizing the prediction of tool wear.(8) These tool 
wear modeling approaches have improved tool wear prediction and identification accuracy 
considerably, but the following problems still remain.
(1) The tool wear signal acquisition environment is usually characterized by complex working 

conditions, which result in limited signal state samples and insufficient number of samples. 
In the case of high dimension and loss ratio, the tool category label is unbalanced, resulting in 
the poor recognition and prediction of tool wear state, so that the tool cannot be fully utilized. 
In view of this, the modeling methods need to be improved.

(2) Tool wear is predicted according to the original signal characteristics and its nonlinear 
mapping relationship, so the features are mixed together. While the features closely related to 
tool wear are not strengthened, the characteristics less related to tool wear are not weakened, 
resulting in a considerable difference between the predicted and actual tool wear values.

 To address these problems, a tool wear prediction method based on the attention long short-
term memory (LSTM) network with data imbalance is proposed in this study, which can expand 
tool wear data samples, balance the category label of wear stage, and extract the important time 
series information of the wear process. First, a generative adversarial network (GAN) is used to 
expand the data samples, which solves the problem of insufficient data samples and unbalanced 
category labels due to the complex processing conditions. Through the “zero sum game” of the 
generator and discriminator, a data signal highly similar to the original cutting signal is 
generated. Second, the extended data is divided into training set and test set according to the tool 
wear stage, and the divided data set is input into the stacked sparse autoencoder network (SSAE) 
network for adaptive feature extraction. Then, the extracted deep data features are used to 
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identify the state using the k-nearest neighbor classifier. Finally, on the basis of the results of 
state recognition and accuracy, we extract feature vector sequences from the enhanced samples 
and input them into the attention LSTM network to achieve accurate prediction of tool wear.

2. Methods

 In this study, a tool wear prediction model is established with data imbalance by combining 
the GAN and attention LSTM network. The model framework is shown in Fig. 1. The model is 
divided into three stages and includes the following three steps:
(1) Data augmentation, the GAN is used to enhance the cutting force signal samples of tool wear.
 A limited sample of tool wear cutting force data is extracted, and the extracted data is fed 

into the GAN to generate new sample data, then the generated data is combined with the real 
data to form the required sample data.

(2) State recognition using the SSAE network to identify tool wear state.
 The data generated by the GAN is fed into the SSAE network to mine the data features. 

Afterwards, the feature vectors with high characterization capability are selected, and 
dimensionality reduction is performed using the SSAE network.(9) In addition, the features of 
dimensionality-reduced data are fed into the k-nearest neighbor classifier to achieve the 
accurate identification of tool wear states with unbalanced data.

(3) Tool wear prediction using the attention LSTM network to predict tool wear.

Fig. 1. (Color online) Framework of tool wear prediction model for data enhancement attention mechanism.
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 According to the results of state recognition, the features (time domain and frequency domain 
features) of data samples expanded by the GAN are extracted, and the feature vector sequence 
is processed by feature normalization technology. Then, the extracted features are input into 
the attention LSTM network to map the relationship between the signal and the tool wear 
value. Finally, the tool’s wear values in different cutting processes are obtained.

3. Theory

3.1 Generative adversarial network

 The GAN is an unsupervised learning paradigm that combines game theory ideas with 
machine learning to train the distribution of data feature samples through effective confrontation 
between network models, which in turn results in data features as close to the real ones as 
possible.(10) The GAN structure is shown in Fig. 2.
 The GAN consists of a discriminator (D) and a generator (G), forming a dual network 
structure. Random noise z is fed into G, and by learning from real samples, the input noise is 
mapped to generative samples similar to the real samples by multilayer upsampling. The input of 
D is either the true sample x or the generative sample G(z), and after multiple layers of feature 
extraction, the output probability D(x) represents the magnitude of the probability that the input 
sample belongs to the true sample. During the training process, G and D are trained alternately. 
Through the adversarial learning between them, D cannot distinguish the source of the data. The 
objective function is defined as

 
( ) ( )

min max ( , ) [log(1 ( ( )))] [log( ( ))]
z z r xz P x PG D

V G D E D G z E D X− −= − + , (1)

where ( )r xP  and ( )z zP  are the true sample distribution and Gaussian distribution, respectively.
 At each iteration of the training process, G is first fixed, and D is trained to distinguish the 

Fig. 2. (Color online) GAN structure.
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source of the input data, thereby obtaining a binary classifier. Then, D is fixed, and G is trained 
so that the generated data is close to the real data. The alternating iteration maximizes the error 
of the other side, and G can estimate the distribution of real data through confrontation to make 
up for the absence of real data.(11)

3.2 Long short-term memory network

 The acceleration signal data used in this study is a type of time series, which reflects the 
changing trend of tool wear with processing time. Therefore, it is suitable to use LSTM for time 
series prediction.(12) LSTM is derived from a recurrent neural network, which has more 
advantages in dealing with long time series problems than a general recurrent neural network. 
LSTM introduces the addition operation into the network through gate control, which solves the 
gradient problem and short-term memory problem of the recurrent neural network to a certain 
extent. The data flow and transmission process are shown in Fig. 3.
 On the basis of input xt at the current moment and the output ht1 at the previous moment, the 
self-circulating weights in the forgetting gate control unit are used to control the update of the 
memory unit:

 1( [ , ] )T
t f t t ff W h x bσ −= ⋅ + . (2)

The weight of input gate control unit information inflow is as follows:

 1( [ , ] )T
t i t t ii W h x bσ −= ⋅ + . (3)

On the basis of oblivion gate and the input gate, the internal state of the unit is updated as 

Fig. 3. (Color online) Long short-term memory network structure.
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 tanh( [ , ] )T
t C t t CC W h x b−= ⋅ + , (4)

 1t t t t tc f C i C−= × + × . (5)

The output gate control unit output weight is 

 ( [ , ] )T
t o t t oO W h x bσ −= ⋅ + . (6)

From the output gate and internal state of the unit, the final output of the LSTM unit is as 

 tanh( )t tth O c= × , (7)

where the σ is the activation function that maps the value of the gating unit to between 0 and 1. 
bf, bi, bo, and bC are the bias terms, and T

fW , T
iW , T

oW , and T
CW  denote the weights.

3.3 Attention mechanism

 The attention mechanism is an indispensable part of deep learning methods. It can not only 
automatically focus on the relevant information of network input features but also adaptively 
combine high-dimensional features. Moreover, it can select the most suitable features for the 
current task. This can reduce the difficulty of network hyperparameter selection, improve the 
adaptability of the network, and save on computing resources.
 There are generally two ways to implement the attention mechanism in the LSTM network. 
The first is to add an attention mechanism before the LSTM network layer. The input sample 
passes through the attention mechanism layer before entering the LSTM network layer. This 
implementation essentially adds a feature attention layer, which makes the model pay more 
attention to the input features that have a significant impact on tool wear and give them higher 
weights, thereby ensuring that the wear value prediction is more accurate. The second 
implementation is to add an attention mechanism after the LSTM network layer. The hidden 
state output after the LSTM network layer does not directly enter the output layer but first enters 
the attention mechanism layer. After the LSTM network layer, each time step of the time series 
generates a hidden state. The degradation information learned by LSTM is included in these 
hidden states, and then different weights are assigned to each hidden state to ensure that the 
model learns more information related to degradation. Therefore, in this study, we add an 
attention mechanism to the output layer.(13)
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4. Experimental Setup

 To prove the effectiveness of the tool wear monitoring model based on the attention LSTM 
network with conditions of data imbalance, the high-speed milling tool wear data set shown in 
PHM 2010 is used in this study. The experiment is carried out on a high-speed computer 
numerical control (CNC) milling machine, the cutting tool is a three-flute ball nose tungsten 
carbide cutter, and the workpiece is an HRC 52 stainless steel plate.(14) The experimental 
platform is shown in Fig. 4.
 The three-component dynamometer Kistler 81552 is installed on the experimental platform to 
collect the cutting force signals in three directions during the milling process, the Kistler 8636C 
piezoelectric accelerometers collect the vibration signals in three directions during the milling 
process, and the Kistler 9265B acoustic emission sensor collects the acoustic emission signals 
during the milling process. A total of seven-dimensional channel signals are formed. The 
experimental equipment and experimental processing parameters are shown in Tables 1 and 2, 
respectively.
 The output signal of the sensor is amplified by a Kistler charge amplifier and collected by NI 
DAQ PCI 1200. In the experimental machining, the feed rate of each tool is 0.001 mm. The tool 

Fig. 4. (Color online) Experimental table.

Table 1 
Experimental equipment.
Vertical 
CNC 
machines

Force sensors Vibration 
sensors

Acoustic 
emission 
sensors

Amplifiers
Digital 
mining 

equipment

Wear 
measurement 

equipment
Milling tools

Roders 
Tech 
RFM760

Kistler three-
component 

dynamometers

Kistler 
three-axis 

acceleration 
sensors

Kistler 
acoustic 
emission 
sensors

Kistler 
charge 

amplifier

NI DAQ PCI 
1200 LEICA MZ12

Ball end 
carbide 
milling 
cutters
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backface wear was measured offline using a LEICA MZ12 microscope after the tool had 
completed 108 mm of face milling in the X-direction. Each tool measurement yielded 315 tool 
wear values, each corresponding to a raw signal of the (n,7) tensor. To predict the tool wear value 
more accurately, the data of the first 6000 sampling points of the unbalanced cutting force signal 
after each cutting was expanded. The expanded data samples were extracted according to the 
correlation coefficient method. The calculation formula is 

 
1

1( , )
1

N
i A i B

A Bi

A BA B
N

µ µ
ρ

σ σ=

   − −
=    −    

∑ , (8)

where ρ is the degree of correlation between A and B, with a value between −1 and 1.
 With |ρxy| 

≥ 0.95 as the screening standard, 20 qualified characteristic parameters were 
preliminarily screened out of all the characteristic parameters.(15) There are 14 qualified 
characteristic parameters in the time domain and six qualified characteristic parameters in the 
frequency domain. A 60-dimensional feature can be obtained in three directions and used as the 
initial feature data set. The specific characteristic indicators are shown in Table 3.

5. Results and Discussion

5.1	 Status	identification

 The accurate identification of tool wear state is an indispensable part of tool wear prediction. 
First, the quality of extended data can be judged through state recognition, and second, the 
accurate identification of tool wear status directly affects the prediction of tool wear values.
 According to the characteristics of tool wear, the process of tool wear is divided into three 
stages: initial wear, medium wear, and later wear. The three wear stages are represented by 
labels “1”, “2”, and “3”, respectively. In this study, according to the actual wear process of the 
tool, the 1–50 tool passes are categorized into the initial wear phase, the 51–200 tool passes are 
categorized into the medium wear phase, and the 201–315 tool passes are categorized into the 
later wear phase.(16) Finally, the wear samples for each tool are categorized as shown in Table 4.

5.1.1 Data enhancement 

 Tool monitoring generally uses the raw signals collected by sensors as input to the network 
features to identify and predict the tool wear status. Almost all deep learning networks require a 

Table 2 
Experimental processing parameters.

Spindle speed
(r/min)

Feeding speed
(mm/min)

Depth of cut 
in Y direction 

(mm)

Z-directional depth 
of cut (mm) Milling method Cooling 

method
Workpiece 

material

10400 1555 0.125 0.2 Smooth milling Dry cutting Stainless 
steel HRC52
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large amount of data for training; however, if the network training sample data is insufficient, 
the model training will be over-fitted, reducing the training accuracy of the model. In the 
practical machining process, the environment for signal collection is always complex, and the 
whole process monitoring signal of tool wear is difficult to collect, which leads to most of the 

Table 3 
Characteristic indicators.
Serial 
number Feature name Expression Serial 

number Feature name Expression

1 Peak to peak ( ) ( )max mini iA x x= − 11 Peak index
R

AC
X

=

2 Variance ( )22

1

1 N

i
i

s x x
N =

= −∑ 12 Pulse index ( )max
X

i

i
P

A

x
X

=

3 Mean value
1

1 N

i
i

x x
N =

= ∑ 13 Tolerance index
( )max

X
i

i
M

x
R

=

4 Skewness
3

1i
S

N

i

C
N

x
==
∑ 14 Kurtosis index 4K

R

KX
X

=

5 Kurtosis
( )4

4
1

1 N
i

i

x x
K

N S=

−
= ∑ 15 Mean frequency

1

1 k

x k
k

f x
k =

= ∑

6 Mean square 
value

2

1

1 N

RMS i
i

X x
N =

= ∑ 16 Frequency second-
order distance

( ) ( )

( )

2
1

1

m

k
k

S N
k

f k x k
f

f k
=

=

×
= ∑

∑

7 Square root 
amplitude

2

1
( )

N i

i

x
R

N=

= ∑ 17 Standard deviation 
frequency

2
1( )

1d

k
k xk

S
x f

f
k

=
−

=
−

∑

8 Root mean 
square value

2

1

1 N

R i
i

X x
N =

= ∑ 18 Kurtosis frequency
( )

4
1

1
b

k
k x

S
k RMS

x f
f

k f=

−
= ∑

9 Absolute 
mean

1

N
i

A
i

x
X

N=

= ∑ 19 Root mean square 
frequency

2
1

k
kk

RMS

x
f

k
== ∑

10 Waveform 
index

R

A

XW
X

= 20 Center frequency 1

1

k
k kk

c k k
kk

f x
f

x
=

=

=

×
= ∑

∑

Table 4 
Classification of wear stages.
Wear phase Initial wear Medium wear Later wear 
Number of tool walks 1–50 51–200 201–315
Wear and tear labels 1 2 3
Feature size 50 × 60 150 × 60 115 × 60
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tool monitoring models being developed with small sample data or unbalanced data. Therefore, 
to solve the problem of limited tool wear sample data and unbalanced state labels, the GAN is 
used to generate more recognizable tool wear category label samples. These high-resolution 
generated sample data are used for the expansion and improvement of unbalanced and small 
sample training data sets. Then, the SSAE network is used to reduce the dimensionality of the 
generated data samples and mine features. Finally, these features are input into the k-nearest 
neighbor classifier to realize the state recognition with the unbalanced data state of the tool.
 First, 6000 original cutting force signals of each tool are extracted from the 315 original 
signals of the C1, C4, and C6 tools as the input of the GAN. Through the iterative cycles of G and 
D in the GAN, which counterbalance each other so that the simulated data obtained by the 
generator can be infinitely close to the real data and the discriminator cannot identify the source 
of the input data, the model training achieves the desired goal. At the end of the continuous 
adversarial training of the network model, new samples with a similar distribution to the input 
samples are obtained, thus enabling the expansion of the training samples. The GAN adopts a 
three-layer coding and three-layer discriminant structure. The functions used are all sigmoid 
functions, so that the node output falls within the (0,1) interval. The numbers of three-layer 
coding nodes are as follows: the first layer is 120, the second layer is 240, and the third layer is 
480. The numbers of nodes in the three-layer discriminant structure are as follows: the first layer 
is 240, the second layer is 120, and the third layer is 1. Finally, 12000 original data samples of 
cutting force in three directions are generated, and a total of 315 × 3 × 12000 sample data points 
are generated in 315 cutting processes. The generated sample data is used as the input of the 
SSAE network.

5.1.2	 State	identification

 The 1st, 150th, and 315th tool walking cutting force enhancement data points were selected 
as inputs to the SSAE network, where the ratio of the training set to the test set of the selected 
data was 7:3. The SSAE network uses a three-layer network structure and selects the sigmoid 
function as the encoding and decoding function of the automatic coding network. The number of 
iterations is set to 1000, and the sparsity parameter is 0.01. In addition, the first, second, and 
third hidden layer nodes are set to 100, 20, and 1, respectively. The tool wear features determined 
by the adaptive feature extraction of the SSAE network are input into the k-nearest neighbor 
classifier for state recognition. Finally, the t-distributed stochastic neighbor embedding (T-SNE) 
visualization technology is used to visualize the identified state features. The three tool 
classification results are visualized as shown in Fig. 5.
 From the visual map, the three wear stages of a tool, namely, initial wear, medium wear, and 
later wear, can be clearly seen; all the stages can be well separated, and the clustering effect of 
the three wear states is clear. The confusion matrix used to represent the recognition results is 
shown in Fig. 6.
 For the three tools of C1, C4, and C6, the average accuracies of state recognition in the X, Y, 
and Z directions reached 96.3, 96.0, and 95.3%, respectively. From the recognition accuracy, it 
can be proved that the original data of cutting force enhanced by the GAN can achieve a good 
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recognition effect, improve the data imbalance, and expand the data samples with insufficient 
and missing samples. The data enhanced by the GAN can be used as tool wear samples to 
predict the wear value.

5.2 Tool wear prediction

 Through the accurate identification and classification of the omit tool wear stage, it can be 
clearly seen from the figure that the clustering effect of each state in different phases of tool 
wear is very good. In addition, the average accuracy of the expanded data classification is more 
than 95.3%. That is , the expanded data sample can be used as the wear signal to map the tool 
wear value. Since the regression model cannot process sequence data, feature extraction is 
required first. According to the correlation coefficient method, 20-dimensional feature vectors 
are selected from the expanded data and input into the linear regression model to predict the tool 
wear value.
 In this study, the attention mechanism is incorporated in the output layer of the LSTM 
network for the prediction of tool wear values. After extracting features from the enhanced data 
samples, the three directional features are merged to obtain a 60-dimensional data feature set for 

Fig. 5. (Color online) Visualization of state recognition: (a) C1, (b) C4,and (c) C6.

Fig. 6. (Color online) Confusion matrix: (a) C1, (b) C4, and (c) C6.

(a) (b) (c)

(a) (b) (c)
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each tool. Before entering the linear regression model, the extracted data features are normalized. 
Then the normalized feature matrix is divided by time step and input into the LSTM network 
model to extract the hidden state of each time step of the degradation information output. After 
the input sample passes through the LSTM network, the hidden state of the output does not 
directly enter the output layer, but it is first entered into the attention network, and the hidden 
state weight of the LSTM learning degradation information is calculated and extracted in the 
attention network. Then the hidden states with different weights are output to ensure that the 
model learns more information related to degradation.
 In the model, the training and validation numerical value ratio is set to 7:3, and other network 
structure parameters are set as shown in Table 5. In this study, the C1, C4, and C6 tool life cycle 
extraction features are used as data sets to verify the model. Each tool has 315 actual tool side 
wear values, each wear value corresponds to 60 data features, and each tool forms a total of 
315×60 tool wear data. By taking the linear regression model as the “medium” and the historical 
tool wear data as the “guidance”, the wear values of the three tools with different cutting 
processes are predicted. The accuracy of the model prediction is evaluated by combining the 
variance (R2), mean absolute percentage error (MAPE), and the root mean square error (RMSE) 
with the following three evaluation equations:(17)

 ( )2
1

= ˆ1 N

ii
i

R y yMSE
N =

−∑ , (9)

 
1

1 ˆ
=

N

ii

iiyM E yAP
N y=

−∑ , (10)

 
( )

( )

ˆ

i

N

i i
i
N

i
i

y
R

y

y y

=

=

−
= −

−

∑

∑
, (11)

where N is the total number of samples, and yi, ŷi, and ȳi are the actual wear values, the predicted 
values from the model, and the average of the actual wear values, respectively.
 Figure 7 shows the predicted results of C1, C4, and C6 tools using the tool wear prediction 
regression model proposed in this study. It can be seen from the figure that the tool wear 
prediction curve of the model proposed in this study agrees well with the actual tool wear curve, 
and the three different wear stages are clearly divided. In addition, owing to the large error in the 

Table 5 
LSTM network structure parameter settings.
Activation 
function

Optimizer Training 
batches

Learning decline 
factor

Number of cross-
validations

Number of 
nodes

Learning 
rate

Number of 
iterations

Sigmoid Adam 10 0.9 10 30 0.005 100
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manual measurement of tool wear value, there is a certain deviation between the model predicted 
results and the actual wear value in the later stage of wear, but the error range is small, which has 
little effect on the overall predicted results of the model, thus verifying the effectiveness and 
accuracy of the proposed model. The accuracy indicator values of the three tools are shown in 
Table 6.
 It can be seen from Table 6 that the MAPE values of C1, C4, and C6 are 6.8887, 10.4061, and 
8.9716, respectively. The RMSE values are 8.1790, 12.4661, and 12.5025, respectively. The R2 
values are 0.9676, 0.9792, and 0.9547, respectively. The accuracy values of MAPE and RMSE are 
relatively small, and R2 is greater than 0.8. This shows that the model proposed in this study has 
better prediction accuracy for any tool in the experiment. To prove the effectiveness and 
advantages of the model proposed, RMSE is employed as the accuracy evaluation index and 
compared with the prediction results of the GAN + BPNN (BP neural network), GAN + FNN 
(fuzzy neural network), GAN + RF (random forest), and GAN + LSTM regression models. The 
RMSE values of different prediction models are shown in Table 7.
 It can be seen from the table that the average RMSE values of the four tools of GAN + BPNN, 
GAN + FNN, GAN + RF, and GAN + LSTM are 16.7734, 17.2965, 18.0509, and 14.0442, 
respectively, and the average RMSE values of the three tools of GAN + LSTM + attention model 
is 11.0492. Compared with those of the commonly used regression models of BPNN, FNN, and 
RF with enhanced data, the RMSE values of the tool wear prediction model proposed in this 
study are reduced by 34.12, 36.11, and 38.78%, respectively. This indicates that the regression 
model proposed in this study is superior to the commonly used machine learning networks in 

Fig. 7. (Color online) Tool wear prediction results: (a) C1, (b) C4, and (c) C6.

Table 6
Accuracy indicator values.

MAPE R2 RMSE
C1 6.8888 0.9676 8.1790
C4 10.4061 0.9792 12.4661
C6 8.9716 0.9547 12.5025

(a) (b) (c)
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tool wear prediction. Compared with those of the LSTM regression model with expanded data 
without attention mechanisms, the RMSE values of the model proposed in this study is reduced 
by 21.32%. It is proved that the combination of attention mechanisms and LSTM can better 
predict the tool wear value. In summary, the RMSE values of the proposed model are reduced by 
at least 21.32% compared with those of the above four commonly used regression prediction 
models, which again proves the effectiveness and practicality of the proposed model.

6. Conclusions

 A tool wear prediction method based on the attention LSTM network with conditions of data 
imbalance is proposed in this study. The GAN is used to solve the problem of unbalanced tool 
state category labels and missing wear samples. The attention LSTM network is used to solve the 
problem that the hidden state of the deep learning network is miscellaneous and the features 
strongly related to the tool wear value cannot be fully mapped. The specific conclusions are as 
follows:
(1) The tool wear data samples were supplemented with the GAN, and the k-nearest neighbor 

classifier was used to identify the tool wear status by adaptively extracting the features of the 
supplemented data samples using the SSAE network. The average recognition accuracies of 
the three tools reached 96.3, 96.0, and 95.3%. It can be proved from the recognition accuracy 
that the enhanced tool wear data can achieve a good recognition effect, improve the data 
imbalance, and have a good expansion of the missing data samples, which can solve the 
problem of an unbalanced label for complex working conditions.

(2) The attention mechanism is added to the output layer of the LSTM network to predict the tool 
wear value. Compared with the commonly used tool wear regression prediction network 
model, the accuracy evaluation index (ie., the RMSE value) is reduced by at least 21.32%. 
Compared with the traditional regression model, the stability is stronger and the accuracy is 
higher, which proves the accuracy and feasibility of monitoring tool wear state.

 The method proposed in this study is still limited to the identification and prediction of tool 
wear state with different parameters of a single working condition. In future research, the 
identification and prediction of tool wear states under different working conditions and different 
parameters should be considered to improve the actual utilization rate and generalization 
performance of the model.

Table 7 
RMSE values of different prediction models.

C1 C4 C6 Average
GAN + BPNN 13.8286 14.5738 21.9178 16.7734
GAN + FNN 11.2262 17.1180 23.5452 17.2965
GAN + RF 14.4621 15.5162 24.1989 18.0509
GAN + LSTM 10.6165 12.1779 19.3384 14.0442
GAN + LSTM + attention 8.1790 12.4661 12.5025 11.0492
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