
2355Sensors and Materials, Vol. 35, No. 7 (2023) 2355–2370
MYU Tokyo

S & M 3327

*Corresponding author: e-mail: cjlin@ncut.edu.tw
https://doi.org/10.18494/SAM4440

ISSN 0914-4935 © MYU K.K.
https://myukk.org/

Convolutional Takagi–Sugeno–Kang-type Fuzzy Neural Network
for Bearing Fault Diagnosis

Jyun-Yu Jhang,1 Cheng-Jian Lin,2* and Su-Wei Kuo2

1Department of Computer Science and Information Engineering, 
National Taichung University of Science and Technology, Taichung 404, Taiwan

2Department of Computer Science & Information Engineering, National Chin-Yi University of Technology, 
Taichung 411, Taiwan

(Received April 7, 2023; accepted June 27, 2023)

Keywords: fault diagnosis, deep learning network, Takagi–Sugeno–Kang (TSK)-type fuzzy neural 
network, vibration signal

 Rotating machines are widely used in modern industry. In a mechanical system, rolling 
bearings are essential. Bearings must be able to operate in extreme environments, in which they 
are prone to various faults. To address the challenge related to accurately classify bearing fault 
types using vibration sensors, we propose a convolutional Takagi–Sugeno–Kang (TSK)-type 
fuzzy neural network classifier (CTFNNC) that comprises a convolutional layer and a TSK-type 
fuzzy neural network. In the CTFNNC, convolutional layers are used to extract the features of a 
vibration signal, and a TSK-type fuzzy neural network is used to classify bearing faults under 
various categories. In our experiment, the proposed CTFNNC was compared with other 
methods, such as a fuzzy neural network, an artificial neural network, and the LeNet-5 
convolutional neural network. The experimental results indicate that the proposed CTFNNC has 
a bearing fault classification accuracy of 98.3% and requires half the number of parameters as 
LeNet-5.

1. Introduction

 Because of the rapid development of the modern manufacturing industry, the reliability, 
safety, and availability of mechanical systems are increasingly being studied.(1,2) Rolling 
bearings are among the most widely used components in machines and the most common cause 
of machine failure.(3) Approximately 30% of all machine failures, especially those that occur in 
gear- and shaft-driven equipment, are related to bearings.(4) During the operation of equipment, 
its bearings are susceptible to overload, friction, corrosion, and sticking damage, which are 
likely to affect the performance of the equipment and may even cause personal injury. An instant 
and accurate bearing fault diagnosis system is required to ensure machine performance. 
Traditional bearing fault diagnosis systems mostly rely on the analysis of bearing vibration 
signals using vibration sensors, which is performed by empirical mode decomposition (EMD) or 
ensemble empirical mode decomposition (EEMD). EMD decomposes a signal into multiple 
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signal features through an adaptive method, which has achieved excellent results in bearing fault 
diagnosis.(5–9) EEMD is a data analysis technique that uses noise to address the shortcomings 
associated with the common-mode mixing effect of EMD and is widely used to diagnose gear 
spalling and cracking faults.(10–12) EEMD identifies different fault problems on the basis of fault 
signals. Therefore, fault diagnosis-related problems can be regarded as classification problems.
 Machine learning for classification problems has been widely used in human recognition, 
speech recognition, and fault detection. Many mature machine learning methods exist for fault 
diagnosis classification, such as the fuzzy logic system (FLS), artificial neural network (ANN), 
fuzzy neural network (FNN), and support vector machine (SVM). To diagnose faults, Goddu et 
al.(13) employed a fuzzy logic technique to analyze the frequency spectrum of bearing vibration 
signals. They used a hand-optimized method to design membership functions, and their 
preliminary results indicated that fuzzy logic can be effectively utilized to obtain highly accurate 
bearing fault diagnosis results. To improve the performance of the FLS and its compatibility 
with complex systems, Bin and Wenbo(14) used the Takagi–Sugeno–Kang (TSK) fuzzy inference 
system,  which is a modified Sugeno fuzzy inference system that employs a different approach to 
manage its rule base and output. The TSK system is recognized for its ability to manage 
nonlinear systems and to provide more accurate and precise outputs than other fuzzy inference 
systems. Wang et al.(15) proposed a new TSK fuzzy broad learning system model that combines 
the advantages of both broad learning systems and fuzzy systems, and it has produced favorable 
results with respect to both experimental accuracy and training time. Patil et al.(16) developed a 
method based on the wavelet transform and ANNs to analyze the vibration signals of rolling 
bearings and to identify component defects. In the method, a vibration signal is processed using 
the wavelet transform to remove noise and extract relevant features. These features include 
skewness, kurtosis, root mean square, and crest factor, which are retrieved as parameters that are 
input into an ANN classifier. The role of an ANN is to classify the bearing fault features 
generated by the wavelet transform and to identify the bearing faults. Experimental results 
indicated that the proposed method combining the wavelet transform and ANNs enables highly 
accurate and reliable bearing fault detection and classification. An FNN is an artificial 
intelligence model combining the characteristics of fuzzy logic systems and neural networks. It 
processes uncertain and imprecise input data and performs complex nonlinear tasks such as 
modeling and decision-making. The fuzzy logic aspect of an FNN is mainly used to preprocess 
input data and create fuzzy rules that support neural network training. By contrast, the neural 
network of an FNN is responsible for learning the underlying relationship between inputs and 
outputs and making predictions on the basis of a learned model. FNNs have been applied in 
various areas, such as control systems, pattern recognition, time series forecasting, and 
classification. Gai and Hu(17) developed a system for diagnosing crankshaft bearing failures in 
diesel engines. First, they decomposed the vibration signal of a crankshaft bearing in a known 
state by EMD to obtain the modal component of the fault characteristic information. 
Subsequently, they subjected the modal components of identified fault characteristics to singular 
value decomposition to generate a fault feature matrix, which was then classified by an FNN to 
identify and diagnose various crankshaft bearing conditions. Wang et al.(18) used integrated fault 
features (IFFs) and SVMs to achieve rapid, high-precision fault detection. They obtained the 
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feature information of a fault by separating IFF signals using EMD. Subsequently, an SVM was 
used to classify the fault features to detect the fault type. The aforementioned methods are all 
machine-learning-based methods. Although machine learning can be applied to effectively 
establish classification models on the basis of feature information, machine-learning-based 
methods require experts to design feature extraction methods, and poorly extracted feature 
information leads to poor classification performance.
 In recent years, the performance of computing equipment has substantially improved, and 
deep learning has replaced machine learning as the most widely used method. Deep learning is a 
subfield of machine learning, and it involves training ANNs with multiple layers to learn and 
represent complex patterns in data. It allows a network to automatically learn and extract 
features from raw input data instead of through manual feature engineering.(19,20) Thus, it is 
suitable for tasks such as image and speech recognition, natural language processing, and self-
driving. The key advantage of deep learning is its ability to effectively generalize the use of new 
examples and to learn from unstructured data. Li et al.(21) proposed an improved LeNet-5 
convolutional neural network (CNN) for diagnosing rolling bearing faults. This CNN is a 
modified version of the conventional LeNet-5 model that incorporates additional convolutional 
layers and pooling layers. It uses convolutional layers to extract the features in a fault signal and 
then uses a softmax function to classify and identify rolling bearing faults. Wang et al.(22) 
devised a new method for fusing multimodal sensor signals (e.g., vibration signals from 
accelerometers and audio signals from microphones) to increase the accuracy and robustness of 
bearing fault diagnosis. Their proposed method uses 1D CNN-based networks to merge features 
extracted from raw vibration signals and acoustic signals, and it provides higher accuracy than 
traditional methods. Lin and Jhang(23) used a gradient-weighted class activation map (Grad-
CAM)-based convolutional neuro-fuzzy network to detect the bearing conditions of machine 
tools. They analyzed the characteristics of multiple fault signals through the visualization 
technology of Grad-CAM and established a classification model by using a convolutional neuro-
fuzzy network. Their implementation results revealed that the prediction accuracy of their 
method was higher than that of the traditional CNN method. Hasan et al.(24) combined a 1D 
CNN with the transfer learning method to solve deep learning problems that require a long 
training time. The proposed method used the information obtained under a given operating 
condition to diagnose faults occurring under other operating conditions.
 Although deep learning methods can be effectively applied to establish fault prediction 
models, quickly importing them into industrial applications is challenging because they require 
considerable computing resources and a long training time. Therefore, in this study, we propose 
a novel convolutional TSK-type FNN classifier (CTFNNC) for bearing fault diagnosis that uses 
convolution operations to extract features from faulty signals. The main contributions of this 
study are as follows:
1.  The proposed CTFNNC can automatically extract features from raw data without requiring 

expert knowledge. 
2.  In the proposed CTFNNC, a TSK-type FNN (TSK-FNN) is used to replace a fully connected 

network as classifier. The extracted feature information is used as the input for the TSK-FNN 
to build a fault diagnosis model. 
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3.  Compared with the fully connected network used by a traditional CNN, the proposed 
CTFNNC uses fewer training parameters and has powerful nonlinear mapping capabilities, 
which improve the accuracy and reduce the training time. 

4.  By comparing the experimental results of the proposed method with those of four other 
methods, we verified that the CTFNNC requires half the number of parameters (12K) as a 
traditional CNN (24K) and achieves high accuracy (98.6%).

 The remainder of the paper is organized as follows. Section 2 presents the system architecture 
used for fault diagnosis and the data preprocessing steps. Section 3 introduces the experimental 
data set and experimental results. Section 4 provides the conclusion.

2. Proposed CTFNNC for Bearing Fault Diagnosis

2.1 System architecture

 Figure 1 presents a structural diagram of the bearing fault detection system proposed in this 
study. The system detects bearing faults by (1) dividing the original signal of a data set into 
several subsample sets with a length of 1024, (2) converting the signal of the subsample set into a 
2D vibration image map, (3) converting the vibration image set to train the CTFNNC to establish 
a bearing fault diagnosis model, and (4) outputting the classification of 16 states, including the 
normal (Normal), inner race damage (DEIR_007, DEIR_014, DEIR_021, DEIR_028), ball 
damage (DEB_007, DEB_014, DEB_021, DEB_028), and outer race damage (DEOR@6, 
DEOR@3, DEOR@12) states.

2.2 Data preprocessing

 In this study, the 12K vibration signals obtained using a vibration sensor in the Case Western 
Reserve University (CWRU) bearing database were adopted to establish a bearing fault 
diagnosis model. First, each vibration signal was split into several non-overlapping subsignals 
with a sample size of 1024. Subsequently, each subsignal with a size of 1024 was converted into 
a 32 × 32 vibration image, which was then used as the training and testing data of the diagnostic 

Fig. 1. (Color online) Structure of bearing fault detection system.
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model (Fig. 2). The bearing data set contained four states, namely, the normal, inner race fault, 
ball damage, and outer race fault states. The total numbers of samples used for the normal, inner 
race fault, ball fault, and outer race fault states were 1656, 1893, 1893, and 3324, respectively. 
Figure 3 shows 2D images of various fault states.

Fig. 2. (Color online) Process of converting vibration signal into vibration image.

Fig. 3. Two-dimensional images of various fault states.
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2.3 CTFNNC

 To improve the use of fully connected networks in traditional CNNs, numerous network 
parameters and a long training time are required. In this study, we propose a novel CTFNNC for 
establishing a bearing fault diagnosis model. The proposed CTFNNC comprises seven layers, 
namely, the convolutional layer, pooling layer, flattening layer, fuzzification layer, rule layer, 
TSK layer, and output layer (Fig. 4). The operation of each layer is described in the subsequent 
subsections.

(1) Convolutional layer

 The convolution layer is among the most crucial cores in a CNN; it mainly extracts features 
from an input image using several convolution kernels.(25) In general, each filter extracts one 
type of feature, and different filters extract different features. During forward propagation, each 
filter is convoluted with an input feature map, and through the convolution operation, a new 
feature map is generated as the input of the next layer. The formula expressing the convolution 
operation is

 ( )
1

,1 ,m
ri i y r yyC C K−

+=
= ⊗∑  (1)

where ⊗ is the convolution operation symbol, Ci+y represents the input data, m is the size of the 
convolution kernel, and K(r, y) represents the convolution kernel of position (r, y).

(2) Pooling layer

 The pooling layer in the CNN architecture compresses the feature map after a convolution 
operation is performed, thereby reducing the number of network parameters required. A max 
pooling operation requires the selection of a kernel size and a stride, thereby allowing a kernel to 
slide over the input with the specified stride. Only the maximum value of each kernel is selected 
from the input to produce the output value. The output formula of the max pooling operation is 
as follows:

Fig. 4. (Color online) Architecture of convolutional TSK-type FNN classifier.
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 ,maxrj riP C=  (2)

where ( )k
iP  is the feature map produced through the max pooling operation.

(3) Flattening layer

 The 2D feature map generated after the convolution and max pooling operations is converted 
into a 1D feature vector by using the flattening layer as the input of the classifier. The formula 
for expressing a flattening operation is as follows:

 rjP  → ,  iU i r n j= × + , (3)

where Ui represents the 1D vector at position i, Prj represents the feature map generated by the 
pooling operation, and n is the total number of rows of the feature map.

(4) Fuzzification layer

 The fuzzification layer uses the IF~THEN~ rules for fuzzification. The fuzzy rules 
IF~THEN~ are as follows:

 IF U1 is Sk1 and U2 is Sk2 and … and Uj is Skj and … and Un is Skn
 THEN yk = c0k + c1kU1 + c2kU2 + … + cjkUj + … + cnkUn,

where Skj is the antecedent fuzzy set of the kth fuzzy rule and cjk is the parameter of the TSK 
consequences. In this study, the Gaussian function(26) was used as the membership function, and 
the formula is presented as

 ( ) 1exp ,
2

j kj
kj

kj

U C
Uµ

σ

  −
 = −      

 (4)

where Ckj and σkj are the mean and standard deviation of the Gaussian fuzzy set, respectively.

(5) Rule layer

 The firing strength of the fuzzy rules is obtained by multiplying each membership function, 
and the algebraic product operation is expressed as

 ( ) ( )1 .n
k kj jj

UUµ µ
=

=∏  (5)
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(6) TSK layer

 In this paper, TSK is used as the consequence of the fuzzy rule. The TSK consequence is 
defined as

 ( )( )0 1
.n

k k k ik ii
t c c UUµ

=
= +∑  (6)

(7) Output layer

 Finally, a defuzzification operation is performed through the center of gravity method as 
follows:

 ( )1 1 .r rk
kk k

ty Uµ
= =

=∑ ∑  (7)

3. Experimental Results

3.1 CWRU bearing data set

 Bearings naturally deteriorate over many years. Therefore, collecting data on bearing failures 
is challenging. To collect experimental data on bearing defects, artificial methods are usually 
used to accelerate the generation of bearing defect data.(27) Numerous research centers have 
publicly shared the bearing data sets that they have collected, including the CWRU bearing data 
set,(28) NASA intelligent maintenance system data set,(29) Paderborn University bearing data 
set,(30) and PRONOSTIA bearing data set,(31) among which the CWRU bearing data set is the 
most widely used benchmark.(32,33) In this study, the CWRU bearing data set was adopted to 
develop a bearing fault diagnosis model. Figure 5 presents the experimental machine used to 

Fig. 5. (Color online) Experimental machine used to generate CWRU bearing data set.
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generate the data of the CWRU bearing data set. This machine has three components. The first 
component is a 2 horsepower (hp) electric motor that runs at a constant speed, the second is a 
torque sensor/encoder that collects speed and horsepower data, and the third is an accelerometer 
that collects bearing vibration data.
 The CWRU bearing data set comprises four states, namely, the normal, inner race fault, ball 
fault, and outer race fault states. The sampling rates of the data set are 12 and 48 kHz, and 
vibration signals are collected under 0, 1, 2, and 3 hp loads. The diameters of the ball bearings 
are 0, 0.007, 0.014, 0.021, and 0.028, respectively. The motor speeds corresponding to the loads 
of 0, 1, 2, and 3 hp are 1797, 1772, 1750, and 1730 rpm, respectively. The outer race fault state is 
different from the other three fault states and is classified into centered, orthogonal, and opposite 
outer race faults. These three race faults are at the 6 o’clock (@6), 3 o’clock (@3), and 12 o’clock 
(@12) positions, respectively. In the present experiment, vibration data with a sampling 
frequency of 12 kHz were used without considering the motor load and speed. For example, all 
inner race faults with a diameter of 0.007 are considered as the same fault type, regardless of the 
motor load and speed. The conditions corresponding to various bearing vibration signals are 
presented in Table 1, where the symbol “-” indicates the absence of data. The 16 status conditions 
are labeled as Normal, DEIR_007, DEIR_014, DEIR_021, DEIR_028, DEB_007, DEB_014, 
DEB_021, DEB_028, DEOR@6_007, DEOR@6_014, DEOR@6_021, DEOR@3_007, 
DEOR@3_021, DEOR@12_007, and DEOR@12_021. Table 2 lists the number of records for 
various bearing faults.

Table 1
Fault labels corresponding to various bearing vibration signals.
Fault
diameter

Motor
load

Motor
speed Normal Inner race Ball Outer race (Fault position)

@6 @3 @12

0

0 1797

Normal — — — — —1 1772
2 1750
3 1730

0.007

0 1797

— DEIR_007 DEB_007 DEOR@6_007 DEOR@3_007 DEOR@12_0071 1772
2 1750
3 1730

0.014

0 1797

— DEIR_014 DEB_014 DEOR@6_014 — —1 1772
2 1750
3 1730

0.021

0 1797

— DEIR_021 DEB_021 DEOR@6_021 DEOR@3_021 DEOR@12_0211 1772
2 1750
3 1730

0.028

0 1797

— DEIR_028 DEB_028 — — —1 1772
2 1750
3 1730
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3.2 Bearing fault diagnosis and evaluation experiment

 We compared the proposed CTFNNC model with several machine learning or deep learning 
models to evaluate its diagnostic performance. Chang(34) proposed an FNN-based diagnostic 
technique, Ogi et al. (35) proposed an ANN for gas insulated switchgear (GIS) diagnostic system 
application, Li et al.(36) improved LeNet-5 for rolling bearing fault diagnosis, and Lin et al.(37) 
proposed a convolutional fuzzy neural network (CFNN) for use in intelligent traffic-monitoring 
systems. To clearly present the differences in the classification performance of various models, 
we used a confusion matrix(38) to evaluate the performance of the proposed classification model 
for bearing fault diagnosis compared with those in Refs. 34–37. Table 3 provides a comparison of 
the accuracy of the proposed CTFNNC with those of the other models. After 10 epochs of 
training, the lowest, highest, and average accuracies were obtained. The average accuracies of 
the FNN, ANN, CFNN, and LeNet-5 models were 60.15, 62.94, 96.34, and 96.68%, respectively 
(Table 3). The proposed CTFNNC outperformed these methods in terms of the lowest (98.37%), 
highest (98.86%), and average (98.6%) accuracies. For the evaluation of network parameters, the 
proposed CTFNNC used approximately half the number of parameters as that used by the 
traditional CNN (LeNet-5).
 Table 4 lists the accuracy results obtained under normal and inner race fault conditions, 
revealing that the accuracy for normal bearing diagnosis was 100% for each model, whereas that 
for inner race failure was significantly different among the models. In addition, the diagnostic 
accuracies of the FNN and ANN were low because they did not use a convolutional layer to 
extract features.
 Table 5 lists the accuracy results for various ball fault sizes. The proposed method accurately 
classified ball faults, especially the DEB_014 and DEB_028 fault types, with accuracies of 95.80 
and 100%, respectively. The classification accuracy of the FNN for DEB_014 was approximately 
20% and that of the ANN for DEB_028 was nearly 40%.
 Table 6 lists the accuracy results for outer race faults. Because each outer race fault was 
located at the 6 o’clock position, it is denoted as @6. Table 6 reveals that the CFNN, LeNet-5, 
and proposed models exhibited similarly high diagnostic accuracies. However, the FNN and 
ANN exhibited poor accuracies for outer race fault detection.
 Table 7 lists the accuracy results for the diagnosis of orthogonal outer race faults. Because the 
orthogonal outer race faults were located at the 3 o’clock and 12 o’clock positions, they are 
denoted as @3 and @12, respectively. Table 7 indicates that the CFNN, LeNet-5, and CTFNNC 

Table 2
Number of records for each failure type.
Fault
diameter Normal Inner race Ball Outer race (Fault position)

@6 @3 @12
0 1656 — — — — —
0.007 — 476 473 475 474 476
0.014 — 472 475 474 — —
0.021 — 474 475 476 475 474
0.028 — 471 471 — — —
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Table 3
Accuracy of various methods for bearing fault diagnosis.
Classifiers Lowest accuracy (%) Highest accuracy (%) Average accuracy (%) Parameters
FNN(34) 58.53 63.66 60.15 66064
ANN(35) 59.06 65.72 62.94 68208
CFNN(37) 88.26 98.29 94.96 7574
LeNet-5(36) 95.86 98.06 96.68 23586
CTFNNC 98.37 98.86 98.6 12376

Table 4
Classification accuracy for normal and inner race faults.
Classifier Normal (%) DEIR_007 (%) DEIR_014 (%) DEIR_021 (%) DEIR_028 (%)
FNN(34) 100.00 57.34 60.56 93.66 100.00
ANN(35) 100.00 37.06 50.00 61.27 58.87
CFNN(37) 100.00 100.00 97.89 100.00 100.00
LeNet-5(36) 100.00 99.30 92.25 100.00 99.29
CTFNNC 100.00 100.00 100.00 100.00 100.00

Table 5
Classification accuracy for ball faults.
Classifier DEB_007 (%) DEB_014 (%) DEB_021 (%) DEB_028 (%)
FNN(34) 85.21 20.28 69.23 100.00
ANN(35) 61.27 50.00 57.34 39.72
CFNN(37) 94.37 96.50 88.81 100.00
LeNet-5(36) 93.66 95.80 90.91 99.29
CTFNNC 93.66 95.80 93.01 100.00

Table 6
Classification accuracy for outer race faults.
Classifier DEOR@6_007 (%) DEOR@6_014 (%) DEOR@6_021 (%)
FNN(34) 85.21 20.28 69.23
ANN(35) 61.27 50.00 57.34
CFNN(37) 94.37 96.50 88.81
LeNet-5(36) 93.66 95.80 90.91
CTFNNC 93.66 95.80 93.01

Table 7
Classification accuracy for orthogonal outer race faults.
Classifier DEOR@3_007 (%) DEOR@3_014 (%) DEOR@12_007 (%) DEOR@12_021 (%)
FNN(34) 0.00 32.87 78.32 16.20
ANN(35) 71.13 55.24 60.14 42.25
CFNN(37) 100.00 100.00 99.3 97.18
LeNet-5(36) 100.00 98.60 97.2 96.48
CTFNNC 100.00 100.00 98.6 97.89
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models accurately diagnosed these fault types. However, the ANN and FNN achieved diagnostic 
accuracies of only about 60 and 80% for DEOR@12_007, respectively, which were much lower 
than the results for the other types of orthogonal outer race faults. Collectively, these findings 
indicate that without a convolutional layer to assist in feature extraction, traditional machine 
learning models cannot effectively classify fault states during fault diagnosis.
 To identify the advantages and disadvantages of the models, confusion matrices were used to 
compare them. Because the FNN and ANN did not use convolutional layers to automatically 
extract features, only the CFNN, LeNet-5, and proposed CTFNNC were used for diagnosis. The 
confusion matrices (Fig. 6) revealed that the classification accuracies of these three models were 
lowest for the DEB_021 fault type. That is, the fault characteristics of DEB_021 and DEB_007 
were similar, making it difficult for the CFNN and LeNet-5 models to accurately classify them. 
However, the accuracy of the proposed model for DEB_021 was 93.01%, higher than those of the 
CFNN and LeNet-5, whose accuracies were 88.81 and 90.91%, respectively. That is, the proposed 
method was superior to the other detection models and could effectively detect the state of 
bearings.

Fig. 6. (Color online) Confusion matrix of fault diagnosis models. (a) CFNN.

(a)
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(b)

(c)

Fig. 6. (Continued) (Color online) (b) LeNet-5 and (c) proposed CTFNNC.
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4. Conclusions

 We proposed a CTFNNC for detecting the current state of a bearing signal from vibration 
sensors. Traditional feature extraction requires manual methods, for which the classification 
process is time-consuming. The proposed method can automatically perform feature extraction 
on the basis of raw vibration signals. Among the studied methods, the TSK-FNN effectively 
reduced the number of parameters used for training and improved the classification accuracy. By 
comparing the experimental results of the proposed method with those of the other four studied 
methods, we verified that the CTFNNC required half the number of parameters (12K) as a 
traditional CNN (24K) and achieved a high accuracy (98.6%). The experimental results indicate 
that the proposed method is effective and feasible for performing bearing fault diagnosis.
 The bearing fault diagnosis system must be real-time in industrial applications. Therefore, 
the proposed CTFNNC can be implemented in field-programmable gate array (FPGA) hardware 
in future research. The parameters of each layer of the proposed CTFNNC can be converted to 
the FPGA for verification.
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